Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (298)

Search Parameters:
Keywords = distance-independent indices

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
46 pages, 7184 KiB  
Article
Climate in Europe and Africa Sequentially Shapes the Spring Passage of Long-Distance Migrants at the Baltic Coast in Europe
by Magdalena Remisiewicz and Les G. Underhill
Diversity 2025, 17(8), 528; https://doi.org/10.3390/d17080528 - 29 Jul 2025
Viewed by 296
Abstract
Since the 1980s, earlier European springs have led to the earlier arrival of migrant passerines. We predict that arrival is related to a suite of climate indices operating during the annual cycle (breeding, autumn migration, wintering, spring migration) in Europe and Africa over [...] Read more.
Since the 1980s, earlier European springs have led to the earlier arrival of migrant passerines. We predict that arrival is related to a suite of climate indices operating during the annual cycle (breeding, autumn migration, wintering, spring migration) in Europe and Africa over the year preceding arrival. The climate variables include the Indian Ocean Dipole (IOD), Southern Oscillation Index (SOI), and North Atlantic Oscillation (NAO). Furthermore, because migrants arrive sequentially from different wintering areas across Africa, we predict that relationships with climate variables operating in different parts of Africa will change within the season. We tested this using daily ringing data at Bukowo, a spring stopover site on the Baltic coast. We calculated an Annual Anomaly (AA) of spring passage (26 March–15 May, 1982–2024) for four long-distance migrants (Blackcap, Lesser Whitethroat, Willow Warbler, Chiffchaff). We decomposed the anomaly in two ways: into three independent main periods and nine overlapping periods. We used multiple regression to explore the relationships of the arrival of these species at Bukowo. We found sequential effects of climate indices. Bukowo is thus at a crossroads of populations arriving from different wintering regions. The drivers of phenological shifts in passage of wide-ranging species are related to climate indices encountered during breeding, wintering, and migration. Full article
Show Figures

Figure 1

15 pages, 3563 KiB  
Article
Process Optimization on Trepanning Drilling in Titanium Alloy Using a Picosecond Laser via an Orthogonal Experiment
by Liang Wang, Yefei Rong, Long Xu, Changjian Wu and Kaibo Xia
Micromachines 2025, 16(8), 846; https://doi.org/10.3390/mi16080846 - 24 Jul 2025
Viewed by 206
Abstract
To optimize the laser drilling process and reduce the processing time, this study investigates picosecond laser trepan drilling on the titanium alloy TC4, analyzing the effects of laser parameters on micro-hole diameter, taper, and roundness. Four independent variables were selected: laser power, defocusing [...] Read more.
To optimize the laser drilling process and reduce the processing time, this study investigates picosecond laser trepan drilling on the titanium alloy TC4, analyzing the effects of laser parameters on micro-hole diameter, taper, and roundness. Four independent variables were selected: laser power, defocusing distance, scanning speed, and the number of scans. An L25 (56) orthogonal array was employed for experimental design. The mean response and range analyses evaluated parameter impacts on micro-hole quality, revealing the influence mechanisms of these variables at different levels. The results indicate the following: (1) the scanning speed and laser power significantly affect entrance and exit micro-hole diameters; (2) the defocusing distance substantially influences micro-hole taper; (3) the laser power most critically impacts inlet roundness; (4) the defocusing distance, scanning speed, and laser power directly correlate with outlet roundness; (5) the number of scans exhibits weaker relationships with inlet/outlet diameters, taper, and roundness. A comprehensive balance method applied to orthogonal test results for process optimization yielded the following optimal parameters: 90% laser power (30 W total), −0.2 mm defocus, a 27 mm/s scanning speed, and 15 scans. Full article
(This article belongs to the Special Issue Laser Micro/Nano Fabrication, Second Edition)
Show Figures

