Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (28)

Search Parameters:
Keywords = dilute nitrides

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 2579 KiB  
Article
Photo-Scanning Capacitance Microscopy and Spectroscopy Study of Epitaxial GaAsN Layers and GaAsN P-I-N Solar Cell Structures
by Adam Szyszka, Wojciech Dawidowski, Damian Radziewicz and Beata Ściana
Nanomaterials 2025, 15(14), 1066; https://doi.org/10.3390/nano15141066 - 9 Jul 2025
Viewed by 366
Abstract
This work presents a novel approach to investigating epitaxial GaAsN layers and GaAsN-based p-i-n solar cell structures using light-assisted scanning capacitance microscopy (SCM) and spectroscopy. Due to the technological challenges in growing high-quality GaAsN with controlled nitrogen incorporation, the epitaxial layers often exhibit [...] Read more.
This work presents a novel approach to investigating epitaxial GaAsN layers and GaAsN-based p-i-n solar cell structures using light-assisted scanning capacitance microscopy (SCM) and spectroscopy. Due to the technological challenges in growing high-quality GaAsN with controlled nitrogen incorporation, the epitaxial layers often exhibit inhomogeneity in their opto-electrical properties. By combining localized cross-section SCM measurements with wavelength-tunable optical excitation (800–1600 nm), we resolved carrier concentration profiles, internal electric fields, and deep-level transitions across the device structure at a nanoscale resolution. A comparative analysis between electrochemical capacitance–voltage (EC-V) profiling and photoluminescence spectroscopy confirmed multiple localized transitions, attributed to compositional fluctuations and nitrogen-induced defects within GaAsN. The SCM method revealed spatial variations in energy states, including discrete nitrogen-rich regions and gradual variations in the nitrogen content throughout the layer depth, which are not recognizable using standard characterization methods. Our results demonstrate the unique capability of the photo-scanning capacitance microscopy and spectroscopy technique to provide spatially resolved insights into complex dilute nitride structures, offering a universal and accessible tool for semiconductor structures and optoelectronic devices evaluation. Full article
(This article belongs to the Special Issue Spectroscopy and Microscopy Study of Nanomaterials)
Show Figures

Graphical abstract

27 pages, 8492 KiB  
Article
Control of the Nitriding Process of AISI 52100 Steel in the NH3/N2 Atmosphere
by Jerzy Michalski, Tadeusz Frączek, Rafał Prusak, Agata Dudek, Magdalena Kowalewska-Groszkowska and Maciej Major
Materials 2025, 18(13), 3041; https://doi.org/10.3390/ma18133041 - 26 Jun 2025
Viewed by 392
Abstract
This paper proposes a mathematical description of nitriding atmospheres obtained from a one-component ammonia ingoing atmosphere and a two-component ammonia inlet nitrogen-diluted atmosphere. The Fe-N phase equilibrium diagrams of the nitriding atmosphere in the hydrogen content-temperature (Q-T) system for selected NH3/N [...] Read more.
This paper proposes a mathematical description of nitriding atmospheres obtained from a one-component ammonia ingoing atmosphere and a two-component ammonia inlet nitrogen-diluted atmosphere. The Fe-N phase equilibrium diagrams of the nitriding atmosphere in the hydrogen content-temperature (Q-T) system for selected NH3/N2 atmosphere compositions are presented. The nitriding atmosphere obtained with different degrees of nitrogen dilution of the ingoing atmosphere was characterized. It has been shown that in processes carried out in nitriding atmospheres obtained from a two-component atmosphere with nitrogen, there is no direct relationship between the value of the nitrogen potential and the degree of dilution of the ingoing atmosphere with nitrogen. It has been shown analytically and confirmed experimentally that with changes in the degree of dilution of ammonia with nitrogen, the hydrogen content of the nitriding atmosphere and, consequently, the nitrogen availability of the nitriding atmosphere change. Using the example of nitriding AISI 52100 steel, it has been experimentally demonstrated that the change in nitrogen availability, caused by a change in the degree of dilution of the ingoing atmosphere with nitrogen, is not accompanied by a change in the value of the nitrogen potential. It has also been shown that the change in the nitrogen availability of the nitriding atmosphere, induced by the change in the composition of the aNH3/bN2 ingoing atmosphere, affects the kinetics of nitrogen mass gain in the nitrided layer and the distribution of nitrogen mass between the iron nitride layer and the solution zone. It has also been shown that with the change in nitrogen availability, what changes in addition to the thickness of the iron nitride layer is also the phase composition of the layer. Using gravimetric tests, the mass of nitrogen in the iron nitride layer and the solution zone has been determined. To describe the equilibrium between the NH3/H2 atmosphere and nitrogen in the different iron phases, a modified Lehrer diagram in the coordinate system of temperature and hydrogen content in the nitriding atmospheres (T-Q) has been proposed. Full article
(This article belongs to the Section Metals and Alloys)
Show Figures

