Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (11)

Search Parameters:
Keywords = diol stationary phase

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 2507 KiB  
Article
Analytical and Preparative Separation of Softwood Lignans by Supercritical Fluid Chromatography
by Nikolay V. Ul’yanovskii, Aleksandra A. Onuchina, Denis V. Ovchinnikov, Anna V. Faleva, Natalia S. Gorbova and Dmitry S. Kosyakov
Separations 2023, 10(8), 449; https://doi.org/10.3390/separations10080449 - 13 Aug 2023
Cited by 8 | Viewed by 1807
Abstract
Lignans are widespread polyphenolic secondary plant metabolites possessing high biological activity. One of the most promising industrial-scale sources of such compounds is coniferous knotwood, containing a large number of polyphenolic compounds. Their use in pharmaceutical and other industries is limited by the difficulty [...] Read more.
Lignans are widespread polyphenolic secondary plant metabolites possessing high biological activity. One of the most promising industrial-scale sources of such compounds is coniferous knotwood, containing a large number of polyphenolic compounds. Their use in pharmaceutical and other industries is limited by the difficulty in obtaining high-purity preparations from plant material and the requirement of advanced separation techniques. In this study, supercritical fluid chromatography on polar stationary phases was proposed for the efficient separation and identification of spruce, pine, fir, and larch knotwood extractives. Among the six tested sorbents, the best results were shown by silica with grafted diol and 2-ethylpyridine groups under conditions of gradient elution with a carbon dioxide–methanol mobile phase, which ensured the efficient retention and separation of analytes due to donor–acceptor interactions. Scaling up the method on a DIOL stationary phase provided a semi-preparative separation of extractives within 30 min to obtain 14 individual compounds with a purity of 90–99% and yields from 0.3 to 51% of the dry extract. These included eight lignans (nortrachelogenin, matairesinol, oxomatairesinol, α-conidendrin, 5-hydroxymatairesinol and its isomer, lariciresinol, and secoisolariciresinol), two oligolignans, three stilbenes (pinosylvin and its methyl ester, pterostilbene), and flavonoid taxifolin. The developed approach is distinguished with low operational costs, low consumption of organic solvents, environmental safety, and it is fully consistent with the principles of green chemistry. Full article
(This article belongs to the Section Chromatographic Separations)
Show Figures

Figure 1

13 pages, 1154 KiB  
Article
Determination of Pentacyclic Triterpenoids in Plant Biomass by Porous Graphitic Carbon Liquid Chromatography—Tandem Mass Spectrometry
by Ilya S. Voronov, Danil I. Falev, Anna V. Faleva, Nikolay V. Ul’yanovskii and Dmitry S. Kosyakov
Molecules 2023, 28(9), 3945; https://doi.org/10.3390/molecules28093945 - 7 May 2023
Cited by 5 | Viewed by 2331
Abstract
Pentacyclic triterpenoids (PCTs), which possess a number of bioactive properties, are considered one of the most important classes of secondary plant metabolites. Their chromatographic determination in plant biomass is complicated by the need to separate a large number of structurally similar compounds belonging [...] Read more.
Pentacyclic triterpenoids (PCTs), which possess a number of bioactive properties, are considered one of the most important classes of secondary plant metabolites. Their chromatographic determination in plant biomass is complicated by the need to separate a large number of structurally similar compounds belonging to several classes that differ greatly in polarity (monools, diols, and triterpenic acids). This study proposes a rapid, sensitive, and low-cost method for the simultaneous quantification of ten PCTs (3β-taraxerol, lupeol, β-amyrin, α-amyrin, betulin, erythrodiol, uvaol, betulinic, oleanolic, and ursolic acids) by high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) using porous graphitic carbon (Hypercarb) as a stationary phase capable of hydrophobic retention and specific interactions with analytes. Revealing the effects of the mobile phase composition, pH, ionic strength, and column temperature on retention and selection of chromatographic conditions on this basis allowed for the effective separation of all target analytes within 8 min in gradient elution mode and attaining limits of detection in the range of 4–104 µg L−1. The developed method was fully validated and successfully tested in the determination of PCTs in common haircap (Polytrichum commune) and prairie sphagnum (Sphagnum palustre) mosses, and fireweed (Chamaenerion angustifolium) stems and leaves. Full article
(This article belongs to the Section Analytical Chemistry)
Show Figures

