Drone Delivery of Dehydro-Sulfurization Utilizing Doubly-Charged Negative Ions of Nanoscale Catalysts Inspired by the Biomimicry of Bee Species’ Bio-Catalysis of Pollen Conversion to Organic Honey
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hu, Y.-L.; Zhu, H.-R.; Wei, S.H. Single-doped charged gold cluster with highly selective catalytic activity for the reduction of SO2 by CO: First-principles study. Chin. Phys. B 2019, 28, 113101. [Google Scholar] [CrossRef]
- Liu, D.; Ren, S.; Li, W. SO2 emissions trading and firm exports in China. Energy Econ. 2022, 109, 105978. [Google Scholar] [CrossRef]
- Likus-Cieślik, J.; Socha, J.; Gruba, P.; Pietrzykowski, M. The Current State of Environmental Pollution with Sulfur Dioxide (SO2) in Poland Based on Sulfur Concentration in Scots Pine Needles. Environ. Pollut. 2020, 258, 113559. [Google Scholar] [CrossRef] [PubMed]
- Denis, P.A.; Iribarne, F. New Approach to Accomplish the Covalent Functionalization of Boron Nitride Nanosheets: Cycloaddition Reactions. J. Phys. Chem. C 2018, 122, 18583–18587. [Google Scholar] [CrossRef]
- Denis, P.A.; Iribarne, F. Cycloaddition Reactions between Graphene and Fluorinated Maleimides. J. Phys. Chem. C 2017, 121, 13218–13222. [Google Scholar] [CrossRef]
- Felfli, Z.; Suggs, K.; Nicholas, N.; Msezane, A.Z. Fullerene negative ions: Formation and catalysis. Int. J. Mol. Sci. 2020, 21, 3159. [Google Scholar] [CrossRef]
- Suggs, K.; Kiros, F.; Tesfamichael, A.; Felfli, Z.; Msezane, A.Z. Charge modification of metal atoms: Catalysis of Water to Peroxide. J. Phys. Conf. Ser. 2015, 635, 052018. [Google Scholar] [CrossRef]
- Anbar, M.; Schnitzer, R. Doubly Charged Negative Atomic Ions of Hydrogen. Science 1976, 191, 463–464. [Google Scholar] [CrossRef]
- Wang, Z.; Mi, B. Environmental Applications of 2D Molybdenum Disulfide (MoS2) Nanosheets. Environ. Sci. Technol. 2017, 51, 8229–8244. [Google Scholar] [CrossRef]
- Kroto, H. The stability of the fullerenes Cn, with n = 24, 28, 32, 36, 50, 60 and 70. Nature 1987, 329, 529–553. [Google Scholar] [CrossRef]
- Moosavi-Khoonsari, E.; Van Ende, M.A.; Jung, I.H. Kinetic simulation of hot metal pretreatment: Desulfurization using powder injection. Metall. Mater. Trans. B 2022, 53, 981–998. [Google Scholar] [CrossRef]
- Suggs, K.; Reuven, D.; Wang, X.-Q. Electronic properties of cycloaddition-functionalized graphene. J. Phys. Chem. C 2011, 115, 3313–3317. [Google Scholar] [CrossRef]
- Dunnington, L.; Nakagawa, M. Fast and safe gas detection from underground coal fire by drone fly over. Environ. Pollut. 2017, 229, 139–145. [Google Scholar] [CrossRef]
- Shahmoradi, J.; Talebi, E.; Roghanchi, P.; Hassanalian, M. A Comprehensive Review of Applications of Drone Technology in the Mining Industry. Drones 2020, 4, 34. [Google Scholar] [CrossRef]
- Riddle, S. The Chemistry of Honey. Bee Culture the Magazine of America Beekeeping, 25 July 2016. [Google Scholar]