Figure 1

14 pages, 4613 KiB  
Article
Kinetics of Iron Nitride Layer Growth during the Nitriding of AISI 1085 Non-Alloy Steel and AISI 52100 Alloy Steel
by Tadeusz Frączek, Rafał Prusak, Jerzy Michalski and Magdalena Kowalewska-Groszkowska
Materials 2024, 17(18), 4623; https://doi.org/10.3390/ma17184623 - 20 Sep 2024
Cited by 2 | Viewed by 923
Abstract
This paper presents a comparison of two-component ammonia-based inlet atmospheres diluted with either hydrogen (NH3/H2) or nitrogen (NH3/N2). Taking advantage of the features of inlet atmospheres diluted with nitrogen and hydrogen, four two-stage processes were [...] Read more.
This paper presents a comparison of two-component ammonia-based inlet atmospheres diluted with either hydrogen (NH3/H2) or nitrogen (NH3/N2). Taking advantage of the features of inlet atmospheres diluted with nitrogen and hydrogen, four two-stage processes were designed and carried out, which were juxtaposed with two single-stage processes carried out only in an NH3 atmosphere. A common parameter of the processes carried out was the same value of nitrogen availability in each process stage. The gas nitriding process was carried out on ASIS 1085 non-alloy steel and ASIS 52100 alloy steel. It was found that the chemical composition of the steels studied, for the adopted nitriding process parameters, did not affect the kinetics of the growth in the mass of nitrided samples as a function of the nitriding time. However, the additions of alloying elements present in the steels studied significantly affected the nitrogen distribution between the resulting iron nitride layer and the diffusion zone in the nitrided substrate. Because of the presence of chromium in AISI 52100 steel, a larger mass of nitrogen accumulated in the nitriding zone in the solution compared with unalloyed AISI 1085 steel. As a result, with the same increase in the mass of nitrided steel, a thicker layer of iron nitrides formed on AISI 1085 steel than on AISI 52100 steel. Full article
(This article belongs to the Section Metals and Alloys)
Show Figures

