Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (7,639)

Search Parameters:
Keywords = disease-associated tissues

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 1208 KiB  
Review
Doxorubicin Toxicity and Recent Approaches to Alleviating Its Adverse Effects with Focus on Oxidative Stress
by Lyubomira Radeva and Krassimira Yoncheva
Molecules 2025, 30(15), 3311; https://doi.org/10.3390/molecules30153311 (registering DOI) - 7 Aug 2025
Abstract
Despite the significant antitumor potential of doxorubicin and its widespread use in the treatment of various oncological diseases, its application is associated with side effects, among which the most common are cardiotoxicity, hepatotoxicity, nephrotoxicity, neurotoxicity, and gonadotoxicity. In contemporary times, innovative strategies to [...] Read more.
Despite the significant antitumor potential of doxorubicin and its widespread use in the treatment of various oncological diseases, its application is associated with side effects, among which the most common are cardiotoxicity, hepatotoxicity, nephrotoxicity, neurotoxicity, and gonadotoxicity. In contemporary times, innovative strategies to overcome the toxicity of doxorubicin and improve the effectiveness of therapies are intensively researched. The aim of this review is to discuss different approaches to alleviate the common toxic effects of doxorubicin, with an emphasis on oxidative stress. In particular, the review analyzes the significance of pharmaceutical nanotechnology for reducing doxorubicin toxicity while maintaining its antitumor effect (e.g., encapsulation of doxorubicin in passively and/or actively targeted nanoparticles to tumor tissue and cells). Other strategies commented in the review are the simultaneous delivery of doxorubicin with antioxidants and the administration of its derivatives with lower toxicity. Full article
(This article belongs to the Special Issue The Anticancer Drugs: A New Perspective)
Show Figures

Figure 1

21 pages, 2994 KiB  
Article
A Multi-Omics Integration Framework with Automated Machine Learning Identifies Peripheral Immune-Coagulation Biomarkers for Schizophrenia Risk Stratification
by Feitong Hong, Qiuming Chen, Xinwei Luo, Sijia Xie, Yijie Wei, Xiaolong Li, Kexin Li, Benjamin Lebeau, Crystal Ling, Fuying Dao, Hao Lin, Lixia Tang, Mi Yang and Hao Lv
Int. J. Mol. Sci. 2025, 26(15), 7640; https://doi.org/10.3390/ijms26157640 - 7 Aug 2025
Abstract
Schizophrenia (SCZ) is a complex psychiatric disorder with heterogeneous molecular underpinnings that remain poorly resolved by conventional single-omics approaches, limiting biomarker discovery and mechanistic insights. To address this gap, we applied an artificial intelligence (AI)-driven multi-omics framework to an open access dataset comprising [...] Read more.
Schizophrenia (SCZ) is a complex psychiatric disorder with heterogeneous molecular underpinnings that remain poorly resolved by conventional single-omics approaches, limiting biomarker discovery and mechanistic insights. To address this gap, we applied an artificial intelligence (AI)-driven multi-omics framework to an open access dataset comprising plasma proteomics, post-translational modifications (PTMs), and metabolomics to systematically dissect SCZ pathophysiology. In a cohort of 104 individuals, comparative analysis of 17 machine learning models revealed that multi-omics integration significantly enhanced classification performance, reaching a maximum AUC of 0.9727 (95% CI: 0.8889–1.000) using LightGBMXT, compared to 0.9636 (95% CI: 0.8636–1.0000) with CNNBiLSTM for proteomics alone. Interpretable feature prioritization identified carbamylation at immunoglobulin-constant region sites IGKC_K20 and IGHG1_K8, alongside oxidation of coagulation factor F10 at residue M8, as key discriminative molecular events. Functional analyses identified significantly enriched pathways including complement activation, platelet signaling, and gut microbiota-associated metabolism. Protein interaction networks further implicated coagulation factors F2, F10, and PLG, as well as complement regulators CFI and C9, as central molecular hubs. The clustering of these molecules highlights a potential axis linking immune activation, blood coagulation, and tissue homeostasis, biological domains increasingly recognized in psychiatric disorders. These results implicate immune–thrombotic dysregulation as a critical component of SCZ pathology, with PTMs of immune proteins serving as quantifiable disease indicators. Our work delineates a robust computational strategy for multi-omics integration into psychiatric research, offering biomarker candidates that warrant further validation for diagnostic and therapeutic applications. Full article
Show Figures