- Jung, D.; Streb, C.; Hartmann, M. Covalent Anchoring of Chloroperoxidase and Glucose Oxidase on the Mesoporous Molecular Sieve SBA-15. Int. J. Mol. Sci. 2010, 11, 762–778. [Google Scholar] [CrossRef] [PubMed]
- Billingsley, E.J.; Ghommem, M.; Vasconcellos, R.; Abdelkefi, A. Biomimicry and Aerodynamic Performance of Multi-Flapping Wing Drones. In Proceedings of the AIAA Scitech 2021 Forum, Virtual, 19–21 January 2021; pp. 11–15. [Google Scholar] [CrossRef]
- Xu, C.; Gu, Q.; Li, S.; Ma, J.; Zhou, Y.; Zhang, X.; Jiang, C.; Pham-Huu, C.; Liu, Y. Heteroatom-doped monolithic carbocatalysts with improved sulfur selectivity and impurity tolerance for H2S selective oxidation. ACS Catal. 2021, 11, 8591–8604. [Google Scholar] [CrossRef]
- Shafiq, I.; Shafique, S.; Akhter, P.; Yang, W.; Hussain, M. Recent developments in alumina supported hydrodesulfurization catalysts for the production of sulfur-free refinery products: A technical review. Catal. Rev. 2020, 64, 1–86. [Google Scholar] [CrossRef]
- Suggs, K.; Msezane, A.Z. Doubly-Charged Negative Ions of Triple-Hybrid Atomic-Metal, Super-benzene, Fullerene, and Nanotube as Novel Catalysts for Clean Air through SO2 Reduction by CO. Preprints 2021. [Google Scholar]
- Ye, R.; James, D.K.; Tour, J.M. Laser-Induced Graphene. Acc. Chem. Res. 2018, 51, 1609–1620. [Google Scholar] [CrossRef]
- Ajayan, P.M.; Tour, J.M. Nanotube composites. Nature 2007, 447, 1066–1068. [Google Scholar] [CrossRef]
- Yang, J.; Chen, J.; Wang, X.; Yang, D.; Zhang, Y.; Wu, Y.; Zhao, Y.; Wang, Y.; Wei, Q.; Wang, R.; et al. Improving oxygen reduction reaction of microbial fuel cell by titanium dioxide attaching to dual metal organic frameworks as cathode. Bioresour. Technol. 2022, 349, 126851. [Google Scholar] [CrossRef]
- Hu, F.; Chen, X.; Tu, Z.; Lu, Z.-H.; Feng, G.; Zhang, R. Graphene aerogel supported Ni for CO2 hydrogenation to methane. Ind. Eng. Chem. Res. 2021, 60, 12235–12243. [Google Scholar] [CrossRef]
- Jin, C.; Cheng, L.; Feng, G.; Ye, R.; Lu, Z.-H.; Zhang, R.; Yu, X. Adsorption of Transition-Metal Clusters on Graphene and N-Doped Graphene: A DFT Study. Langmuir 2022, 38, 3694–3710. [Google Scholar] [CrossRef]
- Cristol, S.; Paul, J.F.; Payen, E.; Bougeard, D.; Clémendot, S.; Hutschka, F. Theoretical study of the MoS2 (100) surface: A chemical potential analysis of sulfur and hydrogen coverage. J. Phys. Chem. B 2000, 104, 11220–11229. [Google Scholar] [CrossRef]
- Li, Y.; Yang, Y.; Li, K.; Sun, X.; Wang, F.; Hao, Y.; Ning, P.; Wang, C. Theoretical analysis of selective catalytic oxidation of H2S on Fe-N3 co-doped graphene. Mol. Catal. 2022, 524, 112318. [Google Scholar] [CrossRef]
- Wang, H.; Chen, L.; Lv, Y.; Liu, J.; Feng, G. A First Principle Comparative Study on Chemisorption of H2 on C60, C80, and Sc3N@C80 in Gas Phase and Chemisorption of H2 on Solid Phase C60. J. Nanomater. 2014, 2014, 676908. [Google Scholar] [CrossRef]