Figure 1

16 pages, 3817 KiB  
Article
Preparation and Properties of Expansive Backfill Material Based on Municipal Solid Waste Incineration Fly Ash and Coal Gangue
by Zhen Wang, Honglin Liu, Yuanxin Zhang, Zhiwen Chen, Rumeng Zhao, Yongyong Jia, Mingchao Yong and Guodong Li
Minerals 2024, 14(5), 513; https://doi.org/10.3390/min14050513 - 14 May 2024
Cited by 2 | Viewed by 1520
Abstract
To realize the large-scale utilization of municipal solid waste incineration (MSWI) fly ash in the field of building materials and to reduce the cost of coal mine backfill mining, the effects of the mixing ratio of cementitious materials, the particle size distribution of [...] Read more.
To realize the large-scale utilization of municipal solid waste incineration (MSWI) fly ash in the field of building materials and to reduce the cost of coal mine backfill mining, the effects of the mixing ratio of cementitious materials, the particle size distribution of aggregates, and the amount and mass concentration of cementitious materials on the properties of backfill materials were experimentally investigated, and the microstructure of the hydration products was analyzed. The results showed that as the mass ratio of MSWI fly ash to bottom ash increased, the rate of expansion of the cementitious system continued to increase, and the compressive strength of the cementitious system continued to decrease. The Al (aluminum) and AlN (aluminum nitride) in the fly ash reacted with water to generate gas, causing the expansion of the cementitious materials; NaOH increased the alkalinity of the solution, which promoted the formation of more bubbles, thereby improving the expansion performance of the cementitious material. When the content of NaOH was 0.9%, the sample rate of expansion could reach 15.9%. The addition of CaCl2 promoted the early hydration reaction of the cementitious material, forming a dense microstructure, thus improving the early strength and rate of expansion of the cementitious material. The compressive strength of the backfill body increased as the fractal dimension of the aggregate particles increased, and the particle grading scheme of group S1 was optimal. The 1-day, 3-day, and 28-day strengths of the backfill body of group S1 reached 0.72 MPa, 1.43 MPa, and 3.26 MPa, respectively. It is recommended to choose a backfill paste concentration ranging between 78.5% and 80% and a reasonable amount of cementitious material between 20% and 25%. After the MSWI fly ash was prepared as a backfill material, the leaching of potentially harmful elements in the fly ash was greatly reduced, and the concentration of dioxin was reduced to 13 ng TEQ/kg. This was attributed to the dilution of the cement, the physical encapsulation of gel products, and the isomorphous replacement of Ca2+ in calcium aluminate chloride hydrate. Full article
(This article belongs to the Section Mineral Processing and Extractive Metallurgy)
Show Figures

Figure 1

13 pages, 4163 KiB  
Article
Electronic and Molecular Adsorption Properties of Pt-Doped BC6N: An Ab-Initio Investigation
by Nada M. Alghamdi, Mohamed M. Fadlallah, Hind M. Al-qahtani and Ahmed A. Maarouf
Nanomaterials 2024, 14(9), 762; https://doi.org/10.3390/nano14090762 - 26 Apr 2024
Cited by 1 | Viewed by 1794
Abstract
In the last two decades, significant efforts have been particularly invested in two-dimensional (2D) hexagonal boron carbon nitride h-BxCyNz because of its unique physical and chemical characteristics. The presence of the carbon atoms lowers the large gap [...] Read more.
In the last two decades, significant efforts have been particularly invested in two-dimensional (2D) hexagonal boron carbon nitride h-BxCyNz because of its unique physical and chemical characteristics. The presence of the carbon atoms lowers the large gap of its cousin structure, boron nitride (BN), making it more suitable for various applications. Here, we use density functional theory to study the structural, electronic, and magnetic properties of Pt-doped BC6N (Pt-BC6N, as well as its adsorption potential of small molecular gases (NO, NO2, CO2, NH3). We consider all distinct locations of the Pt atom in the supercell (B, N, and two C sites). Different adsorption locations are also considered for the pristine and Pt-doped systems. The formation energies of all Pt-doped structures are close to those of the pristine system, reflecting their stability. The pristine BC6N is semiconducting, so doping with Pt at the B and N sites gives a diluted magnetic semiconductor while doping at the C1 and C2 sites results in a smaller gap semiconductor. We find that all doped structures exhibit direct band gaps. The studied molecules are very weakly physisorbed on the pristine structure. Pt doping leads to much stronger interactions, where NO, NO2, and NH3 chemisorb on the doped systems, and CO2 physiorb, illustrating the doped systems’ potential for gas purification applications. We also find that the adsorption changes the electronic and magnetic properties of the doped systems, inviting their consideration for spintronics and gas sensing. Full article
(This article belongs to the Section 2D and Carbon Nanomaterials)
Show Figures