Figure 1

17 pages, 4162 KiB  
Article
Evaluation of Wake Structure Induced by Helical Hydrokinetic Turbine
by Erkan Alkan, Mehmet Ishak Yuce and Gökmen Öztürkmen
Water 2025, 17(15), 2203; https://doi.org/10.3390/w17152203 - 23 Jul 2025
Viewed by 188
Abstract
This study investigates the downstream wake characteristics of a helical hydrokinetic turbine through combined experimental and numerical analyses. A four-bladed helical turbine with a 20 cm rotor diameter and blockage ratio of 53.57% was tested in an open water channel under a flow [...] Read more.
This study investigates the downstream wake characteristics of a helical hydrokinetic turbine through combined experimental and numerical analyses. A four-bladed helical turbine with a 20 cm rotor diameter and blockage ratio of 53.57% was tested in an open water channel under a flow rate of 180 m3/h, corresponding to a Reynolds number of approximately 90 × 103. Velocity measurements were collected at 13 downstream cross-sections using an Acoustic Doppler Velocimeter, with each point sampled repeatedly. Standard error analysis was applied to quantify measurement uncertainty. Complementary numerical simulations were conducted in ANSYS Fluent using a steady-state k-ω Shear Stress Transport (SST) turbulence model, with a mesh of 4.7 million elements and mesh independence confirmed. Velocity deficit and turbulence intensity were employed as primary parameters to characterize the wake structure, while the analysis also focused on the recovery of cross-sectional velocity profiles to validate the extent of wake influence. Experimental results revealed a maximum velocity deficit of over 40% in the near-wake region, which gradually decreased with downstream distance, while turbulence intensity exceeded 50% near the rotor and dropped below 10% beyond 4 m. In comparison, numerical findings showed a similar trend but with lower peak velocity deficits of 16.6%. The root mean square error (RMSE) and mean absolute error (MAE) between experimental and numerical mean velocity profiles were calculated as 0.04486 and 0.03241, respectively, demonstrating reasonable agreement between the datasets. Extended simulations up to 30 m indicated that flow profiles began to resemble ambient conditions around 18–20 m. The findings highlight the importance of accurately identifying the downstream distance at which the wake effect fully dissipates, as this is crucial for determining appropriate inter-turbine spacing. The study also discusses potential sources of discrepancies between experimental and numerical results, as well as the limitations of the modeling approach. Full article
(This article belongs to the Special Issue Optimization-Simulation Modeling of Sustainable Water Resource)
Show Figures

Figure 1

20 pages, 16432 KiB  
Article
Application of Clustering Methods in Multivariate Data-Based Prospecting Prediction
by Xiaopeng Chang, Minghua Zhang, Liang Chen, Sheng Zhang, Wei Ren and Xiang Zhang
Minerals 2025, 15(7), 760; https://doi.org/10.3390/min15070760 - 20 Jul 2025
Viewed by 238
Abstract
Mining and analyzing information from multiple sources—such as geophysics and geochemistry—is a key aspect of big data-driven mineral prediction. Clustering, which groups large datasets based on distance metrics, is an essential method in multidimensional data analysis. The Two-Step Clustering (TSC) approach offers advantages [...] Read more.
Mining and analyzing information from multiple sources—such as geophysics and geochemistry—is a key aspect of big data-driven mineral prediction. Clustering, which groups large datasets based on distance metrics, is an essential method in multidimensional data analysis. The Two-Step Clustering (TSC) approach offers advantages by handling both categorical and continuous variables and automatically determining the optimal number of clusters. In this study, we applied the TSC method to mineral prediction in the northeastern margin of the Jiaolai Basin by: (i) converting residual gravity and magnetic anomalies into categorical variables using Ward clustering; and (ii) transforming 13 stream sediment elements into independent continuous variables through factor analysis. The results showed that clustering is sensitive to categorical variables and performs better with fewer categories. When variables share similar distribution characteristics, consistency between geophysical discretization and geochemical boundaries also influences clustering results. In this study, the (3 × 4) and (4 × 4) combinations yielded optimal clustering results. Cluster 3 was identified as a favorable zone for gold deposits due to its moderate gravity, low magnetism, and the enrichment in F1 (Ni–Cu–Zn), F2 (W–Mo–Bi), and F3 (As–Sb), indicating a multi-stage, shallow, hydrothermal mineralization process. This study demonstrates the effectiveness of combining Ward clustering for variable transformation with TSC for the integrated analysis of categorical and numerical data, confirming its value in multi-source data research and its potential for further application. Full article
Show Figures

