Comparison of the Fitting Performance of Retention Models and Elution Strength Behaviour in Hydrophilic-Interaction and Reversed-Phase Liquid Chromatography
Abstract
:1. Introduction
2. Theory
3. Materials and Methods
3.1. Reagents
3.2. Instrumentation and Columns
3.3. Column Conditioning and Regeneration
4. Results and Discussion
4.1. Retention Behaviour with HILIC and RPLC Columns
4.2. Fitting Performance of the Retention Models
Equations | Models | Parameters |
---|---|---|
Equation (16) b | ln ko, S | |
Equation (17) c | ln ko, c, b | |
Equation (18) d | ln ko, c, d | |
Equation (19) e | ln ko, m | |
Equation (20) f | ao, b, m | |
Equation (21) g | ln ko, b, m | |
Equation (22) h | ln ko, m, c, d |
4.3. Correlation between the Parameters in the LSS Model
4.4. Changes in the Elution Strength with the Modifier Concentration
4.5. Global Retention Model Describing Elution Strength Changes with the Modifier Concentration
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- García-Alvarez-Coque, M.C.; Baeza-Baeza, J.J.; Ramis-Ramos, G. Reversed phase liquid chromatography. In Analytical Separation Science Series; Anderson, J.L., Stalcup, A., Berthod, A., Pino, V., Eds.; Wiley-VCH: New York, NY, USA, 2015; Volume 1, pp. 159–197. [Google Scholar]
- Poole, C.F.; Lenca, N. Reversed phase liquid chromatography. In Liquid Chromatography: Fundamentals and Instrumentation, 2nd ed.; Fanali, S., Haddad, P., Poole, C.F., Riekkola, M.L., Eds.; Elsevier: Amsterdam, The Netherlands, 2017; pp. 91–123. [Google Scholar]
- Hemström, P.; Irgum, K. Hydrophilic interaction chromatography. J. Sep. Sci. 2006, 29, 1784–1821. [Google Scholar] [CrossRef]
- Guo, Y.; Gaiki, S. Retention and selectivity of stationary phases for hydrophilic interaction chromatography. J. Chromatogr. A 2011, 1218, 5920–5938. [Google Scholar] [CrossRef] [PubMed]
- Buszewski, B.; Noga, S. Hydrophilic liquid chromatography (HILIC): A powerful separation technique. Anal. Bioanal. Chem. 2012, 402, 231–247. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jandera, P.; Janás, P. Recent advances in stationary phases and understanding of retention in hydrophilic interaction chromatography. J. Chromatogr. A 2017, 967, 12–32. [Google Scholar] [CrossRef] [PubMed]
- Cavazzini, A.; Catani, M.; Felinger, A. Hydrophilic interaction liquid chromatography. In Liquid Chromatography: Fundamentals and Instrumentation; Fanali, S., Haddad, P., Poole, C.F., Riekkola, M.L., Eds.; Elsevier: Amsterdam, The Netherlands, 2017; pp. 147–169. [Google Scholar]
- McCalley, D.V. Understanding and manipulating the separation in hydrophilic interaction liquid chromatography. J. Chromatogr. A 2018, 1523, 49–71. [Google Scholar] [CrossRef]
- Jin, G.; Guo, Z.; Zhang, F.; Xue, X.; Jin, Y.; Liang, X. Study on the retention equation in hydrophilic interaction liquid chromatography. Talanta 2008, 76, 522–527. [Google Scholar] [CrossRef]
- McCalley, D.V. Study of the selectivity, retention mechanisms and performance of alternative silica-based stationary phases for separation of ionised solutes in hydrophilic interaction chromatography. J. Chromatogr. A 2010, 1217, 3408–3417. [Google Scholar] [CrossRef]
- Karatapanis, A.E.; Fiamegos, Y.C.; Stalikas, C.D. A revisit to the retention mechanism of hydrophilic interaction liquid chromatography using model organic compounds. J. Chromatogr. A 2011, 1218, 2871–2879. [Google Scholar] [CrossRef]
- Tyteca, E.; Périat, A.; Rudaz, S.; Desmet, G.; Guillarme, D. Retention modeling and method development in hydrophilic interaction chromatography. J. Chromatogr. A 2014, 1337, 116–127. [Google Scholar] [CrossRef]