Figure 1

15 pages, 2691 KiB  
Review
SGLT2 Inhibitors: Multifaceted Therapeutic Agents in Cardiometabolic and Renal Diseases
by Ana Checa-Ros, Owahabanun-Joshua Okojie and Luis D’Marco
Metabolites 2025, 15(8), 536; https://doi.org/10.3390/metabo15080536 - 7 Aug 2025
Abstract
Background: Sodium–glucose cotransporter-2 inhibitors (SGLT2is), initially developed as antihyperglycemic agents, have emerged as multifunctional therapeutics with profound cardiorenal and metabolic benefits. Their unique insulin-independent mechanism, targeting renal glucose reabsorption, distinguishes them from conventional antidiabetic drugs. Mechanisms and Clinical Evidence: SGLT2is induce [...] Read more.
Background: Sodium–glucose cotransporter-2 inhibitors (SGLT2is), initially developed as antihyperglycemic agents, have emerged as multifunctional therapeutics with profound cardiorenal and metabolic benefits. Their unique insulin-independent mechanism, targeting renal glucose reabsorption, distinguishes them from conventional antidiabetic drugs. Mechanisms and Clinical Evidence: SGLT2is induce glycosuria, reduce hyperglycemia, and promote weight loss through increased caloric excretion. Beyond glycemic control, they modulate tubuloglomerular feedback, attenuate glomerular hyperfiltration, and exert systemic effects via natriuresis, ketone utilization, and anti-inflammatory pathways. Landmark trials (DAPA-HF, EMPEROR-Reduced, CREDENCE, DAPA-CKD) demonstrate robust reductions in heart failure (HF) hospitalizations, cardiovascular mortality, and chronic kidney disease (CKD) progression, irrespective of diabetes status. Adipose Tissue and Metabolic Effects: SGLT2is mitigate obesity-associated adiposopathy by shifting macrophage polarization (M1 to M2), reducing proinflammatory cytokines (TNF-α, IL-6), and enhancing adipose tissue browning (UCP1 upregulation) and mitochondrial biogenesis (via PGC-1α/PPARα). Modest weight loss (~2–4 kg) occurs, though compensatory hyperphagia may limit long-term effects. Emerging Applications: Potential roles in non-alcoholic fatty liver disease (NAFLD), polycystic ovary syndrome (PCOS), and neurodegenerative disorders are under investigation, driven by pleiotropic effects on metabolism and inflammation. Conclusions: SGLT2is represent a paradigm shift in managing T2DM, HF, and CKD, with expanding implications for metabolic syndrome. Future research should address interindividual variability, combination therapies, and non-glycemic indications to optimize their therapeutic potential. Full article
(This article belongs to the Special Issue Metabolic Modulators in Cardiovascular Disease Management)
Show Figures

Figure 1

17 pages, 8134 KiB  
Article
Chronic Low Back Pain in Young Adults: Pathophysiological Aspects of Neuroinflammation and Degeneration
by Natalya G. Pravdyuk, Anastasiia A. Buianova, Anna V. Novikova, Alesya A. Klimenko, Mikhail A. Ignatyuk, Liubov A. Malykhina, Olga I. Patsap, Dmitrii A. Atiakshin, Vitaliy V. Timofeev and Nadezhda A. Shostak
Int. J. Mol. Sci. 2025, 26(15), 7592; https://doi.org/10.3390/ijms26157592 - 6 Aug 2025
Abstract
Degenerative disc disease (DDD) is a major cause of chronic low back pain (LBP), yet the molecular mechanisms driving disc degeneration and pain remain poorly understood. This study analyzed intervertebral disc (IVD) tissue from 36 young patients (median age = 36.00 [31.00, 42.50] [...] Read more.
Degenerative disc disease (DDD) is a major cause of chronic low back pain (LBP), yet the molecular mechanisms driving disc degeneration and pain remain poorly understood. This study analyzed intervertebral disc (IVD) tissue from 36 young patients (median age = 36.00 [31.00, 42.50] years) with herniated discs and LBP, alongside healthy controls, to investigate changes in the extracellular matrix (ECM) and neurochemical alterations. Disc degeneration was assessed using MRI (Pfirrmann grading) and histology (Sive’s criteria). Histochemical and immunohistochemical methods were used to evaluate aggrecan content, calcification, and the expression of nerve growth factor (NGF), substance P (SP), and S-100 protein. MRI findings included Pfirrmann grades V (30.55%), IV (61.11%), III (5.56%), and II (2.78%). Severe histological degeneration (10–12 points) was observed in three patients. Aggrecan depletion correlated with longer pain duration (r = 0.449, p = 0.031). NGF expression was significantly elevated in degenerated discs (p = 0.0287) and strongly correlated with SP (r = 0.785, p = 5.268 × 10−9). Free nerve endings were identified in 5 cases. ECM calcification, present in 36.1% of patients, was significantly associated with radiculopathy (r = 0.664, p = 0.005). The observed co-localization of NGF and SP suggests a synergistic role in pain development. These results indicate that in young individuals, aggrecan loss, neurochemical imbalance, and ECM calcification are key contributors to DDD and chronic LBP. Full article
(This article belongs to the Special Issue Molecular and Cellular Mechanisms of Intervertebral Disc Disease)
Show Figures