Figure 1

12 pages, 6516 KiB  
Article
Surface Photovoltage Method for Photovoltaic Quality Control of GaAs-Based Solar Cells
by Vesselin Donchev and Malina Milanova
Coatings 2023, 13(12), 2052; https://doi.org/10.3390/coatings13122052 - 7 Dec 2023
Cited by 1 | Viewed by 2048
Abstract
In this paper, we demonstrate the potential of the contactless surface photovoltage (SPV) method for fast and reliable control of GaAs-based solar cells directly on epitaxial heterostructures before metallization and photolithography processes. The magnitude of the SPV corresponds to the generated photovoltage in [...] Read more.
In this paper, we demonstrate the potential of the contactless surface photovoltage (SPV) method for fast and reliable control of GaAs-based solar cells directly on epitaxial heterostructures before metallization and photolithography processes. The magnitude of the SPV corresponds to the generated photovoltage in the photoactive region, which is related to the open circuit voltage of the cell. The focus of this investigation is the potential of dilute nitride compounds grown by low-temperature liquid-phase epitaxy (LPE) for application as intermediate cells in multijunction solar cells. First, SPV spectroscopy is used to determine the photosensitivity spectral range and bandgap of the grown dilute nitride compound layers. Further, the photovoltaic quality of the grown solar cell heterostructures is evaluated by comparing the magnitude of their SPV signals with that of a reference GaAs solar cell. A drastic reduction in the measured SPV is observed for nitrogen-containing solar cell structures, which correlates with the lowering of solar cell open-circuit voltage values measured under standard test conditions. Finally, solar cell structures based on nitrogen-free GaAsSb compounds with the same long-wavelength photosensitivity limit as GaAsSbN are grown by LPE. They show one order of magnitude higher SPV signal and, therefore, have a great potential for solar cell application. Full article
(This article belongs to the Special Issue Thin Films and Heterostructures for Optoelectronics)
Show Figures

Figure 1

14 pages, 4647 KiB  
Article
Low Noise Opto-Electro-Mechanical Modulator for RF-to-Optical Transduction in Quantum Communications
by Michele Bonaldi, Antonio Borrielli, Giovanni Di Giuseppe, Nicola Malossi, Bruno Morana, Riccardo Natali, Paolo Piergentili, Pasqualina Maria Sarro, Enrico Serra and David Vitali
Entropy 2023, 25(7), 1087; https://doi.org/10.3390/e25071087 - 19 Jul 2023
Cited by 5 | Viewed by 2231
Abstract
In this work, we present an Opto-Electro-Mechanical Modulator (OEMM) for RF-to-optical transduction realized via an ultra-coherent nanomembrane resonator capacitively coupled to an rf injection circuit made of a microfabricated read-out able to improve the electro-optomechanical interaction. This device configuration can be embedded in [...] Read more.
In this work, we present an Opto-Electro-Mechanical Modulator (OEMM) for RF-to-optical transduction realized via an ultra-coherent nanomembrane resonator capacitively coupled to an rf injection circuit made of a microfabricated read-out able to improve the electro-optomechanical interaction. This device configuration can be embedded in a Fabry–Perot cavity for electromagnetic cooling of the LC circuit in a dilution refrigerator exploiting the opto-electro-mechanical interaction. To this aim, an optically measured steady-state frequency shift of 380 Hz was seen with a polarization voltage of 30 V and a Q-factor of the assembled device above 106 at room temperature. The rf-sputtered titanium nitride layer can be made superconductive to develop efficient quantum transducers. Full article
Show Figures