Figure 1

59 pages, 11250 KiB  
Article
Automated Analysis of Vertebral Body Surface Roughness for Adult Age Estimation: Ellipse Fitting and Machine-Learning Approach
by Erhan Kartal and Yasin Etli
Diagnostics 2025, 15(14), 1794; https://doi.org/10.3390/diagnostics15141794 - 16 Jul 2025
Viewed by 306
Abstract
Background/Objectives: Vertebral degenerative features are promising but often subjectively scored indicators for adult age estimation. We evaluated an objective surface roughness metric, the “average distance to the fitted ellipse” score (DS), calculated automatically for every vertebra from C7 to S1 on routine CT [...] Read more.
Background/Objectives: Vertebral degenerative features are promising but often subjectively scored indicators for adult age estimation. We evaluated an objective surface roughness metric, the “average distance to the fitted ellipse” score (DS), calculated automatically for every vertebra from C7 to S1 on routine CT images. Methods: CT scans of 176 adults (94 males, 82 females; 21–94 years) were retrospectively analyzed. For each vertebra, the mean orthogonal deviation of the anterior superior endplate from an ideal ellipse was extracted. Sex-specific multiple linear regression served as a baseline; support vector regression (SVR), random forest (RF), k-nearest neighbors (k-NN), and Gaussian naïve-Bayes pseudo-regressor (GNB-R) were tuned with 10-fold cross-validation and evaluated on a 20% hold-out set. Performance was quantified with the standard error of the estimate (SEE). Results: DS values correlated moderately to strongly with age (peak r = 0.60 at L3–L5). Linear regression explained 40% (males) and 47% (females) of age variance (SEE ≈ 11–12 years). Non-parametric learners improved precision: RF achieved an SEE of 8.49 years in males (R2 = 0.47), whereas k-NN attained 10.8 years (R2 = 0.45) in women. Conclusions: Automated analysis of vertebral cortical roughness provides a transparent, observer-independent means of estimating adult age with accuracy approaching that of more complex deep learning pipelines. Streamlining image preparation and validating the approach across diverse populations are the next steps toward forensic adoption. Full article
(This article belongs to the Special Issue New Advances in Forensic Radiology and Imaging)
Show Figures

Figure 1

19 pages, 395 KiB  
Article
Assessment of Serum suPAR Levels in Patients with Group 1 and Group 4 Pulmonary Hypertension
by Abdullah Tunçez, Muhammed Ulvi Yalçın, Hüseyin Tezcan, Bülent Behlül Altunkeser, Bahadır Öztürk, Canan Aydoğan, Aslıhan Toprak, Onur Can Polat, Nazif Aygül, Kenan Demir, Kadri Murat Gürses, Yasin Özen, Fikret Akyürek and Hatice Betül Tunçez
J. Clin. Med. 2025, 14(13), 4671; https://doi.org/10.3390/jcm14134671 - 2 Jul 2025
Viewed by 402
Abstract
Background/Objectives: Pulmonary hypertension (PH) is a progressive disorder with high morbidity and mortality, partly driven by chronic inflammation. Soluble urokinase plasminogen activator receptor (suPAR) reflects immune activation. We evaluated whether suPAR is altered in Group 1 and Group 4 PH and its association [...] Read more.
Background/Objectives: Pulmonary hypertension (PH) is a progressive disorder with high morbidity and mortality, partly driven by chronic inflammation. Soluble urokinase plasminogen activator receptor (suPAR) reflects immune activation. We evaluated whether suPAR is altered in Group 1 and Group 4 PH and its association with clinical, echocardiographic, and laboratory parameters. Methods: We enrolled 44 PH patients (36 in Group 1, 8 in Group 4) and 45 healthy controls. All underwent clinical and echocardiographic assessments; right heart catheterization was performed in the PH patients. Serum suPAR was measured by ELISA. N-terminal pro B-type natriuretic peptide (NT-proBNP) and C-reactive protein (CRP) were also assessed. Results: The suPAR plasma levels in the PH group were between 23.91 and 960.8 pg/mL (median: 73.14 p25: 62.77, p75: 167.13). suPAR was significantly higher in PH versus controls (73.14 [62.77–167.13] vs. 65.52 [53.06–80.91] pg/mL; p = 0.012). In logistic regression, systolic blood pressure, erythrocyte sedimentation rate, NT-proBNP, and suPAR independently predicted PH. suPAR correlated negatively with six-minute walk distance (r = −0.310) and tricuspid annular plane systolic excursion (r = −0.295) but positively with systolic pulmonary artery pressure (r = 0.241). On multivariate analysis, six-minute walk distance was the only independent correlate of suPAR (p = 0.004). suPAR levels did not differ between Group 1 and Group 4 PH. Conclusions: suPAR is elevated in Group 1 and Group 4 PH and correlates with functional and echocardiographic indices of disease severity. Larger prospective studies are needed to determine suPAR’s role in diagnosis, risk stratification, and therapeutic decision-making. Full article
(This article belongs to the Section Cardiovascular Medicine)
Show Figures