Figure 1

14 pages, 3697 KiB  
Article
Preparation of Chiral Porous Organic Cage Clicked Chiral Stationary Phase for HPLC Enantioseparation
by Ya-Nan Gong, Qi-Yu Ma, Ying Wang, Jun-Hui Zhang, You-Ping Zhang, Rui-Xue Liang, Bang-Jin Wang, Sheng-Ming Xie and Li-Ming Yuan
Molecules 2023, 28(7), 3235; https://doi.org/10.3390/molecules28073235 - 4 Apr 2023
Cited by 8 | Viewed by 2818
Abstract
Porous organic cages (POCs) are a new subclass of porous materials, which are constructed from discrete cage molecules with permanent cavities via weak intermolecular forces. In this study, a novel chiral stationary phase (CSP) has been prepared by chemically binding a [4 + [...] Read more.
Porous organic cages (POCs) are a new subclass of porous materials, which are constructed from discrete cage molecules with permanent cavities via weak intermolecular forces. In this study, a novel chiral stationary phase (CSP) has been prepared by chemically binding a [4 + 6]-type chiral POC (C120H96N12O4) with thiol-functionalized silica gel using a thiol-ene click reaction and applied to HPLC separations. The column packed with this CSP presented good separation capability for chiral compounds and positional isomers. Thirteen racemates have been enantioseparated on this column, including alcohols, diols, ketones, amines, epoxides, and organic acids. Upon comparison with a previously reported chiral POC NC1-R-based column, commercial Chiralpak AD-H, and Chiralcel OD-H columns, this column is complementary to these three columns in terms of its enantiomeric separation; and can also separate some racemic compounds that cannot be separated by the three columns. In addition, eight positional isomers (iodoaniline, bromoaniline, chloroaniline, dibromobenzene, dichlorobenzene, toluidine, nitrobromobenzene, and nitroaniline) have also been separated. The influences of the injection weight and column temperature on separation have been explored. After the column has undergone multiple injections, the relative standard deviations (RSDs) for the retention time and selectivity were below 1.0 and 1.5%, respectively, indicating the good reproducibility and stability of the column for separation. This work demonstrates that POCs are promising materials for HPLC separation. Full article
(This article belongs to the Special Issue Chiral Recognition and Enantioseparation)
Show Figures

Figure 1

13 pages, 1992 KiB  
Article
Further Evaluation of the Base Stability of Hydrophilic Interaction Chromatography Columns Packed with Silica or Ethylene-Bridged Hybrid Particles
by Thomas H. Walter, Cheryl Boissel, Jessica A. Field and Nicole L. Lawrence
Separations 2023, 10(3), 175; https://doi.org/10.3390/separations10030175 - 6 Mar 2023
Cited by 2 | Viewed by 2199
Abstract
One of the fundamental attributes of a liquid chromatography column is its stability when exposed to acidic and basic mobile phases. However, there have been relatively few reports to date on the stability of hydrophilic interaction chromatography (HILIC) columns. Here, we report the [...] Read more.
One of the fundamental attributes of a liquid chromatography column is its stability when exposed to acidic and basic mobile phases. However, there have been relatively few reports to date on the stability of hydrophilic interaction chromatography (HILIC) columns. Here, we report the results of stability evaluations carried out for HILIC columns packed with ethylene-bridged hybrid or silica particles using accelerated conditions, employing a 100% aqueous pH 11.3 ammonium bicarbonate mobile phase at 70 °C. Under these conditions, the primary mode of column failure was a loss of efficiency due to the formation of voids resulting from the hydrolysis of the particles. We investigated the dependence of stability on the surface area of both unbonded and sulfobetaine-bonded ethylene-bridged hybrid stationary phases. The results show a clear trend of stability increasing as the surface area decreases. Several commercially available HILIC columns that are recommended for use with high-pH mobile phases were also evaluated. The results show times to 50% loss of the initial efficiency ranging from 0.3 to 9.9 h. Columns containing unbonded, sulfobetaine-bonded or diol-bonded ethylene-bridged hybrid stationary phases had longer lifetimes than amino-bonded silica or sulfobetaine-bonded, hybrid-coated, superficially porous silica columns. Full article
(This article belongs to the Section Chromatographic Separations)
Show Figures