Figure 1

19 pages, 332 KiB  
Review
Redefining Treatment Paradigms in Thyroid Eye Disease: Current and Future Therapeutic Strategies
by Nicolò Ciarmatori, Flavia Quaranta Leoni and Francesco M. Quaranta Leoni
J. Clin. Med. 2025, 14(15), 5528; https://doi.org/10.3390/jcm14155528 - 6 Aug 2025
Abstract
Background: Thyroid eye disease (TED) is a rare autoimmune orbital disorder predominantly associated with Graves’ disease. It is characterized by orbital inflammation, tissue remodeling, and potential visual morbidity. Conventional therapies, particularly systemic glucocorticoids, offer only partial symptomatic relief, failing to reverse chronic structural [...] Read more.
Background: Thyroid eye disease (TED) is a rare autoimmune orbital disorder predominantly associated with Graves’ disease. It is characterized by orbital inflammation, tissue remodeling, and potential visual morbidity. Conventional therapies, particularly systemic glucocorticoids, offer only partial symptomatic relief, failing to reverse chronic structural changes such as proptosis and diplopia, and are associated with substantial adverse effects. This review aims to synthesize recent developments in understandings of TED pathogenesis and to critically evaluate emerging therapeutic strategies. Methods: A systematic literature review was conducted using MEDLINE, Embase, and international clinical trial registries focusing on pivotal clinical trials and investigational therapies targeting core molecular pathways involved in TED. Results: Current evidence suggests that TED pathogenesis is primarily driven by the autoimmune activation of orbital fibroblasts (OFs) through thyrotropin receptor (TSH-R) and insulin-like growth factor-1 receptor (IGF-1R) signaling. Teprotumumab, a monoclonal IGF-1R inhibitor and the first therapy approved by the U.S. Food and Drug Administration for TED, has demonstrated substantial clinical benefit, including improvements in proptosis, diplopia, and quality of life. However, concerns remain regarding relapse rates and treatment-associated adverse events, particularly hearing impairment. Investigational therapies, including next-generation IGF-1R inhibitors, small-molecule antagonists, TSH-R inhibitors, neonatal Fc receptor (FcRn) blockers, cytokine-targeting agents, and gene-based interventions, are under development. These novel approaches aim to address both inflammatory and fibrotic components of TED. Conclusions: Teprotumumab has changed TED management but sustained control and toxicity reduction remain challenges. Future therapies should focus on targeted, mechanism-based, personalized approaches to improve long-term outcomes and patient quality of life. Full article
(This article belongs to the Section Ophthalmology)
22 pages, 2029 KiB  
Article
Regulatory Effects of Endometriosis-Associated Genetic Variants: A Multi-Tissue eQTL Analysis
by Asbiel Felipe Garibaldi-Ríos, Perla Graciela Rodríguez-Gutiérrez, Jesús Magdiel García-Díaz, Guillermo Moisés Zúñiga-González, Luis E. Figuera, Belinda Claudia Gómez-Meda, Ana María Puebla-Pérez, Ingrid Patricia Dávalos-Rodríguez, Blanca Miriam Torres-Mendoza, Itzae Adonai Gutiérrez-Hurtado and Martha Patricia Gallegos-Arreola
Diseases 2025, 13(8), 248; https://doi.org/10.3390/diseases13080248 - 6 Aug 2025
Abstract
Backgroud. Endometriosis is a chronic, estrogen-dependent inflammatory disease characterized by the ectopic presence of endometrial-like tissue. Although genome-wide association studies (GWAS) have identified susceptibility variants, their tissue-specific regulatory impact remains poorly understood. Objective. To functionally characterize endometriosis-associated variants by exploring their regulatory effects [...] Read more.
Backgroud. Endometriosis is a chronic, estrogen-dependent inflammatory disease characterized by the ectopic presence of endometrial-like tissue. Although genome-wide association studies (GWAS) have identified susceptibility variants, their tissue-specific regulatory impact remains poorly understood. Objective. To functionally characterize endometriosis-associated variants by exploring their regulatory effects as expression quantitative trait loci (eQTLs) across six physiologically relevant tissues: peripheral blood, sigmoid colon, ileum, ovary, uterus, and vagina. Methods. GWAS-identified variants were cross-referenced with tissue-specific eQTL data from the GTEx v8 database. We prioritized genes either frequently regulated by eQTLs or showing the strongest regulatory effects (based on slope values, which indicate the direction and magnitude of the effect on gene expression). Functional interpretation was performed using MSigDB Hallmark gene sets and Cancer Hallmarks gene collections. Results. A tissue specificity was observed in the regulatory profiles of eQTL-associated genes. In the colon, ileum, and peripheral blood, immune and epithelial signaling genes predominated. In contrast, reproductive tissues showed the enrichment of genes involved in hormonal response, tissue remodeling, and adhesion. Key regulators such as MICB, CLDN23, and GATA4 were consistently linked to hallmark pathways, including immune evasion, angiogenesis, and proliferative signaling. Notably, a substantial subset of regulated genes was not associated with any known pathway, indicating potential novel regulatory mechanisms. Conclusions. This integrative approach highlights the com-plexity of tissue-specific gene regulation mediated by endometriosis-associated variants. Our findings provide a functional framework to prioritize candidate genes and support new mechanistic hypotheses for the molecular pathophysiology of endometriosis. Full article
Show Figures