Figure 1

24 pages, 44747 KiB  
Article
Error Model for Autonomous Global Positioning Method Using Polarized Sky Light and True North Measurement Instrument
by Yinlong Wang, Jinshan Li, Yi Luo and Jinkui Chu
Appl. Sci. 2025, 15(13), 7287; https://doi.org/10.3390/app15137287 - 27 Jun 2025
Viewed by 300
Abstract
Long-distance navigation requires global positioning methods to have complete autonomy, particularly when the Global Positioning System is unavailable. Considering that bionic polarized light-based global positioning technology exhibits good autonomy, this study develops an error model for autonomous global positioning based on the polarized [...] Read more.
Long-distance navigation requires global positioning methods to have complete autonomy, particularly when the Global Positioning System is unavailable. Considering that bionic polarized light-based global positioning technology exhibits good autonomy, this study develops an error model for autonomous global positioning based on the polarized skylight and a true north measurement instrument, using an approach of partial derivatives. The proposed model can rapidly and accurately provide the global error distribution of a bionic positioning method under varying angular measurement errors at different times. In addition, the conditions under which the proposed error model remains valid are investigated. The results indicate that the investigation can be simplified to verify whether the denominators of four partial derivatives of an implicit function system are simultaneously non-zero. The accuracy of the proposed error model is verified through numerical simulations. The results indicate that when the deviations of the two independent variables are up to 0.0001°, the positioning error mostly remains less than 14 m. In contrast, fewer geographical locations have positioning errors approaching positive infinity. By analyzing the global error distribution, one can effectively design and optimize the parameters of the autonomous global positioning system, enhancing its reliability and stability. Full article
(This article belongs to the Special Issue Novel Technologies in Navigation and Control)
Show Figures

Figure 1

24 pages, 6641 KiB  
Article
Separation Method for Installation Eccentricity Error of Workpiece
by Guanyao Qiao, Chunyu Zhao, Huihui Miao and Ye Chen
Appl. Sci. 2025, 15(12), 6788; https://doi.org/10.3390/app15126788 - 17 Jun 2025
Viewed by 311
Abstract
This work solves the challenge of separating the eccentricity error of a workpiece installation from the first harmonic of radial runout error of the spindle, which has a crucial impact on improving the machining quality of the workpiece. Firstly, a mathematical model for [...] Read more.
This work solves the challenge of separating the eccentricity error of a workpiece installation from the first harmonic of radial runout error of the spindle, which has a crucial impact on improving the machining quality of the workpiece. Firstly, a mathematical model for the synthesized elliptical motion for spindle vibration and eccentricity error is established. Subsequently, a novel separation method combining Particle swarm optimization (PSO) and the least squares method (LSM) is proposed. PSO is applied to determine phase angles, and the least squares method is applied to determine amplitudes, achieving precise error separation. Then, numerical simulations were used to verify the effectiveness and reliability of the proposed method, producing a calculation error of less than 0.07% and high consistency (R2 > 0.97). Finally, experimental tests at different spindle speeds, axial distances, and workpieces confirmed the robustness of the method, with a variation in eccentricity error calculation result of less than 0.6%. The results indicate that the installation eccentricity error of the experimental machine tool is independent of the spindle angular velocity and stems from the misalignment of the chuck. This method provides a reliable solution for accurately separating installation eccentricity errors in precision manufacturing. Full article
(This article belongs to the Section Mechanical Engineering)
Show Figures