- Chen, X.; Ge, F.; Lai, N. Probing the catalytic activity and poisoning-tolerance ability of endohedral metallofullerene Fen@C60 (n = 1–7) catalysts in the oxygen reduction reaction. J. Electrochem. Soc. 2020, 167, 024515. [Google Scholar] [CrossRef]
- Ritter, S.K. MOLECULES OF THE YEAR C&EN highlights some of the coolest compounds reported in 2017: “A New Sulflower Bloomed”. C EN 2017, 95, 2–29. [Google Scholar]
- Dong, R.; Pfeffermann, M.; Skidin, D.; Wang, F.; Fu, Y.; Narita, A.; Tommasini, M.; Moresco, F.; Cuniberti, G.; Berger, R.; et al. Persulfurated Coronene: A New Generation of “Sulflower”. J. Am. Chem. Soc. 2017, 139, 2168–2171. [Google Scholar] [CrossRef]
- Karatas, O.; Gengec, N.A.; Gengec, E.; Khataee, A.; Kobya, M. High-performance carbon black electrode for oxygen reduction reaction and oxidation of atrazine by electro-Fenton process. Chemosphere 2021, 287, 132370. [Google Scholar] [CrossRef]
- Xu, F.; Cai, S.; Lin, B.; Yang, L.; Le, H.; Mu, S. Geometric Engineering of Porous PtCu Nanotubes with Ultrahigh Methanol Oxidation and Oxygen Reduction Capability. Small 2022, 18, 2107387. [Google Scholar] [CrossRef]
- Betiha, M.A.; Rabie, A.M.; Ahmed, H.S.; Abdelrahman, A.A.; El-Shahat, M.F. Oxidative desulfurization using graphene and its composites for fuel containing thiophene and its derivatives: An update review. Egypt. J. Pet. 2018, 27, 715–730. [Google Scholar] [CrossRef]
- Gómez-Martínez, M.; Buxaderas, E.; Pastor, I.M.; Alonso, D.A. Palladium nanoparticles supported on graphene and reduced graphene oxide as efficient recyclable catalyst for the Suzuki-Miyaura reaction of potassium aryltrifluoroborates. J. Mol. Catal. A Chem. 2015, 404–405, 1–7. [Google Scholar] [CrossRef]
- Maihom, T.; Sittiwong, J.; Probst, M.; Limtrakul, J. Understanding the interactions between lithium polysulfides and anchoring materials in advanced lithium–sulfur batteries using density functional theory. Phys. Chem. Chem. Phys. 2022, 24, 8604–8623. [Google Scholar] [CrossRef] [PubMed]
- Liao, X.; Lu, R.; Xia, L.; Liu, Q.; Wang, H.; Zhao, K.; Wang, Z.; Zhao, Y. Density Functional Theory for Electrocatalysis. Energy Environ. Mater. 2022, 5, 157–185. [Google Scholar] [CrossRef]
- Wang, B.; Jin, C.; Shao, S.; Yue, Y.; Zhang, Y.; Wang, S.; Chang, R.; Zhang, H.; Zhao, J.; Li, X. Electron-deficient Cu site catalyzed acetylene hydrochlorination. Green Energy Environ. 2022; in press. [Google Scholar] [CrossRef]
- Delley, B. An all-electron numerical method for solving the local density functional for polyatomic molecules. J. Chem. Phys. 1990, 92, 508–517. [Google Scholar] [CrossRef]
- Delley, B. From molecules to solids with the DMol3 approach. J. Chem. Phys. 2000, 113, 7756–7764. [Google Scholar] [CrossRef]
- Howard, T.D. Systems and Methods for Lynchpin Structure Applications. US Patent 11117065, 28 July 2022. Available online: https://patents.justia.com/patent/11117065 (accessed on 15 September 2022).