Figure 1

7 pages, 669 KiB  
Case Report
Pathologically Confirmed Dual Coronavirus Disease 2019-Associated Tracheobronchial Aspergillosis and Pulmonary Mucormycosis in a Non-Endemic Region: A Case Report
by Keon Oh, Sung-Yeon Cho, Dong-Gun Lee, Dukhee Nho, Dong Young Kim, Hye Min Kweon, Minseung Song and Raeseok Lee
J. Clin. Med. 2025, 14(15), 5526; https://doi.org/10.3390/jcm14155526 - 5 Aug 2025
Abstract
Background: Coronavirus disease 2019 (COVID-19) has led to the expansion of the spectrum of invasive fungal infections beyond traditional immunocompromised populations. Although COVID-19-associated pulmonary aspergillosis is increasingly being recognised, COVID-19-associated mucormycosis remains rare, particularly in non-endemic regions. Concurrent COVID-19-associated invasive tracheobronchial aspergillosis and [...] Read more.
Background: Coronavirus disease 2019 (COVID-19) has led to the expansion of the spectrum of invasive fungal infections beyond traditional immunocompromised populations. Although COVID-19-associated pulmonary aspergillosis is increasingly being recognised, COVID-19-associated mucormycosis remains rare, particularly in non-endemic regions. Concurrent COVID-19-associated invasive tracheobronchial aspergillosis and pulmonary mucormycosis with histopathological confirmation is exceedingly uncommon and poses significant diagnostic and therapeutic challenges. Case presentation: We report the case of a 57-year-old female with myelodysplastic syndrome who underwent haploidentical allogeneic haematopoietic stem cell transplantation. During post-transplant recovery, she developed COVID-19 pneumonia, complicated by respiratory deterioration and radiological findings, including a reverse halo sign. Bronchoscopy revealed multiple whitish plaques in the right main bronchus. Despite negative serum and bronchoalveolar lavage fluid galactomannan assay results, cytopathological examination revealed septate hyphae and Aspergillus fumigatus was subsequently identified. Given the patient’s risk factors and clinical features, liposomal amphotericin B therapy was initiated. Subsequent surgical resection and histopathological analysis confirmed the presence of Rhizopus microsporus. Following antifungal therapy and surgical intervention, the patient recovered and was discharged in stable condition. Conclusions: This case highlights the critical need for heightened clinical suspicion of combined invasive fungal infections in severely immunocompromised patients with COVID-19, even in non-endemic regions for mucormycosis. Early tissue-based diagnostic interventions and prompt initiation of optimal antifungal therapy are essential for obtaining ideal outcomes when co-infection is suspected. Full article
Show Figures