Figure 1

19 pages, 5864 KiB  
Article
Modeling Lattice Matched Dilute Nitride Triple and Quadruple Junction Solar Cells on Virtual SiGe Substrate
by Tugba S. Navruz
Photonics 2023, 10(6), 630; https://doi.org/10.3390/photonics10060630 - 30 May 2023
Viewed by 1457
Abstract
A lattice matched triple junction solar cell (TJSC) structure with a GaAs0.58 P0.42 top cell and bandgap tunable GaNxAs1-x-zPz middle and bottom cells on virtual SiGe substrate is proposed in this study. SiGe/Si substrate is preferred [...] Read more.
A lattice matched triple junction solar cell (TJSC) structure with a GaAs0.58 P0.42 top cell and bandgap tunable GaNxAs1-x-zPz middle and bottom cells on virtual SiGe substrate is proposed in this study. SiGe/Si substrate is preferred as it is a low-cost substrate and because it provides a lattice constant at which bandgap tunable dilute nitride materials that are appropriate for highly efficient multijunction solar cells can be obtained. By changing the nitrogen content in GaNxAs1-x-zPz, the bandgap of the middle and bottom subcells is adjusted to the optimum values. The bandgap of the top cell is constant at 1.95 eV. Three models with different values of surface recombination velocities and Shockley–Read–Hall recombination lifetimes are applied to the presented TJSC structure. Peak efficiencies of 48.9%, 40.6% and 33.7% are achieved at EG2 = 1.45 eV and EG3 = 1.04 eV for Model 1, EG2 = 1.45 eV and EG3 = 1.15 eV for Model 2, and EG2 = 1.5 eV and EG3 = 1.17 eV for Model 3, respectively. A fourth bandgap adjustable GaNxAs1-x-zPz junction is inserted into the system and a significant improvement is obtained under high sun concentration for Models 1 and 2. The presented original results are very promising because the variable bandgaps provide very efficient absorption of incoming spectrum. Full article
(This article belongs to the Topic Photovoltaic Materials and Devices)
Show Figures

Figure 1

14 pages, 1803 KiB  
Article
Dynamics of Pressure Variation in Closed Vessel Explosions of Diluted Fuel/Oxidant Mixtures
by Venera Giurcan, Domnina Razus, Maria Mitu and Codina Movileanu
Processes 2022, 10(12), 2726; https://doi.org/10.3390/pr10122726 - 16 Dec 2022
Viewed by 2612
Abstract
Nitrous oxide is widely used as oxidizer or nitriding agent in numerous industrial activities such as production of adipic acid and caprolactam and even for production of some semiconductors. Further, it is used as an additive in order to increase the power output [...] Read more.
Nitrous oxide is widely used as oxidizer or nitriding agent in numerous industrial activities such as production of adipic acid and caprolactam and even for production of some semiconductors. Further, it is used as an additive in order to increase the power output of engines, and as an oxidizer in propulsion systems of rockets, because it has a large heat of formation (+81.6 kJ mol−1). N2O is highly exothermic, and during its decomposition a supplementary heat amount is released, so it needs special handling conditions. The combustion of fuels in nitrous oxide atmosphere can lead to high unstable and turbulent deflagrations that speedily self-accelerate and therefore a deflagration can change to a detonation. The peak explosion pressure and the maximum rate of pressure rise of explosions in confined spaces are key safety parameters to evaluate the hazard of processes running in closed vessels and for design of enclosures able to withstand explosions or of their vents used as relief devices. The present study reports some major explosion parameters such as the maximum (peak) explosion pressures pmax, explosion times θmax, maximum rates of pressure rise (dp/dt)max and severity factors KG for ethylene-nitrous oxide mixtures (lean and stoichiometric) diluted with various amounts of N2, at various initial pressures (p0 = 0.50–1.50 bar), in experiments performed in a spherical vessel centrally ignited by inductive-capacitive electric sparks. The influence of the initial pressure and composition on pmax, θmax and (dp/dt)max is discussed. The data are compared with similar values referring to ethylene-air mixtures measured in the same initial conditions. It was found that at identical C/O ratios with ethylene-air, ethylene-N2O-N2 mixtures develop higher explosion pressures and higher rates of pressure rise, due to the exothermic dissociation of N2O under flame conditions. Full article
Show Figures