Figure 1

10 pages, 212 KiB  
Article
Impact of Cardiopulmonary Rehabilitation on Patients with Heart Failure Reduced Ejection Fraction and Preserved Ejection Fraction
by Sabine Gempel, Jenna Kologie, Taylor Wright, Destini Decinti and Lawrence Cahalin
J. Clin. Med. 2025, 14(11), 3815; https://doi.org/10.3390/jcm14113815 - 29 May 2025
Viewed by 649
Abstract
Background/Objectives: The prevalence of heart failure with preserved ejection fraction (HFpEF) is expected to surpass that of heart failure with reduced ejection fraction (HFrEF), yet it remains under-researched. Compared to HFrEF, patients with HFpEF have similarly poor survival rates, physical impairments, and [...] Read more.
Background/Objectives: The prevalence of heart failure with preserved ejection fraction (HFpEF) is expected to surpass that of heart failure with reduced ejection fraction (HFrEF), yet it remains under-researched. Compared to HFrEF, patients with HFpEF have similarly poor survival rates, physical impairments, and quality of life (QOL) and similar improvements following exercise training. However, Medicare currently excludes coverage for cardiopulmonary rehabilitation (CR) for HFpEF. The purpose of this study was to evaluate the impact of HF at baseline and the effects of CR in both subtypes. Methods: Ninety-nine patients (forty-three with HFrEF and fifty-six with HFpEF) who completed CR were included. Demographic data and outcome measures were assessed pre- and post-CR, including weight, body mass index (BMI), 5x-sit-to-stand (5xStS), timed-up-and-go (TUG), 6-minute walk test (6MWT), Ferrans and Powers Quality of Life (F&P QOL), waist circumference, BERG balance, and Patient Health Questionnaire-9 (PHQ-9). Independent and paired t-tests were performed with statistical significance set at p < 0.05. Results: At baseline, compared to patients with HFrEF, patients with HFpEF were older with a significantly lower 6MWT distance (350.6 m vs. 299.6 m), lower BERG balance scores (52/56 vs. 49/56, respectively), and a 5xSTS score indicating a fall risk (16.9 ± 6.5). Following CR, both groups had significant improvements in all functional and self-reported outcome measures (p < 0.001), with no significant differences between HF subtypes. Patients with HFpEF also had a significant improvement in waist circumference. Conclusions: Compared to patients with HFrEF, patients with HFpEF presented with similar or greater impairments and had similar or greater improvements following CR. These results underscore the effectiveness of CR for HFpEF management and the need for insurance coverage. Full article
(This article belongs to the Special Issue Cardiac Rehabilitation: Clinical Challenges and New Insights)
Show Figures

Graphical abstract

20 pages, 3616 KiB  
Article
An RGB-D Camera-Based Wearable Device for Visually Impaired People: Enhanced Navigation with Reduced Social Stigma
by Zhiwen Li, Fred Han and Kangjie Zheng
Electronics 2025, 14(11), 2168; https://doi.org/10.3390/electronics14112168 - 27 May 2025
Viewed by 777
Abstract
This paper presents an intelligent navigation wearable device for visually impaired individuals. The system aims to improve their independent travel capabilities and reduce the negative emotional impacts associated with visible disability indicators in travel tools. It employs an RGB-D camera and an inertial [...] Read more.
This paper presents an intelligent navigation wearable device for visually impaired individuals. The system aims to improve their independent travel capabilities and reduce the negative emotional impacts associated with visible disability indicators in travel tools. It employs an RGB-D camera and an inertial measurement unit (IMU) sensor to facilitate real-time obstacle detection and recognition via advanced point cloud processing and YOLO-based target recognition techniques. An integrated intelligent interaction module identifies the core obstacle from the detected obstacles and translates this information into multidimensional auxiliary guidance. Users receive haptic feedback to navigate obstacles, indicating directional turns and distances, while auditory prompts convey the identity and distance of obstacles, enhancing spatial awareness. The intuitive vibrational guidance significantly enhances safety during obstacle avoidance, and the voice instructions promote a better understanding of the surrounding environment. The device adopts an arm-mounted design, departing from the traditional cane structure that reinforces disability labeling and social stigma. This lightweight mechanical design prioritizes user comfort and mobility, making it more user-friendly than traditional stick-type aids. Experimental results demonstrate that this system outperforms traditional white canes and ultrasonic devices in reducing collision rates, particularly for mid-air obstacles, thereby significantly improving safety in dynamic environments. Furthermore, the system’s ability to vocalize obstacle identities and distances in advance enhances spatial perception and interaction with the environment. By eliminating the cane structure, this innovative wearable design effectively minimizes social stigma, empowering visually impaired individuals to travel independently with increased confidence, ultimately contributing to an improved quality of life. Full article
Show Figures