Figure 1

16 pages, 1701 KiB  
Article
Aromatase Inhibitor-Induced Carpal Tunnel Syndrome Immunohistochemical Analysis and Clinical Evaluation: An Observational, Cross-Sectional, Case–Control Study
by Iakov Molayem, Lucian Lior Marcovici, Roberto Gradini, Massimiliano Mancini, Silvia Taccogna and Alessia Pagnotta
J. Clin. Med. 2025, 14(15), 5513; https://doi.org/10.3390/jcm14155513 - 5 Aug 2025
Abstract
Background/Objectives: Breast cancer was the leading cause of malignant tumors among women in 2022. About two-thirds of breast cancer cases are hormone-receptor-positive. In these patients, aromatase inhibitors are a mainstay of treatment, but associated musculoskeletal symptoms can negatively affect patient compliance. Aromatase-inhibitor-induced [...] Read more.
Background/Objectives: Breast cancer was the leading cause of malignant tumors among women in 2022. About two-thirds of breast cancer cases are hormone-receptor-positive. In these patients, aromatase inhibitors are a mainstay of treatment, but associated musculoskeletal symptoms can negatively affect patient compliance. Aromatase-inhibitor-induced carpal tunnel syndrome represents one of the main causes of aromatase inhibitor discontinuation, with a non-compliance rate of up to 67%, potentially leading to increased cancer mortality. This study investigates estrogen receptor expression in aromatase-inhibitor-induced carpal tunnel syndrome tissues, in order to better define its etiopathogenesis and derive preventive or therapeutic measures that can improve aromatase inhibitor patient compliance. To our knowledge, there is no study on this subject in the literature. Methods: Between 2023 and 2024, we recruited 14 patients at the Jewish Hospital of Rome, including seven patients with aromatase-inhibitor-induced carpal tunnel syndrome (study group) and seven with postmenopausal idiopathic carpal tunnel syndrome (control group). Each patient was evaluated based on a clinical visit, a questionnaire, instrumental exams, and serum hormone dosages and were treated with open carpal tunnel release surgery, during which transverse carpal ligament and flexor tenosynovium samples were collected. For immunohistochemical experiments, sections were treated with anti-estrogen receptor α and anti-estrogen receptor β antibodies. Results: The immunohistochemical features in the study and control groups were similar, demonstrating that tissues affected by aromatase-inhibitor-induced carpal tunnel syndrome are targets of direct estrogen action and that estrogen deprivation is correlated with disease etiogenesis. Surgery was effective in patient treatment. Conclusions: Aromatase-inhibitor-induced carpal tunnel syndrome represents a newly defined form of the disease. This syndrome represents one of the main causes of aromatase inhibitor discontinuation, due to its negative impact on the patient’s quality of life. The identification by clinicians of aromatase inhibitor use as a possible risk factor for carpal tunnel syndrome development is of essential importance, as early diagnosis and prompt management can improve patient compliance and overall breast cancer treatment outcomes. Full article
(This article belongs to the Section General Surgery)
Show Figures

Figure 1

35 pages, 1184 KiB  
Review
Which Approach to Choose to Counteract Musculoskeletal Aging? A Comprehensive Review on the Multiple Effects of Exercise
by Angela Falvino, Roberto Bonanni, Umberto Tarantino, Virginia Tancredi and Ida Cariati
Int. J. Mol. Sci. 2025, 26(15), 7573; https://doi.org/10.3390/ijms26157573 - 5 Aug 2025
Abstract
Aging is a complex physiological process that profoundly affects the functionality of the musculoskeletal system, contributing to an increase in the incidence of diseases such as osteoporosis, osteoarthritis, and sarcopenia. Cellular senescence plays a crucial role in these degenerative processes, promoting chronic inflammation [...] Read more.
Aging is a complex physiological process that profoundly affects the functionality of the musculoskeletal system, contributing to an increase in the incidence of diseases such as osteoporosis, osteoarthritis, and sarcopenia. Cellular senescence plays a crucial role in these degenerative processes, promoting chronic inflammation and tissue dysfunction through the senescence-associated secretory phenotype (SASP). Recently, senotherapeutics have shown promising results in improving musculoskeletal health. Natural compounds such as resveratrol, rapamycin, quercetin, curcumin, vitamin E, genistein, fisetin, and epicatechin act on key signaling pathways, offering protective effects against musculoskeletal decline. On the other hand, molecules such as dasatinib, navitoclax, UBX0101, panobinostat, and metformin have been shown to be effective in eliminating or modulating senescent cells. However, understanding the mechanisms of action, long-term safety, and bioavailability remain areas for further investigation. In this context, physical exercise emerges as an effective non-pharmacological countermeasure, capable of directly modulating cellular senescence and promoting tissue regeneration, representing an integrated strategy to combat age-related diseases. Therefore, we have provided an overview of the main anti-aging compounds and examined the potential of physical exercise as a strategy in the management of age-related musculoskeletal disorders. Further studies should focus on identifying synergistic combinations of pharmacological and non-pharmacological interventions to optimize the effectiveness of anti-aging strategies and promoting healthier musculoskeletal aging. Full article
(This article belongs to the Special Issue Molecular Biology of Senescence and Anti-Aging Strategies)
Show Figures