- Euerby, M.R.; Hulse, J.; Petersson, P.; Vazhentsev, A.; Kassam, K. Retention modelling in hydrophilic interaction chromatography. Anal. Bioanal. Chem. 2015, 407, 9135–9152. [Google Scholar] [CrossRef]
- Guo, Y. Recent progress in the fundamental understanding of hydrophilic interaction chromatography (HILIC). Analyst 2015, 140, 6452–6466. [Google Scholar] [CrossRef]
- Česla, P.; Vaňková, N.; Křenkováb, J.; Fischer, J. Comparison of isocratic retention models for hydrophilic interaction liquid chromatographic separation of native and fluorescently labeled oligosaccharides. J. Chromatogr. A 2016, 1438, 179–188. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jandera, P.; Hájek, T.; Sromová, Z. Mobile phase effects in reversed-phase and hydrophilic interaction liquid chromatography revisited. J. Chromatogr. A 2018, 1543, 48–57. [Google Scholar] [CrossRef] [PubMed]
- Peris-García, E.; Burgos-Gil, R.; Ruiz-Angel, M.J.; Baeza-Baeza, J.J.; García-Alvarez-Coque, M.C. Protocol to compare column performance applied to hydrophilic interaction liquid chromatography. Microchem. J. 2019, 149, 103973. [Google Scholar]
- Mateos-Vivas, M.; Rodríguez-Gonzalo, E.; Domínguez-Alvarez, J.; García-Gómez, D.; Carabias-Martínez, R. Determination of nucleosides and nucleotides in baby foods by hydrophilic interaction chromatography coupled to tandem mass spectrometry in the presence of hydrophilic ion-pairing reagents. Food Chem. 2016, 211, 827–835. [Google Scholar] [CrossRef] [PubMed]
- Baeza-Baeza, J.J.; García-Alvarez-Coque, M.C. Extension of the linear solvent strength retention model including a parameter that describes the elution strength changes in liquid chromatography. J. Chromatogr. A 2020, 1615, 460757. [Google Scholar] [CrossRef] [PubMed]
- Schoenmakers, P.J.; Billiet, H.A.H.; de Galan, L. Description of solute retention over the full range of mobile phase compositions in reversed-phase liquid chromatography. J. Chromatogr. A 1983, 282, 107–121. [Google Scholar] [CrossRef]
- Valkó, K.; Snyder, L.R.; Glajch, J.L. Retention in reversed-phase liquid chromatography as a function of mobile-phase composition. J. Chromatogr. A 1993, 656, 501–520. [Google Scholar] [CrossRef]
- Jandera, P.; Kucerová, M.; Holíková, J. Description and prediction of retention in normal-phase high performance liquid chromatography with binary and ternary mobile phases. J. Chromatogr. A 1997, 762, 15–26. [Google Scholar] [CrossRef]
- García-Alvarez-Coque, M.C.; Torres-Lapasió, J.R.; Baeza-Baeza, J.J. Modelling of retention behaviour of solutes in micellar liquid chromatography. J. Chromatogr. A 1997, 780, 129–148. [Google Scholar] [CrossRef]
- Neue, U.D.; Phoebe, C.H.; Tran, K.; Cheng, Y.; Lu, Z. Dependence of reversed-phase retention of ionizable analytes on pH, concentration of organic solvent and silanol activity. J. Chromatogr. A 2001, 925, 49–67. [Google Scholar] [CrossRef]
- Gagliardi, L.G.; Castells, C.B.; Ràfols, C.; Rosés, M.; Bosch, E. Modeling retention and selectivity as a function of pH and column temperature in liquid chromatography. Anal. Chem. 2006, 78, 5858–5867. [Google Scholar] [CrossRef] [Green Version]
- García-Alvarez-Coque, M.C.; Torres-Lapasió, J.R.; Baeza-Baeza, J.J. Models and objective functions for the optimisation of selectivity in reversed-phase liquid chromatography. Anal. Chim. Acta 2006, 579, 125–145. [Google Scholar] [CrossRef] [PubMed]
- Nikitas, P.; Pappa-Louisi, A. Retention models for isocratic and gradient in reversed phase liquid chromatography. J. Chromatogr. A 2009, 1216, 1737–1755. [Google Scholar] [CrossRef] [PubMed]
