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Abstract: This work presents an investigation of the fully strained GaAsN/GaAs heterostructures
obtained by atmospheric pressure metalorganic vapor phase epitaxy, focusing on the analysis of the
strain generated in the GaAsN epilayers and its correlation with the formation of split interstitial
complexes (N-As)As. We analyzed strained GaAsN epilayers with nitrogen contents and thicknesses
varying from 0.93 to 1.81% and 65 to 130 nm, respectively. The composition and thickness were deter-
mined by high resolution X-ray diffraction, and the strain was determined by Raman spectroscopy,
while the N-bonding configurations were determined by X-ray photoelectron spectroscopy. We found
that the strain generated in the GaAsN epilayers is mainly caused by a lattice mismatch with the GaAs
substrate. This macroscopic strain is independent of the amount of (N-As)As interstitial defects, while
the local strain, induced by an alloying effect, tends to decrease with an increasing ratio of (N-As)As

interstitial defects to substitutional nitrogen atoms incorporated into an arsenic sublattice—NAs.
Here, we show experimentally, for the first time, a correlation between the strain in the GaAsN
epilayers, caused by an alloying effect determined by Raman spectroscopy, and the (N-As)As/NAs

ratio estimated by the XPS method. We found out that the (N-As)As interstitials compensate the local
strain resulting from the presence of N in the GaAs matrix, if their amount does not exceed ~65% of
the substitutional introduced nitrogen NAs.

Keywords: III-V semiconductors; dilute nitrides; AP-MOVPE; nitrogen interstitial complexes; HRXRD;
XPS; Raman spectroscopy

1. Introduction

Dilute nitride III-V-N alloys, such as arsenides and phosphides with an addition of
a small amount of nitrogen, are very attractive semiconductor materials for many novel
applications. These semiconductor compounds are highly mismatched alloys (HMAs).
This means that a small incorporation of N into typical III-V isovalent alloys results in a
strong band restructuring due to the large atomic radius difference between N and As (P)
and the high electronegativity of N. This leads to a strong interaction between the localized
states produced by N and the extended energy states of the matrix materials and, finally, to
an anomalous large band gap reduction [1–5]. In spite of these fundamental issues, these
materials are very promising for IR optoelectronics based on GaAs, Ge and Si substrates.
For example, quaternary InGaAsN alloys grown compressively strained on GaAs substrate
can be used in telecom lasers [6–8], while the same materials or GaAsSbN alloys, lattice
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matched to GaAs or Ge substrates with 1 eV bandgap, are very attractive for efficient
multijunction solar cells [9–11]. GaNAsP quaternary alloys grown pseudomorphically on
Si substrate are very promising for realizing lasers and other photonic devices using this
typical microelectronic substrate [12,13]. Alternatively, the technology of dilute nitrides is
very difficult and challenging for growers. They require lower growth temperatures than
those typical for III-V compounds, in order to avoid a phase segregation, but high enough
for a good crystalline quality. As was mentioned earlier, the incorporation of nitrogen
into the group V sublattice causes a big impact on the bandgap, and the properties of the
dilute nitrides strongly differ from the conventional III-V alloys. In the classical isovalent
alloys, a smaller lattice constant increases the band gap, while the mixing of GaAs with
a few molar percent of GaN results in a huge reduction of the GaAsN bandgap, due to
the smaller covalent radius and large electronegativity of N atoms in comparison to Ga
and As. Additionally, it is well known that III-V semiconductor compounds with a cubic
zinc-blende crystalline structure become metastable if atoms with a significantly smaller or
larger covalent radius than the matrix atoms are alloyed [14]. Technology development
using these metastable materials is very difficult because they only can be grown at specific
conditions. According to the Hume–Rothery rules [14], in the case of substitutional solid
solutions of metals and metallic alloys, a good or complete solubility can be achieved when
the solute and the solvent have: a similar crystal structure, an atomic size difference of
less than 15%, a small electronegativity difference and the same valency (for a complete
solubility). The last rule related to valency is not an issue for the substitutional III-V
semiconductor compounds. Other requirements are not fulfilled for the considered dilute
nitrides when we mix arsenides and phosphides (Ga, In) (As, P), crystallizing in the cubic
zinc-blende structure, with nitrides (Ga, In)N that have the hexagonal wurtzite structure,
and the atomic radius and electronegativity differences between nitrogen and the other
group V atoms (As, P) are about 30% (Table 1) [1].