Figure 1

18 pages, 5256 KiB  
Article
Impact of Alginate Oligosaccharides on Ovarian Performance and the Gut Microbial Community in Mice with D-Galactose-Induced Premature Ovarian Insufficiency
by Yan Zhang, Hongda Pan, Dao Xiang, Hexuan Qu and Shuang Liang
Antioxidants 2025, 14(8), 962; https://doi.org/10.3390/antiox14080962 - 5 Aug 2025
Abstract
Premature ovarian insufficiency (POI) is an important factor in female infertility and is often associated with oxidative stress. Alginate oligosaccharides (AOSs), derived from the degradation of alginate, have been demonstrated to have protective effects against various oxidative stress-related diseases. However, the impact of [...] Read more.
Premature ovarian insufficiency (POI) is an important factor in female infertility and is often associated with oxidative stress. Alginate oligosaccharides (AOSs), derived from the degradation of alginate, have been demonstrated to have protective effects against various oxidative stress-related diseases. However, the impact of AOSs on POI has not been previously explored. The current study explored the effects of AOSs on ovarian dysfunction in a mouse model of POI induced by D-galactose (D-gal). Female C57BL/6 mice were randomly divided into five groups: the control (CON), POI model (D-gal), and low-, medium-, and high-dose AOS groups (AOS-L, 100 mg/kg/day; AOS-M, 150 mg/kg/day; AOS-H, 200 mg/kg/day). For 42 consecutive days, mice in the D-gal, AOS-L, AOS-M, and AOS-H groups received daily intraperitoneal injections of D-gal (200 mg/kg/day), whereas those in the CON group received equivalent volumes of sterile saline. Following D-gal injection, AOSs were administered via gavage at the specified doses; mice in the CON and D-gal groups received sterile saline instead. AOS treatment markedly improved estrous cycle irregularities, normalized serum hormone levels, reduced granulosa cell apoptosis, and increased follicle counts in POI mice. Moreover, AOSs significantly reduced ovarian oxidative stress and senescence in POI mice, as indicated by lower levels of malondialdehyde (MDA), higher activities of catalase (CAT) and superoxide dismutase (SOD), and decreased protein expression of 4-hydroxynonenal (4-HNE), nitrotyrosine (NTY), 8-hydroxydeoxyguanosine (8-OHdG), and p16 in ovarian tissue. Analysis of the gut microbiota through 16S rRNA gene sequencing and short-chain fatty acid (SCFA) analysis revealed significant differences in gut microbiota composition and SCFA levels (acetic acid and total SCFAs) between control and D-gal-induced POI mice. These differences were largely alleviated by AOS treatment. AOSs changed the gut microbiota by increasing the abundance of Ligilactobacillus and decreasing the abundance of Clostridiales, Clostridiaceae, Marinifilaceae, and Clostridium_T. Additionally, AOSs mitigated the decline in acetic acid and total SCFA levels observed in POI mice. Notably, the total SCFA level was significantly correlated with the abundance of Ligilactobacillus, Marinifilaceae, and Clostridium_T. In conclusion, AOS intervention effectively mitigates ovarian oxidative stress, restores gut microbiota homeostasis, and regulates the microbiota–SCFA axis, collectively improving D-gal-induced POI. Therefore, AOSs represent a promising therapeutic strategy for POI management. Full article
(This article belongs to the Section Health Outcomes of Antioxidants and Oxidative Stress)
Show Figures

Figure 1

26 pages, 9773 KiB  
Review
A Narrative Review of the Clinical Applications of Echocardiography in Right Heart Failure
by North J. Noelck, Heather A. Perry, Phyllis L. Talley and D. Elizabeth Le
J. Clin. Med. 2025, 14(15), 5505; https://doi.org/10.3390/jcm14155505 - 5 Aug 2025
Viewed by 21
Abstract
Background/Objectives: Historically, echocardiographic imaging of the right heart has been challenging because its abnormal geometry is not conducive to reproducible anatomical and functional assessment. With the development of advanced echocardiographic techniques, it is now possible to complete an integrated assessment of the right [...] Read more.
Background/Objectives: Historically, echocardiographic imaging of the right heart has been challenging because its abnormal geometry is not conducive to reproducible anatomical and functional assessment. With the development of advanced echocardiographic techniques, it is now possible to complete an integrated assessment of the right heart that has fewer assumptions, resulting in increased accuracy and precision. Echocardiography continues to be the first-line imaging modality for diagnostic analysis and the management of acute and chronic right heart failure because of its portability, versatility, and affordability compared to cardiac computed tomography, magnetic resonance imaging, nuclear scintigraphy, and positron emission tomography. Virtually all echocardiographic parameters have been well-validated and have demonstrated prognostic significance. The goal of this narrative review of the echocardiographic parameters of the right heart chambers and hemodynamic alterations associated with right ventricular dysfunction is to present information that must be acquired during each examination to deliver a comprehensive assessment of the right heart and to discuss their clinical significance in right heart failure. Methods: Using a literature search in the PubMed database from 1985 to 2025 and the Cochrane database, which included but was not limited to terminology that are descriptive of right heart anatomy and function, disease states involving acute and chronic right heart failure and pulmonary hypertension, and the application of conventional and advanced echocardiographic modalities that strive to elucidate the pathophysiology of right heart failure, we reviewed randomized control trials, observational retrospective and prospective cohort studies, societal guidelines, and systematic review articles. Conclusions: In addition to the conventional 2-dimensional echocardiography and color, spectral, and tissue Doppler measurements, a contemporary echocardiographic assessment of a patient with suspected or proven right heart failure must include 3-dimensional echocardiographic-derived measurements, speckle-tracking echocardiography strain analysis, and hemodynamics parameters to not only characterize the right heart anatomy but to also determine the underlying pathophysiology of right heart failure. Complete and point-of-care echocardiography is available in virtually all clinical settings for routine care, but this imaging tool is particularly indispensable in the emergency department, intensive care units, and operating room, where it can provide an immediate assessment of right ventricular function and associated hemodynamic changes to assist with real-time management decisions. Full article
(This article belongs to the Special Issue Cardiac Imaging in the Diagnosis and Management of Heart Failure)
Show Figures