Figure 1

14 pages, 1294 KiB  
Article
Determination of Glycerophospholipids in Biological Material Using High-Performance Liquid Chromatography with Charged Aerosol Detector HPLC-CAD—A New Approach for Isolation and Quantification
by Magdalena Rosłon, Małgorzata Jaworska and Elżbieta L. Anuszewska
Molecules 2022, 27(10), 3356; https://doi.org/10.3390/molecules27103356 - 23 May 2022
Cited by 4 | Viewed by 4177
Abstract
The method of using high-performance liquid chromatography with a charged aerosol detector method (HPLC-CAD) was developed for the separation and determination of phospholipids isolated from cell membranes. The established cell lines—normal and neoplastic prostate cells and normal skin fibroblasts and melanoma cells—were selected [...] Read more.
The method of using high-performance liquid chromatography with a charged aerosol detector method (HPLC-CAD) was developed for the separation and determination of phospholipids isolated from cell membranes. The established cell lines—normal and neoplastic prostate cells and normal skin fibroblasts and melanoma cells—were selected for the study. Chromatographic separation was performed in the diol stationary phase using a gradient elution based on a mixture of n-hexane, isopropanol and water with the addition of triethylamine and acetic acid as buffer additives. Taking the elements of the Folch and Bligh–Dyer methods, an improved procedure for lipid isolation from biological material was devised. Ultrasound-assisted extraction included three extraction steps and changed the composition of the extraction solvent, which led to higher recovery of the tested phospholipids. This method was validated by assessing the analytical range, precision, intermediate precision and accuracy. The analytical range was adjusted to the expected concentrations in cell extracts of various origins (from 40 µg/mL for PS up to 10 mg/mL for PC). Both precision and intermediate precision were at a similar level and ranged from 3.5% to 9.0%. The recovery for all determined phospholipids was found to be between 95% and 110%. The robustness of the method in terms of the use of equivalent columns was also confirmed. Due to the curvilinear response of CAD, the quantification was based on an internal standard method combined with a power function transformation of the normalized peak areas, allowing the linearization of the signal with an R2 greater than 0.996. The developed method was applied for the isolation and determination of glycerophospholipids from cell membranes, showing that the profile of the tested substances was characteristic of various types of cells. This method can be used to assess changes in metabolism between normal cells and neoplastic cells or cells with certain pathologies or genetic changes. Full article
Show Figures