Figure 1

14 pages, 8031 KiB  
Article
The Comparison of the Effects of Nodular Cast Iron Laser Alloying with Selected Substances
by Marta Paczkowska
Materials 2022, 15(21), 7561; https://doi.org/10.3390/ma15217561 - 28 Oct 2022
Cited by 4 | Viewed by 1974
Abstract
The aim of this research was to compare the effects of laser treatment, with the same heating conditions, using four selected alloying substances (silicon, cobalt, silicon nitride and titanium), in the surface layer of nodular cast iron. The treatment was performed with a [...] Read more.
The aim of this research was to compare the effects of laser treatment, with the same heating conditions, using four selected alloying substances (silicon, cobalt, silicon nitride and titanium), in the surface layer of nodular cast iron. The treatment was performed with a molecular laser. As the microstructure observation revealed, the greatest amount of implemented elements was diluted during the treatment in a solid solution. In all cases (except during the alloying process with cobalt), in the alloying zone, a fine and homogeneous microstructure was found. In the alloying zone, cobalt counteracted the formation of the martensitic microstructure so effectively that austenite turned into exclusively fine perlite (or bainite at most). The size of the obtained alloyed zone was different, despite the same laser heat treatment parameters. A 30% smaller depth of zone after laser alloying with silicon nitride, as compared with alloying with cobalt or silicon, was observed. The highest strengthening of the alloyed zone could be expected when silicon (hardness was approx. 980HV0.1 and the modulus of elasticity was 208 GPa) and titanium (hardness was approx. 880HV0.1 and the modulus of elasticity was 194 GPa) were used. The lowest hardness (700HV0.1) was observed for the zone alloyed with cobalt due to pearlite (or bainite) existence. Full article
Show Figures

Figure 1

21 pages, 9986 KiB  
Review
High Entropy Alloys for Energy Conversion and Storage: A Review of Grain Boundary Wetting Phenomena
by Boris Straumal, Anna Korneva, Alexei Kuzmin, Leonid Klinger, Gabriel A. Lopez, Nikolai Vershinin, Alexander Straumal and Alena Gornakova
Energies 2022, 15(19), 7130; https://doi.org/10.3390/en15197130 - 28 Sep 2022
Cited by 7 | Viewed by 2461
Abstract
The multicomponent alloys with nearly equal concentration of components, also known as high entropy alloys (HEAs), were first proposed 22 years ago. The HEAs quickly became very important in materials science due to their unique properties. Nowadays, the HEAs are frequently used in [...] Read more.
The multicomponent alloys with nearly equal concentration of components, also known as high entropy alloys (HEAs), were first proposed 22 years ago. The HEAs quickly became very important in materials science due to their unique properties. Nowadays, the HEAs are frequently used in energy conversion and storage applications. HEAs can consist of five, six or more components. Plasma cladding permits coating of the large surfaces of cheap substrates with (often expensive) HEAs and to enlarge, in such a way, their application area. The large-area coatings deposited by plasma cladding possess multiple advantages such as low thermal distortion, very high energy density, as well as low dilution of the substrate material. Plasma cladding ensures good metallurgical bonding between coating and substrate. The costs of operation and equipment are also very attractive. During plasma cladding, the mixed powders are blown by carrier gas into a plasma torch or are positioned on a substrate. This powder mixture is then melted in or under the plasma torch. The plasma torch, in turn, sequentially scans the substrate. After finalizing the crystallization process, the solid polycrystal appears which contains few residual melts. This remaining melt can completely or incompletely wet the grain boundaries (GBs) in solid phase of the polycrystal. These completely or incompletely wetted GBs can strongly influence the microstructure of HEA coatings and their morphology. In this review we analyze the GB wetting HEAs containing one phase in HEAs with two, three and more phases, as well as in HEAs reinforced with particles of carbides, nitrides, borides, or oxides. We also analyze the microstructure of the rather thick coatings after plasma cladding after additional laser remelting and observe how GB wetting changes over their thickness. Full article
Show Figures