Figure 1

20 pages, 1545 KiB  
Review
Nanomedicine as a Promising Treatment Approach for Obesity
by Abeer Alanazi, Alexander Craven, Spiridon V. Spirou, Maria Jose Santos-Martinez, Carlos Medina and Oliviero L. Gobbo
J. Nanotheranostics 2025, 6(3), 21; https://doi.org/10.3390/jnt6030021 - 5 Aug 2025
Viewed by 15
Abstract
Obesity is a chronic disorder associated with serious comorbidities such as diabetes, cardiovascular disease, and cancer. Conventional pharmacological treatments often suffer from limited efficacy, poor selectivity, and undesirable side effects, highlighting the need for more effective alternatives. Nanomedicine offers a promising approach by [...] Read more.
Obesity is a chronic disorder associated with serious comorbidities such as diabetes, cardiovascular disease, and cancer. Conventional pharmacological treatments often suffer from limited efficacy, poor selectivity, and undesirable side effects, highlighting the need for more effective alternatives. Nanomedicine offers a promising approach by overcoming these limitations through targeted drug delivery and enhanced therapeutic precision. This review examines key nanotechnological strategies in obesity management, including targeting white adipose tissue (WAT) and the vascular marker prohibitin, promoting WAT browning, and utilizing photothermal therapy and magnetic hyperthermia as nanotheranostic tools. We discuss major nanomedicine platforms—such as liposomes, nanoemulsions, and polymeric nanoparticles—alongside emerging applications in gene nanotherapy and herbal formulations. Potential toxicity concerns are also addressed. In summary, nanomedicine holds substantial potential to revolutionize obesity treatment through targeted, effective, and multifunctional therapeutic strategies. Full article
Show Figures

Figure 1

12 pages, 1107 KiB  
Article
DHA–Triacylglycerol Accumulation in Tacrolimus-Induced Nephrotoxicity Identified by Lipidomic Profiling
by Sho Nishida, Tamaki Ishima, Daiki Iwami, Ryozo Nagai and Kenichi Aizawa
Int. J. Mol. Sci. 2025, 26(15), 7549; https://doi.org/10.3390/ijms26157549 - 5 Aug 2025
Viewed by 36
Abstract
Tacrolimus (TAC)-induced chronic nephrotoxicity (TAC nephrotoxicity) remains a major contributor to late allograft dysfunction in kidney transplant recipients. Although detailed mechanisms remain incompletely understood, our previous metabolomic studies revealed disruptions in carnitine-related and redox pathways, suggesting impaired mitochondrial β-oxidation of fatty acids. To [...] Read more.
Tacrolimus (TAC)-induced chronic nephrotoxicity (TAC nephrotoxicity) remains a major contributor to late allograft dysfunction in kidney transplant recipients. Although detailed mechanisms remain incompletely understood, our previous metabolomic studies revealed disruptions in carnitine-related and redox pathways, suggesting impaired mitochondrial β-oxidation of fatty acids. To further characterize metabolic alterations associated with this condition, we conducted an untargeted lipidomic analysis of renal tissues using a murine model of TAC nephrotoxicity. TAC (1 mg/kg/day) or saline was subcutaneously administered to male ICR mice for 28 days, and kidney tissues were harvested for comprehensive lipidomic profiling. Lipidomic analysis was performed with liquid chromatography–tandem mass spectrometry (p < 0.05, n = 5/group). Triacylglycerols (TGs) were the predominant lipid class identified. TAC-treated mice exhibited reduced levels of unsaturated TG species with low carbon numbers, whereas TGs with higher carbon numbers and various degrees of unsaturation were increased. All detected TGs containing docosahexaenoic acid (DHA) showed an increasing trend in TAC-treated kidneys. Although accumulation of polyunsaturated TGs has been previously observed in chronic kidney disease, the preferential increase in DHA-containing TGs appears to be a unique feature of TAC-induced nephrotoxicity. These results suggest that DHA-enriched TGs may serve as a metabolic signature of TAC nephrotoxicity and offer new insights into its pathophysiology. Full article
(This article belongs to the Special Issue Recent Molecular Trends and Prospects in Kidney Diseases)
Show Figures

