Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,273)

Search Parameters:
Keywords = digital recordings

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 2224 KiB  
Article
Digital Eye Strain Monitoring for One-Hour Smartphone Engagement Through Eye Activity Measurement System
by Bhanu Priya Dandumahanti, Prithvi Krishna Chittoor and Murali Subramaniyam
J. Eye Mov. Res. 2025, 18(4), 34; https://doi.org/10.3390/jemr18040034 - 5 Aug 2025
Abstract
Smartphones have revolutionized our daily lives, becoming portable pocket computers with easy internet access. India, the second-highest smartphone and internet user, experienced a significant rise in smartphone usage between 2013 and 2024. Prolonged smartphone use, exceeding 20 min at a time, can lead [...] Read more.
Smartphones have revolutionized our daily lives, becoming portable pocket computers with easy internet access. India, the second-highest smartphone and internet user, experienced a significant rise in smartphone usage between 2013 and 2024. Prolonged smartphone use, exceeding 20 min at a time, can lead to physical and mental health issues, including psychophysiological disorders. Digital devices and their extended exposure to blue light cause digital eyestrain, sleep disorders and visual-related problems. This research examines the impact of 1 h smartphone usage on visual fatigue among young Indian adults. A portable, low-cost system has been developed to measure visual activity to address this. The developed visual activity measurement system measures blink rate, inter-blink interval, and pupil diameter. Measured eye activity was recorded during 1 h smartphone usage of e-book reading, video watching, and social-media reels (short videos). Social media reels show increased screen variations, affecting pupil dilation and reducing blink rate due to continuous screen brightness and intensity changes. This reduction in blink rate and increase in inter-blink interval or pupil dilation could lead to visual fatigue. Full article
Show Figures

Graphical abstract

14 pages, 1926 KiB  
Article
Research on Data-Driven Drilling Safety Grade Evaluation System
by Shuan Meng, Changhao Wang, Yingcao Zhou and Lidong Hou
Processes 2025, 13(8), 2469; https://doi.org/10.3390/pr13082469 - 4 Aug 2025
Abstract
With the in-depth application of digital transformation in the oil industry, data-driven methods provide a new technical path for drilling engineering safety evaluation. In this paper, a data-driven drilling safety level evaluation system is proposed. By integrating the three-dimensional visualization technology of wellbore [...] Read more.
With the in-depth application of digital transformation in the oil industry, data-driven methods provide a new technical path for drilling engineering safety evaluation. In this paper, a data-driven drilling safety level evaluation system is proposed. By integrating the three-dimensional visualization technology of wellbore trajectory and the prediction model of friction torque, a dynamic and intelligent drilling risk evaluation framework is constructed. The Python platform is used to integrate geomechanical parameters, real-time drilling data, and historical working condition records, and the machine learning algorithm is used to train the friction torque prediction model to improve prediction accuracy. Based on the K-means clustering evaluation method, a three-tier drilling safety classification standard is established: Grade I (low risk) for friction (0–100 kN) and torque (0–10 kN·m), Grade II (medium risk) for friction (100–200 kN) and torque (10–20 kN·m), and Grade III (high risk) for friction (>200 kN) and torque (>20 kN·m). This enables intelligent quantitative evaluation of drilling difficulty. The system not only dynamically optimizes bottom-hole assembly (BHA) and drilling parameters but also continuously refines the evaluation model’s accuracy through a data backtracking mechanism. This provides a reliable theoretical foundation and technical support for risk early warning, parameter optimization, and intelligent decision-making in drilling engineering. Full article
(This article belongs to the Section AI-Enabled Process Engineering)
Show Figures