- Lou, M.; Bao, J.L.; Zhou, L.; Naidu, G.N.; Robatjazi, H.; Bayles, A.I.; Everitt, H.O.; Nordlander, P.; Carter, E.A.; Halas, N.J. Direct H2S Decomposition by Plasmonic Photocatalysis: Efficient Remediation plus Sustainable Hydrogen Production. ACS Energy Lett. 2022, 7, 3666–3674. Available online: https://pubs.acs.org/doi/10.1021/acsenergylett.2c01755# (accessed on 20 September 2020). [CrossRef]
Catalyst (Doubly-Charged) | ΔTS-1 (eV) | Barrier (%) Change (TS-1) | ΔTS-2 (eV) | Barrier (%) Change (TS-2) |
---|---|---|---|---|
CNT (6,6) | 4.44 | 92.6 | 4.36 | 73.2 |
MoS2 | 1.12 | 70.5 | 1.06 | −10.4 |
GR-28 | 0.49 | 32.7 | 4.59 | 74.5 |
C-60 | 0.44 | 25 | 4.30 | 72.8 |
Doubly-charged only | 0.33 | 0 | 1.17 | 0 |
Catalyst (Doubly-Charged) | Initial 1 (eV) | TS-1 (eV) | Final 1 (eV) | Initial 2 (eV) | TS-2 (eV) | Final 2 (eV) |
---|---|---|---|---|---|---|
CNT (6,6) | 0 | 4.44 | 15.34 | 8.89 | 4.36 | 5.68 |
MoS2 | 10.09 | 11.21 | 10.16 | 0 | 1.06 | 0.95 |
GR-28 | 10.62 | 11.10 | 7.05 | 0 | 4.59 | 10.29 |
C-60 | 0 | 0.44 | 2.31 | 11.92 | 4.30 | 9.53 |
Doubly-charged only | 0 | 0.33 | 0.31 | 0.19 | 1.17 | 1.09 |
Catalyst (Neutral) | TS-1 (eV) | TS-2 (eV) |
---|---|---|
CNT (6,6) | 10.21 | - |
MoS2 | 0.05 | - |
GR-28 | 0.35 | - |
C-60 | 0.03 | 2.37 |
Nanoscale | STEP 1 | STEP 2 | ||||
---|---|---|---|---|---|---|
Molecules | Initial-1 | TS-1 | Final-1 | Initial-2 | TS-2 | Final-2 |
Armchair Carbon Nanotube CNT (6,6) | ||||||
Energy Levels | 0 eV | 4.44 eV | 15.34 eV | 8.89 eV | 4.36 eV | 5.68 eV |
MoS2 Molydisulfide | ||||||
Energy Levels | 10.09 eV | 11.21 eV | 10.36 eV | 0 eV | 1.06 eV | 0.95 eV |
Gr-28 28-atom Graphene | ||||||
Energy Levels | 10.62 eV | 11.10 eV | 7.05 eV | 0 eV | 4.59 eV | 10.29 eV |
C-60 Fullerene 60 | ||||||
Energy Levels | 0 eV | 0.44 eV | 2.31 eV | 11.92 eV | 4.30 eV | 9.53 eV |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Suggs, K.L.; Samarakoon, D.K.; Msezane, A.Z. Drone Delivery of Dehydro-Sulfurization Utilizing Doubly-Charged Negative Ions of Nanoscale Catalysts Inspired by the Biomimicry of Bee Species’ Bio-Catalysis of Pollen Conversion to Organic Honey. Hydrogen 2023, 4, 133-145. https://doi.org/10.3390/hydrogen4010009
Suggs KL, Samarakoon DK, Msezane AZ. Drone Delivery of Dehydro-Sulfurization Utilizing Doubly-Charged Negative Ions of Nanoscale Catalysts Inspired by the Biomimicry of Bee Species’ Bio-Catalysis of Pollen Conversion to Organic Honey. Hydrogen. 2023; 4(1):133-145. https://doi.org/10.3390/hydrogen4010009
Chicago/Turabian StyleSuggs, Kelvin L., Duminda K. Samarakoon, and Alfred Z. Msezane. 2023. "Drone Delivery of Dehydro-Sulfurization Utilizing Doubly-Charged Negative Ions of Nanoscale Catalysts Inspired by the Biomimicry of Bee Species’ Bio-Catalysis of Pollen Conversion to Organic Honey" Hydrogen 4, no. 1: 133-145. https://doi.org/10.3390/hydrogen4010009