Figure 1

26 pages, 17515 KiB  
Article
Research on Design and Energy-Saving Performance of Gate Rudder
by Chunhui Wang, Qian Gao, Lin Li, Feng Gao, Zhiyuan Wang and Chao Wang
J. Mar. Sci. Eng. 2025, 13(6), 1029; https://doi.org/10.3390/jmse13061029 - 24 May 2025
Viewed by 414
Abstract
As a novel energy-saving and maneuvering device for ships, the gate rudder system (GRS) functions similarly to an accelerating duct. While providing additional thrust, its independently controllable rudder blades on either side of the propeller also enhance ship maneuverability. The GRS was first [...] Read more.
As a novel energy-saving and maneuvering device for ships, the gate rudder system (GRS) functions similarly to an accelerating duct. While providing additional thrust, its independently controllable rudder blades on either side of the propeller also enhance ship maneuverability. The GRS was first fully implemented on a container ship in Japan, demonstrating improved propulsion efficiency, fuel savings, and excellent performance in maneuvering, noise, and vibration reduction. In recent years, extensive research has been conducted on the hydrodynamic performance, acoustic characteristics, and energy-saving effects of the GRS. However, certain gaps remain in the research, such as a lack of systematic studies on optimal GRS design in the publicly available literature. Only Ahmet Yusuf Gurkan has investigated the sensitivity of propulsion performance to parameters such as rudder angle, rudder X-shift, rudder tip skewness, and blade tip chord ratio. Therefore, this study employs the JBC benchmark vessel and adopts a coupled CFD-CAESES approach to develop a matching optimization design for the GRS. The influence of geometric parameters—including GRS airfoil camber, maximum camber position, chord length, thickness, distance from the leading edge to the propeller plane, and the gap between the GRS and propeller blades—on ship propulsion performance is investigated. The sensitivity of these design variables to propulsion performance is analyzed, and the optimal GRS design is selected to predict and evaluate its energy-saving effects. This research establishes a rapid and comprehensive CFD-based optimization methodology for GRS matching design. The findings indicate that the gap between the GRS and propeller, the distance from the GRS to the stern, and the airfoil camber of the GRS significantly contribute to various performance responses. After GRS installation, the viscous pressure resistance of the JBC ship decreases, resulting in an 8.05% energy-saving effect at the designated speed. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

22 pages, 11671 KiB  
Article
CFD-Based Flow Field Characteristics of Air-Assisted Sprayer in Citrus Orchards
by Xiangfei Huang, Yunwu Li, Lang Chen and Kechao Wang
Agriculture 2025, 15(10), 1103; https://doi.org/10.3390/agriculture15101103 - 20 May 2025
Cited by 1 | Viewed by 543
Abstract
Air-assisted sprayers are an essential piece of equipment for improving spraying efficiency and pesticide utilization; their performance directly affects the effectiveness of pesticide application. This study, addressing the plant protection needs of hilly citrus orchards, designed an air duct structure for an air-assisted [...] Read more.
Air-assisted sprayers are an essential piece of equipment for improving spraying efficiency and pesticide utilization; their performance directly affects the effectiveness of pesticide application. This study, addressing the plant protection needs of hilly citrus orchards, designed an air duct structure for an air-assisted sprayer and analyzed its airflow characteristics and droplet deposition effects based on CFD simulation technology. The reliability of the simulation results was verified through air speed boundary tests, revealing that the maximum effective boundaries of the integrated air duct and the independent air duct in different directions were 18.4 cm and 17.2 cm, respectively, providing a reference for the spatial arrangement of the air duct. The study indicates that properly matching the fan speed, spray pressure, and spray distance could optimize droplet deposition, enhance spray uniformity, and improve pesticide utilization. However, excessively high fan speeds (>6000 r/min) or spray pressures (>0.8 MPa) may reduce droplet transport efficiency. This research provides theoretical support for the design and parameter optimization of sprayers in hilly citrus orchards. Full article
(This article belongs to the Special Issue Agricultural Machinery and Technology for Fruit Orchard Management)
Show Figures