Figure 1

10 pages, 3231 KiB  
Article
Accelerated Photodegradation of Organic Pollutants over BiOBr/Protonated g-C3N4
by Juanjuan Liu, Heng Guo, Haoyong Yin, Qiulin Nie and Shihui Zou
Catalysts 2022, 12(10), 1109; https://doi.org/10.3390/catal12101109 - 25 Sep 2022
Cited by 10 | Viewed by 2580
Abstract
Interfacial engineering has emerged as an effective strategy to optimize the photocatalytic activity of heterojunctions. Herein, the interface between graphitic carbon nitride (g-C3N4) and BiOBr was readily regulated by a protonation treatment. The synthesized BiOBr/g-C3N4 heterojunctions [...] Read more.
Interfacial engineering has emerged as an effective strategy to optimize the photocatalytic activity of heterojunctions. Herein, the interface between graphitic carbon nitride (g-C3N4) and BiOBr was readily regulated by a protonation treatment. The synthesized BiOBr/g-C3N4 heterojunctions were characterized by X-ray diffraction, scanning electron microscopy, X-ray photoelectron spectroscopy, and UV-Vis diffuse reflectance spectroscopy. The results show that pretreating g-C3N4 in diluted HCl solution led to a partial protonation of g-C3N4, which ensured intimate contact and high dispersion of supported BiOBr without changing the surface area, bulk g-C3N4 structure, or visible light absorption. The abundant BiOBr/g-C3N4 interfaces remarkably improved the separation and transfer of photogenerated carriers, which produced more h+ and O2●− to accelerate the photocatalytic degradation of organic pollutants. The photocatalytic activities of the BiOBr/g-C3N4 heterojunctions were evaluated by the degradation of RhB under visible-light irradiation (λ ≥ 420 nm). The apparent reaction (pseudo-first-order) rate constant of BiOBr supported on partially protonated g-C3N4 (Bpg-C3N4-0.75) is ca. 3-fold higher than that of BiOBr supported on pristine g-C3N4 (Bg-C3N4), verifying interfacial engineering as an effective strategy to optimize the catalytic activity of heterojunctions. Full article
(This article belongs to the Special Issue Feature Papers in Catalysis in Organic and Polymer Chemistry)
Show Figures

Figure 1

15 pages, 9345 KiB  
Article
Structural Optimization of Graphene Triangular Lattice Phononic Crystal Based on Dissipation Dilution Theory
by Xiande Zheng, Ying Liu, Jing Qiu and Guanjun Liu
Nanomaterials 2022, 12(16), 2807; https://doi.org/10.3390/nano12162807 - 16 Aug 2022
Cited by 1 | Viewed by 1799
Abstract
Nanomechanical resonators offer brilliant mass and force sensitivity applied in many fields, owing to a low mass m and high-quality factor Q. However, in vibrating process, resonant energy is inevitably dissipated. Typically, quality factor does not surpass the inverse of the material loss [...] Read more.
Nanomechanical resonators offer brilliant mass and force sensitivity applied in many fields, owing to a low mass m and high-quality factor Q. However, in vibrating process, resonant energy is inevitably dissipated. Typically, quality factor does not surpass the inverse of the material loss angle φ. Recently, some exceptions emerged in the use of highly stressed silicon nitride material. As yet, it is interpreted that the pre-stress seems to “dilute” the intrinsic energy dissipation according to the Zener model. Is there any other material that could further break the 1/φ limit and achieve higher quality factors? In our previous research, through theoretical calculation and finite element simulation, we have proved that graphene’s quality factor is two orders of magnitude larger than silicon nitride, on account of the extremely thin thickness of graphene. Based on this, we further optimize the structure of phononic crystals to achieve higher quality factors, in terms of duty cycle and cell size. Through simulation analysis, the quality factor could improve with a larger duty cycle and bigger cell size of triangular lattice phononic crystal. Unexpectedly, the Q amplification coefficient of the 3 × 5-cell structure, which is the least number to compose a phononic crystal with a central defect area, is the highest. In contrast, the minimal cell-number structure in hexagonal lattice could not achieve the brilliant dissipation dilution effect as well as the triangular one. Then we consider how overall size and stress influence quality factor and, furthermore, compare theoretical calculation and finite simulation. Lastly, we start from the primitive 3 × 5 cells, constantly adding cells to the periphery. Through simulation, to our surprise, the largest Q amplification coefficient does not belong to the largest structure, instead originating from the moderate one consisting of 7 × 13 cells. Full article
Show Figures