Graphical abstract

16 pages, 1351 KiB  
Article
Detection of Benzo[a]pyrene Diol Epoxide Adducts to Histidine and Lysine in Serum Albumin In Vivo by High-Resolution-Tandem Mass Spectrometry
by Javier Zurita, Hitesh V. Motwani, Leopold L. Ilag, Vassilis L. Souliotis, Soterios A. Kyrtopoulos, Ulrika Nilsson and Margareta Törnqvist
Toxics 2022, 10(1), 27; https://doi.org/10.3390/toxics10010027 - 8 Jan 2022
Cited by 5 | Viewed by 3039
Abstract
Electrophilic diol epoxide metabolites are involved in the carcinogenicity of benzo[a]pyrene, one of the widely studied polycyclic aromatic hydrocarbons (PAHs). The exposure of humans to this PAH can be assessed by measuring stable blood protein adducts, such as to histidine and [...] Read more.
Electrophilic diol epoxide metabolites are involved in the carcinogenicity of benzo[a]pyrene, one of the widely studied polycyclic aromatic hydrocarbons (PAHs). The exposure of humans to this PAH can be assessed by measuring stable blood protein adducts, such as to histidine and lysine in serum albumin, from their reactive metabolites. In this respect, measurement of the adducts originating from the genotoxic (+)-anti-benzo[a]pyrene diol epoxide is of interest. However, these are difficult to measure at such low levels as are expected in humans generally exposed to benzo[a]pyrene from air pollution and the diet. The analytical methods detecting PAH-biomarkers still suffer from low selectivity and/or detectability to enable generation of data for calculation of in vivo doses of specific stereoisomers, for evaluation of risk factors and assessing risk from exposures to PAH. Here, we suggest an analytical methodology based on high-pressure liquid chromatography (HPLC) coupled to high-resolution tandem mass spectrometry (MS) to lower the detection limits as well as to increase the selectivity with improvements in both chromatographic separation and mass determination. Method development was performed using serum albumin alkylated in vitro by benzo[a]pyrene diol epoxide isomers. The (+)-anti-benzo[a]pyrene diol epoxide adducts could be chromatographically resolved by using an HPLC column with a pentafluorophenyl stationary phase. Interferences were further diminished by the high mass accuracy and resolving power of Orbitrap MS. The achieved method detection limit for the (+)-anti-benzo[a]pyrene diol epoxide adduct to histidine was approximately 4 amol/mg serum albumin. This adduct as well as the adducts to histidine from (−)-anti- and (+/−)-syn-benzo[a]pyrene diol epoxide were quantified in the samples from benzo[a]pyrene-exposed mice. Corresponding adducts to lysine were also quantified. In human serum albumin, the anti-benzo[a]pyrene diol epoxide adducts to histidine were detected in only two out of twelve samples and at a level of approximately 0.1 fmol/mg. Full article
(This article belongs to the Special Issue DNA Adducts for Characterization of Exposure)
Show Figures

Figure 1

17 pages, 1076 KiB  
Article
Comparison of the Fitting Performance of Retention Models and Elution Strength Behaviour in Hydrophilic-Interaction and Reversed-Phase Liquid Chromatography
by Ester Peris-García, María José Ruiz-Angel, Juan José Baeza-Baeza and María Celia García-Alvarez-Coque
Separations 2021, 8(4), 54; https://doi.org/10.3390/separations8040054 - 20 Apr 2021
Cited by 8 | Viewed by 2923
Abstract
Hydrophilic interaction liquid chromatography (HILIC) is able to separate from polar to highly polar solutes, using similar eluents to those in the reversed-phase mode (RPLC) and a polar stationary phase, where water is adsorbed onto its surface. It is widely accepted that multiple [...] Read more.
Hydrophilic interaction liquid chromatography (HILIC) is able to separate from polar to highly polar solutes, using similar eluents to those in the reversed-phase mode (RPLC) and a polar stationary phase, where water is adsorbed onto its surface. It is widely accepted that multiple modes of interaction take place in the HILIC environment, which can be far more complex than the interactions in an RPLC column. The behaviour in HILIC should be adequately modelled to predict the retention with optimisation purposes and improve the understanding on retention mechanisms, as is the case for RPLC. In this work, the prediction performance of several retention models is studied for seven HILIC columns (underivatised silica, and silica containing diol, amino and sulfobetaine functional groups, together with three columns recently manufactured with neutral, anionic, and cationic character), using uracil and six polar nucleosides (adenosine, cytidine, guanosine, thymidine, uridine, and xanthosine) as probe compounds. The results in HILIC are compared with those that were offered by the elution of several polar sulphonamides and diuretics analysed with two C18 columns (Chromolith Speed ROD and Zorbax Eclipse XDB). It is shown that eight retention models, which only consider partitioning or both partitioning and adsorption, give similar good accuracy in predictions for both HILIC and RPLC columns. However, the study on the elution strength behaviour, at varying mobile phase composition, reveals similarities (or differences) between RPLC and HILIC columns of diverse nature. The particular behaviour for the HILIC and RPLC columns was also revealed when the retention, in both modes, was fitted to a model that describes the change in the elution strength with the modifier concentration. Full article
Show Figures