Figure 1

26 pages, 4212 KiB  
Article
Autonomous Driving of Trackless Transport Vehicles: A Case Study in Underground Mines
by Yunjie Sun, Linxin Zhang, Junhong Liu, Yonghe Xu and Xiaoquan Li
Sensors 2025, 25(10), 3189; https://doi.org/10.3390/s25103189 - 19 May 2025
Viewed by 845
Abstract
The introduction of autonomous vehicles in underground mine trackless transportation systems can significantly reduce safety risks for personnel in production operations and improve transportation efficiency. Current autonomous mining vehicle technology is characterized by complex algorithms and high deployment costs, which limit its widespread [...] Read more.
The introduction of autonomous vehicles in underground mine trackless transportation systems can significantly reduce safety risks for personnel in production operations and improve transportation efficiency. Current autonomous mining vehicle technology is characterized by complex algorithms and high deployment costs, which limit its widespread application in underground mines. This paper proposes a light-band-guided autonomous driving method for trackless mining vehicles, where a continuous, digitally controllable light band is installed at the tunnel ceiling to provide uninterrupted vehicle guidance. The light band is controlled by an independent hardware system and uses different colors to indicate vehicle movement status, enabling vehicles to navigate simply by following the designated light trajectory. We designed the necessary hardware and software systems and built a physical model for validation. The system enabled multiple vehicles to be guided simultaneously within the same area to perform diverse transportation tasks according to operational requirements. The model vehicles maintained a safe distance from tunnel walls. In GPS-denied environments, positioning was achieved using dead reckoning and periodic location updates at designated points based on the known light-band trajectory. The proposed method demonstrates high potential for practical applications. Full article
(This article belongs to the Section Vehicular Sensing)
Show Figures

Figure 1

11 pages, 1923 KiB  
Article
Clinical Outcomes in the Treatment of Pertrochanteric Femur Fractures: A Retrospective Cohort Study
by Cesare Donadono, Domenico Tigani, Andrea Assenza, Davide Censoni, Francesco Pesce and Giuseppe Melucci
J. Pers. Med. 2025, 15(5), 202; https://doi.org/10.3390/jpm15050202 - 19 May 2025
Viewed by 578
Abstract
Background: Pertrochanteric fractures of the proximal femur present a common challenge for traumatologists, with intramedullary nailing emerging as the preferred treatment. Complication rates are around 20%, including screw jamming, refractures, implant breakage, or medial migration, with cut-out being the most common. A tip–apex [...] Read more.
Background: Pertrochanteric fractures of the proximal femur present a common challenge for traumatologists, with intramedullary nailing emerging as the preferred treatment. Complication rates are around 20%, including screw jamming, refractures, implant breakage, or medial migration, with cut-out being the most common. A tip–apex distance (TAD) of >25 mm and incorrect cephalic screw position are predictive factors for cut-out. This study assesses outcomes using the Elos intramedullary nail, based on the experience of the Department of Orthopedics and Traumatology at Ospedale Maggiore in Bologna. Methods: We conducted a retrospective cohort study of 344 patients treated with the Elos intramedullary nail for pertrochanteric femoral fractures from 1 January 2017 to 31 December 2022. The Elos®-Intrauma nail was implanted using the standard technique. Initial X-rays classified fractures according to the AO-OTA classification, and postoperative X-rays confirmed the cephalic screw’s placement per Cleveland’s regions. Patients were divided into two groups: optimal cephalic screw position (positions 5-8-9) and other positions. We evaluated TAD, calcar-referred TAD (CalTAD), and postoperative reduction quality using Chang’s criteria. The incidence of cut-out and other complications were assessed in connection with these measurements. Results: Among the 344 patients, 227 (65.9%) had the screw in positions 5-8-9, while 117 (34.1%) had it in other positions. The median TAD was 19.47 ± 6.26 mm (range 3.96–46.6), with TAD ≤ 25 mm in 265 patients (77%). The median CalTAD was 22.37 ± 5.65 mm (range 8.75–45.3), with CalTAD ≤ 25 mm in 231 patients (67.1%). According to Chang’s criteria, 8 cases (2.3%) had poor reduction, 139 cases (40.4%) had acceptable reduction, and 197 cases (57.3%) had excellent reduction. Cut-out occurred in four cases (1.19%). Multivariate analysis revealed only poor reduction and TAD > 25 mm as independent predictors of cut-out (p < 0.05), while cephalic screw position, CalTAD, and fracture type did not impact cut-out incidence. Conclusions: This study indicates that optimal TAD and quality of reduction are crucial for minimizing cut-out risks. The Elos intramedullary nail shows favorable outcomes with a low cut-out incidence when these parameters are met. Emphasis should be placed on achieving a TAD ≤ 25 mm and excellent reduction quality to reduce complications. Full article
(This article belongs to the Special Issue Orthopedic Trauma: New Perspectives and Innovative Techniques)
Show Figures