Table 1. Characteristic properties of group-V elements [1]. Adapted with permission from [1].
Copyright 2015, Elsevier.

Element Covalent Radius
(pm)

Lattice Constant Ga-Compound
(nm) Electronegativity

N 75 0.452 3.04
P 106 0.54505 2.19

As 119 0.565325 2.18
Sb 138 0.609593 2.05
Bi 146 0.637 (theory) 2.02

These properties’ discrepancies cause instability or metastability of certain composi-
tions and local strain introduced into the matrix crystal (the lattice relaxation around N
atoms). In the case of the GaAsN ternary alloys considered in this paper, the local static
atomic displacements of Ga atoms from their virtual average lattice position is significant
(Figure 1) and amounts to 14.3% of the Ga-As bond length [1]. Additionally, in the case of
heteroepitaxial structures, we have to take into account a dependence of the solubility on a
misfit strain caused by the lattice mismatch between the epilayer and the substrate, which
is omitted by Hume–Rothery rules. A significantly larger incorporation of N in the GaAsN
epilayers grown on GaP substrate is reported, as compared to the GaAs substrate, because
of a strain effect. In the case of the GaP substrate N incorporation in the GaAsN epilayers,
an amount below 17% reduces the compressive strain, whereas the N incorporation in the
GaAs grown on the GaAs substrate increases the tensile strain of the grown epilayer [1].
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Figure 1. The local static atomic displacements of Ga atoms from their virtual average lattice position
introduced by a N atom [1]. Reprinted with permission from [1]. Copyright 2015, Elsevier.

Therefore, the solubility of N in III-V semiconductors can be increased if the N incor-
poration reduces the macroscopic strain introduced in the growing epilayer. In the case of
GaAsN, the strain introduced by the N atoms occupying predominantly the As sublattice
NAs, that is the substitutional N atoms, can be lowered by the formation of energetically
preferred split interstitial N complexes, such as (N-As)As and (N-N)As [15–19], as shown in
Figure 2.
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N)As [18]; (b) lattice mismatches between GaAsN and GaAs caused by substitutional nitrogen NAs,
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Copyright 2015, 2001, AIP Publishing.

The (N-As)As complex induces a compressive strain, while the (N-N)As defects in-
troduce less tensile strain in comparison to the substitutional nitrogen NAs [17], which
helps to decrease the local strain and lattice distortion around the N atoms. Conversely, the
presence of these interstitial N atoms reduces electron (hole) mobility and non-radiative re-
combination time, leading to poor device performance, especially in heterojunction bipolar
transistors, solar cells and light emitters [20–23]. For this reason, an understanding of the
impact of N-related interstitials on the strain and optoelectronic properties of GaAsN alloys
is crucial for the improvement of device technology involving these III-V alloys. In this
work, we focused on the analysis of the strain generated in the GaAsN epilayers and its cor-
relation with the formation of split interstitial complexes (N-As)As. The research was based
on the measurements of fully strained GaAsN epilayers by means of high-resolution X-ray
diffraction (HRXRD), Raman spectroscopy and X-ray photoelectron spectroscopy (XPS).
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2. Experimental Details

The investigated GaAsN/GaAs heterostructures were grown by atmospheric pressure
metalorganic vapor phase epitaxy (AP-MOVPE) using the AIX 200 R&D horizontal reactor
on a (100)-oriented GaAs substrates. Trimethylgallium TMGa (Ga(CH3)3), tertiarybutylhy-
drazine TBHy ((C4H9)HN2H2) and arsine AsH3 (10% mixture in H2) were used as growth
precursors. The epitaxial structures consist of a 450-nm-thick undoped UD-GaAs buffer
followed by undoped UD-GaAsN epilayers. The GaAs buffer was deposited at 670 ◦C with
the flow rates of TMGa and AsH3, 19.65 µmol/min and 1339.29 µmol/min, respectively,
providing a V/III molar ratio of 68.16. The GaAsN epilayers were grown at the following
constant growth parameters: the TMGa flow rate of 13.76 µmol/min and the AsH3 and
TBHy flow rates of 223.21 µmol/min and 601.92 µmol/ min, respectively, providing a V/III
molar ratio of 59.97. For the GaAsN layers, the only variable parameters were the growth
temperature Tg (changed from 565 to 605 ◦C) and the deposition time τ in the case of the
thinnest layer (sample N119). We anticipate here that the thickness d and nitrogen content
N of the GaAsN epilayers correlated with the growth temperature Tg and deposition time
τ for six investigated samples, which are listed in Table 2.