Figure 1

11 pages, 3578 KiB  
Article
Influence of As-N Interstitial Complexes on Strain Generated in GaAsN Epilayers Grown by AP-MOVPE
by Beata Ściana, Wojciech Dawidowski, Damian Radziewicz, Joanna Jadczak, Mari Cruz López-Escalante, Victor González de la Cruz and Mercedes Gabás
Energies 2022, 15(9), 3036; https://doi.org/10.3390/en15093036 - 21 Apr 2022
Cited by 4 | Viewed by 2276
Abstract
This work presents an investigation of the fully strained GaAsN/GaAs heterostructures obtained by atmospheric pressure metalorganic vapor phase epitaxy, focusing on the analysis of the strain generated in the GaAsN epilayers and its correlation with the formation of split interstitial complexes (N-As)As [...] Read more.
This work presents an investigation of the fully strained GaAsN/GaAs heterostructures obtained by atmospheric pressure metalorganic vapor phase epitaxy, focusing on the analysis of the strain generated in the GaAsN epilayers and its correlation with the formation of split interstitial complexes (N-As)As. We analyzed strained GaAsN epilayers with nitrogen contents and thicknesses varying from 0.93 to 1.81% and 65 to 130 nm, respectively. The composition and thickness were determined by high resolution X-ray diffraction, and the strain was determined by Raman spectroscopy, while the N-bonding configurations were determined by X-ray photoelectron spectroscopy. We found that the strain generated in the GaAsN epilayers is mainly caused by a lattice mismatch with the GaAs substrate. This macroscopic strain is independent of the amount of (N-As)As interstitial defects, while the local strain, induced by an alloying effect, tends to decrease with an increasing ratio of (N-As)As interstitial defects to substitutional nitrogen atoms incorporated into an arsenic sublattice—NAs. Here, we show experimentally, for the first time, a correlation between the strain in the GaAsN epilayers, caused by an alloying effect determined by Raman spectroscopy, and the (N-As)As/NAs ratio estimated by the XPS method. We found out that the (N-As)As interstitials compensate the local strain resulting from the presence of N in the GaAs matrix, if their amount does not exceed ~65% of the substitutional introduced nitrogen NAs. Full article
(This article belongs to the Special Issue Advances in Solar Energy and Materials)
Show Figures

Figure 1

8 pages, 4748 KiB  
Article
Wear Study of Cubic Boron Nitride (cBN) Cutting Tool for Machining of Compacted Graphite Iron (CGI) with Different Metalworking Fluids
by Long Zhu, Robert Evans, Yan Zhou and Fei Ren
Lubricants 2022, 10(4), 51; https://doi.org/10.3390/lubricants10040051 - 26 Mar 2022
Cited by 5 | Viewed by 3164
Abstract
Due to its desirable mechanical properties, compacted graphite iron (CGI) has been used to replace conventional gray cast iron (CI) in various applications, such as automotive engine blocks and cylinder heads. However, the poor machinability of CGI can lead to excessive tool wear [...] Read more.
Due to its desirable mechanical properties, compacted graphite iron (CGI) has been used to replace conventional gray cast iron (CI) in various applications, such as automotive engine blocks and cylinder heads. However, the poor machinability of CGI can lead to excessive tool wear and consequently high manufacturing costs. Various strategies have been developed to improve the machinability of CGI, including optimizing machining parameters and the development of novel metalworking fluids. In this study, machining of CGI was conducted using cubic boron nitride (cBN) tools under different cutting speeds, with both soluble and full-synthetic water-based metalworking fluids at different levels of sulfur addition and water dilution. The effects of the metalworking fluids on the tool wear behavior were examined. Results showed that at 200 m/min cutting speed, the soluble metalworking fluid at 4% dilution and 0.3% sulfur compound exhibited the best performance, with a cutting distance reaching 23.8 km. In contrast, the least effective soluble metalworking fluid at 9% dilution and 0.3% sulfur compound resulted in a 28.6% decrease in the cutting distance (17.0 km) compared to the best one. At a higher speed (300 m/min), the cutting distance for all metalworking fluids dropped to less than 6.0 km, with the full-synthetic metalworking fluid showing the shortest cutting distance of 4.8 km. Full article
(This article belongs to the Special Issue Metalworking Fluids Technology)
Show Figures

Figure 1

Back to TopTop