- Rosés, M.; Subirats, X.; Bosch, E. Retention models for ionizable compounds in reversed-phase liquid chromatography: Effect of variation of mobile phase composition and temperature. J. Chromatogr. A 2009, 1216, 1756–1775. [Google Scholar] [CrossRef]
- Snyder, L.R.; Kirkland, J.J.; Dolan, J.W. Introduction to Modern Liquid Chromatography, 2nd ed.; John Wiley & Sons: New York, NY, USA, 2011. [Google Scholar]
- García-Alvarez-Coque, M.C.; Ramis-Ramos, G.; Torres-Lapasió, J.R.; Ortiz-Bolsico, C. Modeling of retention in reversed phase liquid chromatography. In Analytical Separation Science Series; Anderson, J.L., Stalcup, A., Berthod, A., Pino, V., Eds.; Wiley-VCH: New York, NY, USA, 2015; Volume 1, pp. 199–226. [Google Scholar]
- Jandera, P.; Hájek, T.; Růžičková, M. Retention models on core-shell columns. J. AOAC Int. 2017, 100, 1636–1646. [Google Scholar] [CrossRef]
- Navarro-Huerta, J.A.; Carrasco-Correa, E.J.; Torres-Lapasió, J.R.; Herrero-Martínez, J.M.; García-Alvarez-Coque, M.C. Modelling retention and peak shape of small polar solutes analysed by nano-HPLC using methacrylate-based monolithic columns. Anal. Chim. Acta 2019, 1086, 142–155. [Google Scholar] [CrossRef]
- Den Uijl, M.J.; Schoenmakers, P.J.; Pirok, B.W.J.; van Bommel, M.R. Recent applications of retention modelling in liquid chromatography. J. Sep. Sci. 2021, 44, 88–114. [Google Scholar] [CrossRef]
- Torres-Lapasió, J.R.; Baeza-Baeza, J.J.; García-Alvarez-Coque, M.C. On the measurement of dead time in micellar liquid chromatography. J. Liq. Chromatogr. Rel. Technol. 1996, 19, 1205–1228. [Google Scholar] [CrossRef]
- McCalley, D.V. A study of column equilibration time in hydrophilic interaction chromatography. J. Chromatogr. A 2018, 1554, 61–70. [Google Scholar] [CrossRef]
- Kensert, A.; Collaerts, G.; Efthymiadis, K.; Desmet, G.; Cabooter, D. Deep Q-learning for the selection of optimal isocratic scouting runs in liquid chromatography. J. Chromatogr. A 2021, 1638, 461900. [Google Scholar] [CrossRef] [PubMed]
- Navarro-Huerta, J.A.; Gisbert-Alonso, A.; Torres-Lapasió, J.R.; García-Alvarez-Coque, M.C. Testing experimental designs in liquid chromatography (I): Development and validation of a method for the comprehensive inspection of experimental designs. J. Chromatogr. A 2020, 1624, 461180. [Google Scholar] [CrossRef] [PubMed]
- Xiao, H.B.; Liang, X.M.; Lu, R.C. Classification of structurally related compounds from Astragalus extract by correlation of the log kw and S. Chromatographia 2000, 51, 212–220. [Google Scholar] [CrossRef]
- Poole, C.F. The Essence of Chromatography; Elsevier: Amsterdam, The Netherlands, 2003; pp. 303–304. [Google Scholar]
- Baeza-Baeza, J.J.; Dávila, Y.; Fernández-Navarro, J.J.; García-Alvarez-Coque, M.C. Measurement of the elution strength and peak shape enhancement at increasing modifier concentration and temperature in RPLC. Anal. Bioanal. Chem. 2012, 404, 2973–2984. [Google Scholar] [CrossRef] [PubMed]
- Poole, C.F. Influence of solvent effects on retention of small molecules in reversed-phase liquid chromatography. Chromatographia 2019, 82, 49–64. [Google Scholar] [CrossRef]
Columns | Equation (16) | Equation (17) | Equation (18) | Equation (19) | Equation (20) | Equation (21) | Equation (22) |
---|---|---|---|---|---|---|---|
Silica | 1.68 | 0.44 | 0.28 | 0.96 | 0.23 | 0.19 | 0.16 |
Diol | 1.54 | 0.38 | 0.30 | 1.62 | 0.29 | 0.33 | 0.29 |
Amino | 3.23 | 1.93 | 1.18 | 2.65 | 1.17 | 1.79 | 1.54 |