Figure 1

10 pages, 903 KiB  
Article
Gender Differences in Visual Information Perception Ability: A Signal Detection Theory Approach
by Yejin Lee and Kwangtae Jung
Appl. Sci. 2025, 15(15), 8621; https://doi.org/10.3390/app15158621 (registering DOI) - 4 Aug 2025
Abstract
The accurate perception of visual stimuli in human–machine systems is crucial for improving system safety, usability, and task performance. The widespread adoption of digital technology has significantly increased the importance of visual interfaces and information. Therefore, it is essential to design visual interfaces [...] Read more.
The accurate perception of visual stimuli in human–machine systems is crucial for improving system safety, usability, and task performance. The widespread adoption of digital technology has significantly increased the importance of visual interfaces and information. Therefore, it is essential to design visual interfaces and information with user characteristics in mind to ensure accurate perception of visual information. This study employed the Cognitive Perceptual Assessment for Driving (CPAD) to evaluate and compare gender differences in the ability to perceive visual signals within complex visual stimuli. The experimental setup included a computer with CPAD installed, along with a touch monitor, mouse, joystick, and keyboard. The participants included 11 male and 20 female students, with an average age of 22 for males and 21 for females. Prior to the experiment, participants were instructed to determine whether a signal stimulus was present: if a square, presented as the signal, was included in the visual stimulus, they moved the joystick to the left; otherwise, they moved it to the right. Each participant performed a total of 40 trials. The entire experiment was recorded on video to measure overall response times. The experiment measured the number of correct detections of signal presence, response times, the number of misses (failing to detect the signal when present), and false alarms (detecting the signal when absent). The analysis of experimental data revealed no significant differences in perceptual ability or response times for visual stimuli between genders. However, males demonstrated slightly superior perceptual ability and marginally shorter response times compared to females. Analyses of sensitivity and response bias, based on signal detection theory, also indicated a slightly higher perceptual ability in males. In conclusion, although these differences were not statistically significant, males demonstrated a slightly better perception ability for visual stimuli. The findings of this study can inform the design of information, user interfaces, and visual displays in human–machine systems, particularly in light of the recent trend of increased female participation in the industrial sector. Future research will focus on diverse types of visual information to further validate these findings. Full article
Show Figures

Figure 1

29 pages, 540 KiB  
Systematic Review
Digital Transformation in International Trade: Opportunities, Challenges, and Policy Implications
by Sina Mirzaye and Muhammad Mohiuddin
J. Risk Financial Manag. 2025, 18(8), 421; https://doi.org/10.3390/jrfm18080421 - 1 Aug 2025
Viewed by 370
Abstract
This study synthesizes the rapidly expanding evidence on how digital technologies reshape international trade, with a particular focus on small and medium-sized enterprises (SMEs). Guided by two research questions—(RQ1) How do digital tools influence the volume and composition of cross-border trade? and (RQ2) [...] Read more.
This study synthesizes the rapidly expanding evidence on how digital technologies reshape international trade, with a particular focus on small and medium-sized enterprises (SMEs). Guided by two research questions—(RQ1) How do digital tools influence the volume and composition of cross-border trade? and (RQ2) How do these effects vary by countries’ development level and firm size?—we conducted a PRISMA-compliant systematic literature review covering 2010–2024. Searches across eight major databases yielded 1857 records; after duplicate removal, title/abstract screening, full-text assessment, and Mixed Methods Appraisal Tool (MMAT 2018) quality checks, 86 peer-reviewed English-language studies were retained. Findings reveal three dominant technology clusters: (1) e-commerce platforms and cloud services, (2) IoT-enabled supply chain solutions, and (3) emerging AI analytics. E-commerce and cloud adoption consistently raise export intensity—doubling it for digitally mature SMEs—while AI applications are the fastest-growing research strand, particularly in East Asia and Northern Europe. However, benefits are uneven: firms in low-infrastructure settings face higher fixed digital costs, and cybersecurity and regulatory fragmentation remain pervasive obstacles. By integrating trade economics with development and SME internationalization studies, this review offers the first holistic framework that links national digital infrastructure and policy support to firm-level export performance. It shows that the trade-enhancing effects of digitalization are contingent on robust broadband penetration, affordable cloud access, and harmonized data-governance regimes. Policymakers should, therefore, prioritize inclusive digital-readiness programs, while business leaders should invest in complementary capabilities—data analytics, cyber-risk management, and cross-border e-logistics—to fully capture digital trade gains. This balanced perspective advances theory and practice on building resilient, equitable digital trade ecosystems. Full article
(This article belongs to the Special Issue Modern Enterprises/E-Commerce Logistics and Supply Chain Management)
Show Figures