Table 2. The growth temperature Tg, deposition time τ, nitrogen content N and thickness d of GaAsN
epilayers included in six investigated samples.

Sample Tg (◦C) τ (min) N (%) d (nm)

N123 565 20 1.58 100
N120 575 20 1.81 130
N119 585 10 0.93 65
N124 585 20 1.24 102
N121 595 20 1.51 126
N122 605 20 1.39 97

The structural properties, as well as the thickness and composition of GaAsN (Table 2),
were examined using HRXRD, (MRD High Resolution X-ray Diffractometer). Raman
measurements for strain detection were carried out at room temperature. We used the micro-
Raman spectrometer (Renishaw inVia Raman Microscope) in a backscattering configuration
with excitation provided by a 633 nm line of a diode-pumped solid-state laser. The diameter
of the excitation spot was equal to ∼1.5 µm, and the spectral resolution was 1 cm−1. The
system was equipped with a single-pass spectrometer with a grating of 1800 grooves mm−1

and a Peltier-cooled CCD array. The power was kept on the order of 250 µW. The N-bonding
configurations were studied using X-ray photoelectron spectroscopy. The XPS spectra of the
investigated samples were recorded using an X-ray photoelectron spectrometer (Physical
Electronics, Inc., model PHI5700, Chanhassen, MN, USA) with a 300 W, Mg Kα (1253.6 eV)
excitation source, at a fixed voltage of 15 kV, and the vacuum pressure reaches 10−9 Torr
in the XPS analysis chamber. The spatial resolution and the spot size are defined by the
analyser aperture, which is 720 µm in diameter. Core level deconvolution in the several
peak components has been made using the commercial CasaXPS software UNIFIT 2009 [24].

3. Results and Discussion
3.1. High Resolution X-ray Diffraction Measurements

Diffraction curves measured for (004) reflection indicated a good structural quality
of all samples, as is noted in the GaAsN reflection peak and the presence of Pendellösung
fringes in the rocking curves (Figure 3a). The reciprocal space maps (RSMs) recorded for
the (115) asymmetrical reflection confirmed that all the structures were fully strained. The
exemplary RSM for the sample N120 is shown in Figure 3b.
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Figure 3. High resolution X-ray diffraction results: (a) the diffraction curves of all investigated
heterostructures measured for (004) reflection; (b) the reciprocal space map for the (115) asymmetrical
reflection of the sample N120 (N = 1.81%, d = 130 nm).

3.2. Raman Measurements and Average Strain Determination

Raman spectroscopy is a sensitive method for studying the local structure of impurity
incorporation and deviations from a long-range order induced by the presence of guest
atoms. Therefore, it is a powerful technique for detecting the strain introduced into the
crystalline structure of different semiconductor materials that results in a frequency shift
of the lattice modes. The sensitivity of phonon frequencies to the strain state can be
exploited by the phonon deformation potentials (PDP) in bulk materials, epilayers and
heterostructures [25]. In our case, the pseudomorphic growth of GaAsN on GaAs increases
a biaxial tensile strain in the layer. The average in-plane strain can be well reproduced by the
frequency variation of the longitudinal optical mode (ωLO) with respect to the unstrained
material. The compressive/tensile nature of the strain manifests by increasing/decreasing
frequencies, even on a microscopic (local) scale [26,27]. The main goal of this study was
to determine a frequency shift of the GaAs-like longitudinal-optical phonon (GaAs-like
LO) in the Raman spectra recorded for the investigated GaAsN epilayers, which could be
attributed to the local and macroscopic strain caused by the alloying and lattice mismatch
effects, respectively. This knowledge makes it possible to estimate which effect is dominant
and to correlate the GaAs-like LO mode frequency shift with the presence of the split
interstitial complexes (N-As)As, which will be described in the next section devoted to
XPS measurements. The measured Raman spectra of the investigated GaAsN/GaAs
heterostructures are presented in Figure 4.

Energies 2022, 15, x FOR PEER REVIEW 5 of 11 
 

 

−3,000 −2,000 −1,000 0 1,000 2,000 3,000

0

1

2

3

4

5

6

In
te

n
s
it

y
 (

a
.u

.)

w/2q (arc sec)

N = 0.93%

N = 1.24%

N = 1.39%

N = 1.51%

N = 1.58%

N = 1.81%N120

N123

N121

N122

N124

N119

GaAs GaAsN

  
(a) (b) 

Figure 3. High resolution X-ray diffraction results: (a) the diffraction curves of all investigated het-

erostructures measured for (004) reflection; (b) the reciprocal space map for the (115) asymmetrical 

reflection of the sample N120 (N = 1.81%, d = 130 nm). 