Figure 1

13 pages, 792 KiB  
Article
Association of miRNA-17-92 Cluster with Muscle Invasion in Bladder Cancer
by Mihai Ioan Pavalean, Maria Dobre, Iulia Andreea Pelisenco, Victor Lucian Madan, Elena Milanesi and Mihail Eugen Hinescu
Int. J. Mol. Sci. 2025, 26(15), 7546; https://doi.org/10.3390/ijms26157546 - 5 Aug 2025
Viewed by 56
Abstract
Bladder cancer (BC) is the most frequent cancer of the urinary system and one of the most common malignancies in the world. In the last decade, many studies have been conducted to better understand the pathophysiological mechanisms of BC to find innovative markers [...] Read more.
Bladder cancer (BC) is the most frequent cancer of the urinary system and one of the most common malignancies in the world. In the last decade, many studies have been conducted to better understand the pathophysiological mechanisms of BC to find innovative markers for disease monitoring and treatment. In this study, we aim to identify miRNAs whose expression is associated with specific tumoral characteristics and risks of disease progression. Forty-one BC patients were enrolled in this study. The expression of 84 miRNAs was evaluated by qRT-PCR analysis on tumoral and peritumoral tissues. The results highlighted the association of the miRNA-17-92 cluster with BC, with miR-17-5p, miR-18a-5p, miR-19a-3p, and miR-20a-5p (members of this cluster) being upregulated in the tumoral tissue and correlated with muscle invasion and tumor grading. Taken together, our study identified a panel of 26 dysregulated miRNAs in BC, some of which may be associated with aggressiveness and the risk of progression of this malignancy. Full article
Show Figures

Figure 1

12 pages, 3657 KiB  
Communication
The Role of Setophoma terrestris in Pink Root Disease: New Insights and Host Range in Brazil
by Gustavo Henrique Silva Peixoto, Thais Franca Silva, Laura Freitas Copati, Ailton Reis, Valter Rodrigues Oliveira, Valdir Lourenço and Danilo Batista Pinho
J. Fungi 2025, 11(8), 581; https://doi.org/10.3390/jof11080581 - 5 Aug 2025
Viewed by 85
Abstract
The soil-borne fungi, Setophoma terrestris and Fusarium spp., are often associated with pink root, although the etiology of the disease remains doubtful. While recognized as the primary inoculum, studies show conflicting views on the formation of chlamydospores and microsclerotia in Setophoma. Therefore, [...] Read more.
The soil-borne fungi, Setophoma terrestris and Fusarium spp., are often associated with pink root, although the etiology of the disease remains doubtful. While recognized as the primary inoculum, studies show conflicting views on the formation of chlamydospores and microsclerotia in Setophoma. Therefore, this study aims to clarify the etiology of the pink root of garlic and onion and the formation of chlamydospores and microsclerotia in Setophoma. The isolates were obtained from symptomatic tissues of garlic, leeks, brachiaria, onions, chives, and maize collected from seven different states in Brazil. Representative isolates were selected for pathogenicity tests. Sequence comparison of the tubulin gene showed Setophoma (n = 50) and Fusarium clades (n = 25). Garlic and onion plants inoculated with Setophoma showed pink root symptoms, while plants inoculated with different Fusarium isolates remained asymptomatic. Multigene analysis of pathogenic isolates confirms that only Setophoma terrestris causes pink root in garlic and onion. In addition, brachiaria, chives, and leeks are newly identified hosts of this pathogen in Brazil. To our knowledge, the main sources of primary inoculum of the disease are chlamydospores, pycnidia, colonized roots of garlic, onion, and plant debris of susceptible crops. The new information obtained in this study will be fundamental for researchers in the development of genotypes that are resistant to pink root and will help the efficient management of the disease. Full article
(This article belongs to the Special Issue Current Research in Soil Borne Plant Pathogens)
Show Figures

Figure 1

Back to TopTop