Figure 1

18 pages, 2817 KiB  
Article
Relationship Between Voice Analysis and Functional Status in Patients with Amyotrophic Lateral Sclerosis
by Margarita Pérez-Bonilla, Paola Díaz Borrego, Marina Mora-Ortiz, Roberto Fernández-Baillo, María Nieves Muñoz-Alcaraz, Fernando J. Mayordomo-Riera and Eloy Girela López
Audiol. Res. 2025, 15(3), 53; https://doi.org/10.3390/audiolres15030053 - 7 May 2025
Cited by 1 | Viewed by 1024
Abstract
Background: Amyotrophic Lateral Sclerosis (ALS) is a progressive neurodegenerative disease affecting both upper and lower motor neurons, with bulbar dysfunction manifesting in up to 80% of patients. Dysarthria, characterized by impaired speech production, is common in ALS and often correlates with disease severity. [...] Read more.
Background: Amyotrophic Lateral Sclerosis (ALS) is a progressive neurodegenerative disease affecting both upper and lower motor neurons, with bulbar dysfunction manifesting in up to 80% of patients. Dysarthria, characterized by impaired speech production, is common in ALS and often correlates with disease severity. Voice analysis has emerged as a promising tool for detecting disease progression and monitoring functional status. Methods: This study investigates acoustic and biomechanical voice alterations in ALS patients and their association with clinical measures of functional independence. A descriptive observational case series study was conducted, involving 43 ALS patients and 43 age and sex matched controls with non-neurological voice disorders. Sustained vowel /a/ recordings were obtained and analyzed using Voice Clinical Systems® and Praat software (version 6.2.22). Biomechanical and acoustic parameters were correlated with ALS Functional Rating Scale-Revised (ALSFRS-R) and Barthel Index scores. Results: Significant differences were observed between ALS and control groups (elevated muscle force and tension and interedge distance in non-ALS individuals). Between bulbar and spinal ALS subtypes, elevated values were observed in certain parameters in Bulbar ALS patients, indicating irregular vocal fold contact and weakened phonatory control, while spinal ALS exhibited increased values, suggesting higher phonatory muscle tension. Elevated biomechanical parameters were significantly correlated with low ALSFRS-R scores, suggesting a possible relationship between voice measures and functional decline. However, acoustic measurements showed no relationship with performance status. Conclusions: These results highlight the potential of voice analysis as a non-invasive, objective tool for monitoring ALS stage and differentiating between subtypes. Further research is needed to validate these findings and explore their clinical applications. Full article
Show Figures

Figure 1

Back to TopTop