Figure 1

24 pages, 624 KiB  
Systematic Review
Integrating Artificial Intelligence into Perinatal Care Pathways: A Scoping Review of Reviews of Applications, Outcomes, and Equity
by Rabie Adel El Arab, Omayma Abdulaziz Al Moosa, Zahraa Albahrani, Israa Alkhalil, Joel Somerville and Fuad Abuadas
Nurs. Rep. 2025, 15(8), 281; https://doi.org/10.3390/nursrep15080281 - 31 Jul 2025
Viewed by 126
Abstract
Background: Artificial intelligence (AI) and machine learning (ML) have been reshaping maternal, fetal, neonatal, and reproductive healthcare by enhancing risk prediction, diagnostic accuracy, and operational efficiency across the perinatal continuum. However, no comprehensive synthesis has yet been published. Objective: To conduct a scoping [...] Read more.
Background: Artificial intelligence (AI) and machine learning (ML) have been reshaping maternal, fetal, neonatal, and reproductive healthcare by enhancing risk prediction, diagnostic accuracy, and operational efficiency across the perinatal continuum. However, no comprehensive synthesis has yet been published. Objective: To conduct a scoping review of reviews of AI/ML applications spanning reproductive, prenatal, postpartum, neonatal, and early child-development care. Methods: We searched PubMed, Embase, the Cochrane Library, Web of Science, and Scopus through April 2025. Two reviewers independently screened records, extracted data, and assessed methodological quality using AMSTAR 2 for systematic reviews, ROBIS for bias assessment, SANRA for narrative reviews, and JBI guidance for scoping reviews. Results: Thirty-nine reviews met our inclusion criteria. In preconception and fertility treatment, convolutional neural network-based platforms can identify viable embryos and key sperm parameters with over 90 percent accuracy, and machine-learning models can personalize follicle-stimulating hormone regimens to boost mature oocyte yield while reducing overall medication use. Digital sexual-health chatbots have enhanced patient education, pre-exposure prophylaxis adherence, and safer sexual behaviors, although data-privacy safeguards and bias mitigation remain priorities. During pregnancy, advanced deep-learning models can segment fetal anatomy on ultrasound images with more than 90 percent overlap compared to expert annotations and can detect anomalies with sensitivity exceeding 93 percent. Predictive biometric tools can estimate gestational age within one week with accuracy and fetal weight within approximately 190 g. In the postpartum period, AI-driven decision-support systems and conversational agents can facilitate early screening for depression and can guide follow-up care. Wearable sensors enable remote monitoring of maternal blood pressure and heart rate to support timely clinical intervention. Within neonatal care, the Heart Rate Observation (HeRO) system has reduced mortality among very low-birth-weight infants by roughly 20 percent, and additional AI models can predict neonatal sepsis, retinopathy of prematurity, and necrotizing enterocolitis with area-under-the-curve values above 0.80. From an operational standpoint, automated ultrasound workflows deliver biometric measurements at about 14 milliseconds per frame, and dynamic scheduling in IVF laboratories lowers staff workload and per-cycle costs. Home-monitoring platforms for pregnant women are associated with 7–11 percent reductions in maternal mortality and preeclampsia incidence. Despite these advances, most evidence derives from retrospective, single-center studies with limited external validation. Low-resource settings, especially in Sub-Saharan Africa, remain under-represented, and few AI solutions are fully embedded in electronic health records. Conclusions: AI holds transformative promise for perinatal care but will require prospective multicenter validation, equity-centered design, robust governance, transparent fairness audits, and seamless electronic health record integration to translate these innovations into routine practice and improve maternal and neonatal outcomes. Full article
Show Figures

Figure 1

12 pages, 1140 KiB  
Article
Does Low-Field MRI Tenography Improve the Detection of Naturally Occurring Manica Flexoria Tears in Horses?
by Anton D. Aßmann, José Suàrez Sànchez-Andrade, David Argüelles and Andrea S. Bischofberger
Animals 2025, 15(15), 2250; https://doi.org/10.3390/ani15152250 - 31 Jul 2025
Viewed by 81
Abstract
Diagnosing digital flexor tendon sheath (DFTS) pathologies, particularly manica flexoria (MF) tears, can be challenging with standard imaging modalities. Standing low-field MRI tenography (MRIt) may improve the detection rate of MF tears. This study aimed to compare ultrasonography, contrast radiography, pre-contrast MRI, and [...] Read more.
Diagnosing digital flexor tendon sheath (DFTS) pathologies, particularly manica flexoria (MF) tears, can be challenging with standard imaging modalities. Standing low-field MRI tenography (MRIt) may improve the detection rate of MF tears. This study aimed to compare ultrasonography, contrast radiography, pre-contrast MRI, and MRIt to detect naturally occurring MF lesions in horses undergoing tenoscopy. Ten horses with a positive DFTS block, which underwent contrast radiography, ultrasonography, MRI, MRIt, and tenoscopy were included. Two radiologists evaluated the images and recorded whether an MF lesion was present and determined the lesion side. Sensitivity and specificity were calculated for each modality using tenoscopy as a reference. MRIt and contrast radiography detected MF lesions with the same frequency, both showing 71% sensitivity and 100% specificity. Pre-contrast MRI and ultrasonography detected MF lesions with a lower sensitivity (57%); however, the MRI (100%) demonstrated a higher specificity than ultrasonography (33%). Adding contrast in MRI changed the sensitivity from (4/7 lesions) 57% to (5/7 lesions) 71%, with a constant high specificity (100%). MRIt diagnoses MF tears with a similar sensitivity to contrast radiography, with the same specificity, but with the added benefit of lesion laterality detection. The combined advantages of the anatomical detail of the T1 sequence and the post-contrast hyperintense appearance of the fluid may help diagnose MF tears and identify intact MFs. However, this needs to be substantiated in a larger number of cases. Full article
Show Figures