Figure 1

21 pages, 2405 KiB  
Article
Preparative Separation of Procyanidins from Cocoa Polyphenolic Extract: Comparative Study of Different Fractionation Techniques
by Said Toro-Uribe, Miguel Herrero, Eric A. Decker, Luis Javier López-Giraldo and Elena Ibáñez
Molecules 2020, 25(12), 2842; https://doi.org/10.3390/molecules25122842 - 19 Jun 2020
Cited by 11 | Viewed by 4352
Abstract
To provide further insight into the antioxidant potential of procyanidins (PCs) from cocoa beans, PC extract was fractionated by several methodologies, including solid phase extraction, Sephadex LH-20 gel permeation, and preparative HPLC using C18 and diol stationary phases. All the isolated fractions were [...] Read more.
To provide further insight into the antioxidant potential of procyanidins (PCs) from cocoa beans, PC extract was fractionated by several methodologies, including solid phase extraction, Sephadex LH-20 gel permeation, and preparative HPLC using C18 and diol stationary phases. All the isolated fractions were analyzed by UHPLC-QTOF-MS to determine their relative composition. According to our results, classical techniques allowed good separation of alkaloids, catechins, dimers, and trimers, but were inefficient for oligomeric PCs. Preparative C18-HPLC method allowed the attainment of high relative composition of fractions enriched with alkaloids, catechins, and PCs with degree of polymerization (DP) < 4. However, the best results were obtained by preparative diol-HPLC, providing a separation according to the increasing DP. According to the mass spectrometry fragmentation pattern, the nine isolated fractions (Fractions II–X) consisted of exclusively individual PCs and their corresponding isomers (same DP). In summary, an efficient, robust, and fast method using a preparative diol column for the isolation of PCs is proposed. Regarding DPPH and ABTS•+ scavenging activity, it increases according to the DP; therefore, the highest activity was for cocoa extract > PCs > monomers. Thereby, cocoa procyanidins might be of interest to be used as alternative antioxidants. Full article
(This article belongs to the Special Issue Plant Based Chemistry – Towards “Green Chemistry 2.0”)
Show Figures

Figure 1

14 pages, 2905 KiB  
Article
Comparison of Retention Behavior between Supercritical Fluid Chromatography and Normal-Phase High-Performance Liquid Chromatography with Various Stationary Phases
by Tsunehisa Hirose, Daniel Keck, Yoshihiro Izumi and Takeshi Bamba
Molecules 2019, 24(13), 2425; https://doi.org/10.3390/molecules24132425 - 2 Jul 2019
Cited by 15 | Viewed by 8420
Abstract
The retention behavior of a wide variety of stationary phases was compared in supercritical fluid chromatography (SFC) and normal-phase high-performance liquid chromatography (NP-HPLC). We also attempted to elucidate the retention behavior in SFC by investigating the selectivity of the different stationary phases. SFC [...] Read more.
The retention behavior of a wide variety of stationary phases was compared in supercritical fluid chromatography (SFC) and normal-phase high-performance liquid chromatography (NP-HPLC). We also attempted to elucidate the retention behavior in SFC by investigating the selectivity of the different stationary phases. SFC separation conditions with polar stationary phases, such as silica gel (SL) and diol (Diol) phases, operate via adsorptions that include hydrophilic and ionic interactions similar to those in NP-HPLC. Moreover, non-polar stationary phases, such as pentabromophenyl (PBr), pyrenylethyl (PYE), and octadecyl (C18), could be used despite the non-polar mobile phase conditions, because the dispersion and π-π interactions were stronger in SFC than in HPLC. These results reflect the selectivity of the stationary phase and its retention factor, thus providing useful information for the selection of appropriate stationary phases for particular analytes. Full article
(This article belongs to the Special Issue Supercritical Fluids and Green Chemistry)
Show Figures