3.2. Raman Measurements and Average Strain Determination 

Raman spectroscopy is a sensitive method for studying the local structure of impu-

rity incorporation and deviations from a long-range order induced by the presence of 

guest atoms. Therefore, it is a powerful technique for detecting the strain introduced into 

the crystalline structure of different semiconductor materials that results in a frequency 

shift of the lattice modes. The sensitivity of phonon frequencies to the strain state can be 

exploited by the phonon deformation potentials (PDP) in bulk materials, epilayers and 

heterostructures [25]. In our case, the pseudomorphic growth of GaAsN on GaAs in-

creases a biaxial tensile strain in the layer. The average in-plane strain can be well repro-

duced by the frequency variation of the longitudinal optical mode (𝜔𝐿𝑂) with respect to 

the unstrained material. The compressive/tensile nature of the strain manifests by increas-

ing/decreasing frequencies, even on a microscopic (local) scale [26,27]. The main goal of 

this study was to determine a frequency shift of the GaAs-like longitudinal-optical pho-

non (GaAs-like LO) in the Raman spectra recorded for the investigated GaAsN epilayers, 

which could be attributed to the local and macroscopic strain caused by the alloying and 

lattice mismatch effects, respectively. This knowledge makes it possible to estimate which 

effect is dominant and to correlate the GaAs-like LO mode frequency shift with the pres-

ence of the split interstitial complexes (N-As)As, which will be described in the next section 

devoted to XPS measurements. The measured Raman spectra of the investigated 

GaAsN/GaAs heterostructures are presented in Figure 4. 

250 260 270 280 290 300 310 320

0

5 × 103

1 × 104

1.5 × 104

2 × 104

2.5 × 104

3 × 104

3.5 × 104

4 × 104

In
te

n
s

it
y

 (
a

.u
)

Raman shift (cm-1)

GaAs epilayer 

N119

N124

N122

N121

N123

N120 N = 1.81%

N = 1.58%

N = 1.51%

N = 1.39%

N = 1.24%  

N = 0.93%

N = 0%

GaAs TO

267.2 cm-1

GaAs LO

292.93 cm-1

 
420 440 460 480 500 520 540 560 580 600 620

0

1 × 104

2 × 104

3 × 104

4 × 104

5 × 104

6 × 104

In
te

n
s

it
y

 (
a

.u
.)

Raman shift  (cm-1)

GaAs epilayer

N124

N122

N121

N123

N120

N = 0%  

N = 1.24%

N = 1.39%

N = 1.51%

N = 1.58%

N = 1.81%

GaAs

LO(G)+LA(L)

GaAs

LO(G)+TO(G) 2GaAs LO(G)

the second order GaAs-like phonons GaN LO

470 cm-1

 
(a) (b) 

Figure 4. The Raman spectra of the investigated GaAsN/GaAs heterostructures recorded in the
spectral range of: (a) the first order GaAs-like modes; (b) the first order GaN-like and the second
order GaAs-like phonons.
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Figure 4a shows the spectral range of the first order GaAs-like phonons, while
Figure 4b covers the spectral range of both the first order GaN-like and the second or-
der GaAs-like phonon modes. It is clearly observed that the red shift of the GaAs-like LO
phonon and the blue shift of the GaN-like LO phonon as N content increases, while the
GaAs-like TO mode frequency is practically independent of the GaAsN composition. This
phonon mode’s behavior confirms that the GaAsN epilayers are fully strained (the in-plane
lattice constant is the same as GaAs), and the biaxial strain affects only the LO phonon
frequency. Based on the measured GaAs-like LO phonon frequency ω(N), the value of the
bulk equivalent frequency ω0(N), related to the unstrained (bulk) GaAsN, was calculated
using following equation [28,29]:

ω(N) ≈ ω0(N)

(
1 +

λ

2

)
(1)

where λ is the eigenvalue of Anastassakis’ [30] equation, and, for the LO phonon measured
from (100) oriented faces, is given by [28,29]:

λ ≈ K11εzz + 2K12εxx (2)

where K11 and K12 are the phonon deformation potentials, and εxx and εzz are the strains
in the x (in-plane) and perpendicular z directions, respectively. Assuming that the phonon
deformation constants of GaAsN for an N content smaller than 3% are nearly the same
as those of GaAs, and applying Vegard’s law and HRXRD results for calculation of the
εxx and εzz strain components, the value of ω0(N) was obtained for each investigated
sample, as shown in Figure 5a. More details about the applied method and the strain
measurements using Raman spectroscopy are described in [28–31]. The calculated values
of ω0(N) allowed for estimation of the GaAs-like LO frequency shift caused by the lattice
mismatch ωLM = ω(N)− ω0(N) and, thus, for determination of the red shift component
related to the alloying effect ωAE. The dependence of the GaAs-like LO frequency shift in
the N content of the investigated GaAsN epilayers, with a separate influence of the strain
induced by a lattice mismatch and alloying effects, is presented in Figure 5b. The value
of the GaAs-like LO frequency for GaAs ω(0) = 292.93 cm−1 was determined from the
Raman spectrum of the GaAs epitaxial layer.
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Figure 5. Determined from Raman spectra, two dependencies on N content: (a) GaAs-like LO
frequencies of strained GaAsN epilayers (black squares) and calculated bulk GaAsN equivalent
frequencies (red circles); (b) the experimental redshift of the GaAs-like LO phonons frequencies (black
squares) with the estimated influence of strain induced by a lattice mismatch (blue triangles).

A linear fit of the data obtained from the Raman spectra results in a total shift of the
GaAs-like LO phonons −143 ± 10 cm−1/N with a significant contribution of the lattice
mismatch induced strain shift −97 cm−1/N. The additional minor redshift component may
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be related to the alloying effect. These values are comparable with the data obtained by
T. Prokofyeva et al. in [32] (−136 ± 10 cm−1/N, −96 cm−1/N, respectively) for pseudo-
morphic GaAsN epilayers grown on (001) GaAs substrates with an N content ≤3%. This
confirms the significant impact of a lattice mismatch-related strain on the frequency red
shift of GaAs-like LO phonons observed in the Raman spectra of strained GaAsN epilayers.
As was mentioned earlier, the (N-As)As interstitial complexes induce compressive strain in
the GaAsN epilayers, which decreases the tensile strain caused by substitutional nitrogen
NAs. We expect that the presence of these complexes in the GaAsN epilayers will reduce the
strain-induced Raman frequency shift of GaAs-like LO phonons. To check this assumption,
we used the XPS technique for identification of the possible N-bonding configurations in
the investigated GaAsN/GaAs heterostructures.

3.3. XPS Spectra Analysis

X-ray photoelectron spectroscopy is one of the most convenient methods for determi-
nation of the N-bonding configurations in GaAsN and InGaAsN epilayers [33–38]. The
N 1s core level spectra have been carefully studied for all investigated samples after Ar+

etching (9 min, acceleration voltage 1–4 kV) of a few nm of the surface GaAsN epilayer, in
order to remove the oxygen and carbon contaminations. The exemplary N 1s core level
deconvolution spectra corresponding to the samples N122 and N123, grown at the highest
(605 ◦C) and the lowest (565 ◦C) temperatures, are presented in Figure 6.
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Figure 6. The N 1s core level deconvolution spectra of GaAsN/GaAs heterostructures grown: (a) at
the highest and (b) lowest temperatures.

The analysis of the obtained spectra was problematic because of a very intense signal
related to the Ga Auger transition overlapping the N1s core level signal observed for all
investigated samples. Due to these difficulties, in the deconvolution of the N 1s core level,
only three components were identified: N-In (397 eV), N-Ga (398.5 eV) and N-As (400.5 eV)
bonds. The contribution related to N-N bonds (402–403 eV) [36,39–41] lies in the binding
energy region, where the two Ga Auger transition peaks meet, which makes it impossible
to confirm the presence of this interstitial defect. According to a comparison between the
N119 and N124 samples, a higher deposition time favors the formation of N-As bonds.
Also, very high or low growth temperatures (the N122 and N123 samples, respectively),
seem to promote the formation of such interstitial defects. Based on the analysis of N 1s
core level deconvolution spectra, the ratio between N-As bonds, corresponding to (N-As)As
interstitial defects, and N-III bonds (N linked to Ga and In) related to N atoms incorporated
into the As sublattice NAs, was calculated (N-As/N-III). The obtained values of the N-As/N-
III ratios are listed in Table 3 and compared with the strain-induced Raman frequency shift
of GaAs-like LO phonons caused by the lattice mismatch ωLM and alloying effect ωAE.
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Table 3. The ratio of N-As/N-III, GaAs-like LO frequencies of: GaAs epilayer ω(0), strained GaAsN
epilayer ω(N), bulk GaAsN ω0(N) and Raman frequency shift of GaAs-like LO phonons caused
by the lattice mismatch ωLM and alloying effect ωAE determined for all investigated GaAsN/GaAs
heterostructures. Red and blue colours represent the calculated values depicted in Figures 7a and 7b,
respectively.