Zwitterionic | 5.97 | 1.22 | 0.34 | 1.32 | 0.63 | 0.52 | 0.28 |
HILIC-A | 1.39 | 0.60 | 0.54 | 0.65 | 0.48 | 0.47 | 0.30 |
HILIC-B | 4.90 | 1.35 | 0.59 | 0.91 | 0.46 | 0.56 | 0.49 |
HILIC-N | 2.21 | 1.07 | 1.22 | 3.56 | 1.21 | 1.49 | 1.09 |
Mean error HILIC a | 3.0 ±1.8 | 1.0 ± 0.6 | 0.7 ± 0.5 | 1.7 ± 1.1 | 0.6 ± 0.4 | 0.8 ± 0.6 | 0.6 ± 0.5 |
Chromolith | 8.09 | 1.43 | 0.70 | 1.30 | 1.12 | 1.08 | 0.38 |
Zorbax | 4.62 | 0.47 | 0.10 | 0.83 | 0.22 | 0.24 | 0.20 |
Mean error RPLC a | 6.4 | 1.0 | 0.4 | 1.1 | 0.7 | 0.7 | 0.3 |
Column | Silica | Diol | Amino | Zwitterionic | ||||
---|---|---|---|---|---|---|---|---|
Compound | kl | S(φ) | kl | S(φ) | kl | S(φ) | kl | S(φ) |
Cytidine | 1.94 | 6.05 | 2.34 | 4.94 | 2.09 | 8.09 | 7.34 | 9.68 |
Guanosine | 1.30 | 6.33 | 2.22 | 5.67 | 4.39 | 6.12 | 6.76 | 12.69 |
Adenosine | 1.41 | 5.39 | 2.00 | 4.48 | 1.28 | 2.94 | 1.90 | 5.54 |
Xanthosine | 0.85 | 4.69 | 1.51 | 4.15 | 3.05 | 4.36 | 4.25 | 11.21 |
Uridine | 0.62 | 3.16 | 1.13 | 2.87 | 2.41 | 5.36 | 2.234 | 7.58 |
Thymidine | 0.57 | 3.16 | 0.99 | 2.90 | 1.38 | 4.43 | 0.85 | 4.31 |
Uracil | 0.50 | 2.29 | 0.90 | 2.08 | 1.14 | 2.37 | 0.94 | 3.01 |
HILIC-A | HILIC-B | HILIC-N | ||||||
Compound | ki | S(φ) | kl | S(φ) | kl | S(φ) | ||
Cytidine | 1.24 | 5.01 | 2.37 | 11.57 | 2.73 | 7.12 | ||
Guanosine | 0.94 | 4.94 | 6.45 | 10.75 | 4.80 | 8.09 | ||
Adenosine | 1.03 | 4.26 | 1.43 | 6.20 | 2.10 | 5.51 | ||
Xanthosine | 0.66 | 3.29 | 4.39 | 9.01 | 3.08 | 6.52 | ||
Uridine | 0.54 | 2.31 | 2.21 | 5.94 | 1.80 | 4.31 | ||
Thymidine | 0.52 | 2.08 | 1.01 | 3.51 | 1.10 | 3.67 | ||
Uracil | 0.49 | 1.44 | 0.98 | 3.03 | 1.02 | 2.65 |
Column | Chromolith (10–20%) b | Chromolith (20–30%) b | ||
---|---|---|---|---|
Compound | kl | S(φ) | kl | S(φ) |
Sulphamerazine | 2.08 | 9.43 | 0.808 | 4.81 |
Sulphachloropyridazine | 6.40 | 12.78 | 1.78 | 7.44 |
Sulphisoxazole | 12.43 | 15.02 | 2.77 | 9.26 |
Sulphaquinoxaline | 35.16 | 19.68 | 4.91 | 11.94 |
Zorbax (34–46%) b | Zorbax (46–58%) b | |||
Compound | kl | S(φ) | kl | S(φ) |
Trichloromethiazide | 0.751 | 3.96 | 0.467 | 3.35 |
Althiazide | 4.66 | 9.29 | 1.53 | 6.36 |
Furosemide | 5.48 | 9.03 | 1.85 | 6.74 |
Xipamide | 14.78 | 10.76 | 4.07 | 7.66 |
Ethacrynic acid | 20.94 | 11.72 | 5.13 | 7.87 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peris-García, E.; Ruiz-Angel, M.J.; Baeza-Baeza, J.J.; García-Alvarez-Coque, M.C. Comparison of the Fitting Performance of Retention Models and Elution Strength Behaviour in Hydrophilic-Interaction and Reversed-Phase Liquid Chromatography. Separations 2021, 8, 54. https://doi.org/10.3390/separations8040054
Peris-García E, Ruiz-Angel MJ, Baeza-Baeza JJ, García-Alvarez-Coque MC. Comparison of the Fitting Performance of Retention Models and Elution Strength Behaviour in Hydrophilic-Interaction and Reversed-Phase Liquid Chromatography. Separations. 2021; 8(4):54. https://doi.org/10.3390/separations8040054
Chicago/Turabian StylePeris-García, Ester, María José Ruiz-Angel, Juan José Baeza-Baeza, and María Celia García-Alvarez-Coque. 2021. "Comparison of the Fitting Performance of Retention Models and Elution Strength Behaviour in Hydrophilic-Interaction and Reversed-Phase Liquid Chromatography" Separations 8, no. 4: 54. https://doi.org/10.3390/separations8040054
APA StylePeris-García, E., Ruiz-Angel, M. J., Baeza-Baeza, J. J., & García-Alvarez-Coque, M. C. (2021). Comparison of the Fitting Performance of Retention Models and Elution Strength Behaviour in Hydrophilic-Interaction and Reversed-Phase Liquid Chromatography. Separations, 8(4), 54. https://doi.org/10.3390/separations8040054