Figure 1

15 pages, 2762 KiB  
Article
Supercritical Fluid Chromatography with Photodiode Array Detection in the Determination of Fat-Soluble Vitamins in Hemp Seed Oil and Waste Fish Oil
by Katarzyna Tyśkiewicz, Roman Gieysztor, Izabela Maziarczyk, Paweł Hodurek, Edward Rój and Krystyna Skalicka-Woźniak
Molecules 2018, 23(5), 1131; https://doi.org/10.3390/molecules23051131 - 10 May 2018
Cited by 22 | Viewed by 5850
Abstract
In the presented study for the first time a new, optimized, fast SFC (supercritical fluid chromatography) method was applied to separate in one run fat-soluble vitamins from waste fish oil, including cis-and trans-retinyl palmitate, cis- and trans-retinyl acetate, retinol, [...] Read more.
In the presented study for the first time a new, optimized, fast SFC (supercritical fluid chromatography) method was applied to separate in one run fat-soluble vitamins from waste fish oil, including cis-and trans-retinyl palmitate, cis- and trans-retinyl acetate, retinol, α-tocopherol, β-tocopherol, γ‑tocopherol, δ-tocopherol, ergocalciferol (D2), cholecalciferol (D3), cis- and trans-phylloquinone (K1) and menaquinone-4 (K2-MK4). Vitamins were baseline separated on an Acquity UPC2 (ultra performance convergence chromatography) HSS C18 SB (highly strength chemically modified silica) column within 13 min. The influence of the stationary phase, such as Torus 1-AA (1-aminoanthracene), Torus Diol (high density diol), Torus DEA (diethylamine), BEH (silica with no bonding), BEH-2EP (2-ethylpirydine), CSH Fluoro-Phenyl (silica with fluoro-phenyl groups), column temperature, flow rate and back pressure on the separation of the compounds was described. The application of the modified saponification procedure allowed us to increase concentration in the sample prepared for the analysis of γ‑tocopherol from less than 1% (wt %) to 14% for the first time. In addition, α‑tocopherol, γ‑tocopherol, δ‑tocopherol and retinol were identified in waste fish oil. Vitamin purification and analysis in waste fish oil are reported for the first time here. Due to the short time and effectiveness of the proposed method, it can be easily applied in industrial processes. Full article
(This article belongs to the Special Issue Recent Advances in Studies of Food and Beverages)
Show Figures

Figure 1

10 pages, 669 KiB  
Article
Influence of the Azulene Ring on the Enantioseparation of 1,5-Diols
by Dana A. Horgen and Charles M. Garner
Chromatography 2014, 1(2), 65-74; https://doi.org/10.3390/chromatography1020065 - 16 May 2014
Cited by 1 | Viewed by 6229
Abstract
The enantioseparation of a series of six azulene-centered 1,5-diol enantiomers was studied employing two cellulose-based chiral stationary phases under normal phase conditions (isopropanol/hexanes). The separations were generally quite good on Chiralcel-OD-H, with α values ranging from 1.2 to 8.4 (average 4.0) and resolution [...] Read more.
The enantioseparation of a series of six azulene-centered 1,5-diol enantiomers was studied employing two cellulose-based chiral stationary phases under normal phase conditions (isopropanol/hexanes). The separations were generally quite good on Chiralcel-OD-H, with α values ranging from 1.2 to 8.4 (average 4.0) and resolution values of 0.4–8.3 (average 4.7). Only one of the six enantiomer pairs was not well resolved, but was well separated on Lux cellulose 2 (α 1.4, Rs 8.7). It was observed that the enantioseparations of the RS/SR diastereomers (ave α = 7.8, Rs = 8.2) were dramatically better than that of the corresponding RR/SS diastereomers (ave α = 2.1, Rs = 3.0) on Chiralcel-OD-H. The better-resolved diastereomer pairs correspond to the more strongly retained diastereomers on silica gel. The enantiomers of two benzene 1,5-diols were much more poorly separated on both stationary phases, suggesting that the unusual polarity of the azulene ring enhances critical interactions with these phases. Full article
Show Figures

Graphical abstract

Back to TopTop