Sample N (%) N-As/N-III ω (0)
(cm−1)

ω (N)
(cm−1)

ω0 (N)
(cm−1)

∆ω AE
ω0 (N)-ω (0)

(cm−1)

∆ω LM
ω (N)-ω0 (N)

(cm−1)

N121 1.51 0

292.93

290.52 291.99 −0.94 −1.47

N120 1.81 0.408 290.37 292.13 −0.81 −1.75

N119 0.93 0.538 291.46 292.36 −0.57 −0.90

N123 1.58 0.613 290.75 292.28 −0.65 −1.53

N122 1.39 0.724 290.92 292.27 −0.66 −1.35

N124 1.24 1.083 290.93 292.13 −0.80 −1.20

Based on the data included in Table 3, the dependences of the Raman frequency shift of
the GaAs-like LO phonons, caused by the strain and alloying effects on the N-As/N-III ratio
(calculated form XPS spectra), is presented in Figure 7. The dependence in Figure 7a shows
the distinct influence of the N-As/N-III ratio on the local strain, caused by the alloying
effect. It is especially visible when we compare the sample N121 (absence of N-As defects,
N = 1.51%) with the samples N123 and N120, which have comparable (N = 1.58%) and the
highest (N = 1.81%) nitrogen concentrations, respectively. In both cases, the GaAs-like LO
phonon redshift is greater for the sample N121.
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Figure 7. The dependences of GaAs-like LO phonon shift (determined from Raman spectra) caused
by the alloying (a) and the strain (b) effects on the N-As/N-III ratio (calculated from XPS spectra) for
investigated GaAsN/GaAs heterostructures.

That is, the presence of (N-As)As complexes in the N123 and N120 samples compen-
sates partially the tensile strain induced by N incorporation into the GaAs lattice. The
visible increase of the Raman shift for N-As/N-III > 0.65 in the samples with lower N
contents (N122 and N124) is probably connected to an increase in the local strain, caused
by a large contribution of N-As defects in comparison to N-Ga bonds, which creates the
crystalline structure of the GaAsN epilayer. The relation presented in Figure 7b indicates
that the N-As/N-III ratio has no visible impact on the macroscopic strain caused by a lattice
mismatch of GaAsN to GaAs. In this case, the strain-induced GaAs-like LO phonon shift
increases with the N content, independent of the value of the N-As/N-III ratio. The lowest
value of the GaAs-like LO phonon redshift was obtained for the sample N119. In this
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GaAsN/GaAs heterostructure, there is the least strain caused by both the lattice mismatch
and alloying effects, which is directly connected with the lowest N content of 0.93%.

4. Conclusions

This work presents an investigation of the GaAsN/GaAs heterostructures grown by
AP-MOVPE and focuses on the strain generated in as-grown GaAsN epilayers, as well as
its correlation with the formation of split interstitial complexes (N-As)As. Based on the
GaAs-like LO phonon frequency ω(N), determined from the measured Raman spectra, the
value of bulk equivalent frequency ω0(N) related to the unstrained GaAsN was calculated.
This allowed for estimation of the influence of the macroscopic and local strain, resulting
from the lattice mismatch and alloying effect, respectively, on the LO phonon frequency
redshift. Thanks to this, it was possible to separately correlate these strain components
with the ratio of the (N-As)As interstitial defects to the N atoms incorporated into the
As sublattice, NAs, calculated from XPS spectra (N-As/N-III). It was found that (N-As)As
interstitial complexes have no significant effect on the macroscopic strain but are able to
compensate for the local strain caused by alloying effect, if their amount does not exceed
~65% of the substitutional introduced nitrogen NAs. Future research will be extended to
post-growth annealed GaAsN epilayers and InGaAsN/GaAs heterostructures.
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