Figure 1

17 pages, 1142 KiB  
Article
Logistical Challenges in Home Health Care: A Comparative Analysis Between Portugal and Brazil
by William Machado Emiliano, Thalyta Cristina Mansano Schlosser, Vitor Eduardo Molina Júnior, José Telhada and Yuri Alexandre Meyer
Logistics 2025, 9(3), 101; https://doi.org/10.3390/logistics9030101 - 31 Jul 2025
Viewed by 197
Abstract
Background: This study aims to compare the logistical challenges of Home Health Care (HHC) services in Portugal and Brazil, highlighting the structural and operational differences between both systems. Methods: Guided by an abductive research approach, data were collected using a semi-structured [...] Read more.
Background: This study aims to compare the logistical challenges of Home Health Care (HHC) services in Portugal and Brazil, highlighting the structural and operational differences between both systems. Methods: Guided by an abductive research approach, data were collected using a semi-structured survey with open-ended questions, applied to 13 HHC teams in Portugal and 18 in Brazil, selected based on national coordination recommendations. The data collection process was conducted in person, and responses were analyzed using descriptive statistics and qualitative content analysis. Results: The results reveal that Portugal demonstrates higher productivity, stronger territorial coverage, and a more integrated inventory management system, while Brazil presents greater multidisciplinary team integration, more flexible fleet logistics, and more advanced digital health records. Despite these strengths, both countries continue to address key logistical aspects, such as scheduling, supply distribution, and data management, largely through empirical strategies. Conclusions: This research contributes to the theoretical understanding of international HHC logistics by emphasizing strategic and systemic aspects often overlooked in operational studies. In practical terms, it offers insights for public health managers to improve resource allocation, fleet coordination, and digital integration in aging societies. Full article
(This article belongs to the Section Humanitarian and Healthcare Logistics)
Show Figures

Figure 1

24 pages, 2034 KiB  
Article
Security Assessment of Smart Contract Integration and Wallet Interaction in Decentralized Applications: A Case Study of BlockScribe
by Andrzej Wilczyński and Gabriela Jasnosz
Appl. Sci. 2025, 15(15), 8473; https://doi.org/10.3390/app15158473 - 30 Jul 2025
Viewed by 180
Abstract
Smart contracts and cryptocurrency wallets are foundational components of decentralized applications (dApps) on blockchain platforms such as Ethereum. While these technologies enable secure, transparent, and automated transactions, their integration also introduces complex security challenges. This study presents a security-oriented analysis of smart contract [...] Read more.
Smart contracts and cryptocurrency wallets are foundational components of decentralized applications (dApps) on blockchain platforms such as Ethereum. While these technologies enable secure, transparent, and automated transactions, their integration also introduces complex security challenges. This study presents a security-oriented analysis of smart contract and wallet integration, focusing on BlockScribe—a decentralized Ethereum-based application for digital record certification. We systematically identify and categorize security risks arising from the interaction between wallet interfaces and smart contract logic. In particular, we analyze how user authorization flows, transaction design, and contract modularity affect the security posture of the entire dApp. To support our findings, we conduct an empirical evaluation using static analysis tools and formal verification methods, examining both contract-level vulnerabilities and integration-level flaws. Our results highlight several overlooked attack surfaces in wallet–contract communication patterns, including reentrancy amplification, permission mismanagement, and transaction ordering issues. We further discuss implications for secure dApp development and propose mitigation strategies that improve the robustness of wallet–contract ecosystems. This case study contributes to a deeper understanding of integration-layer vulnerabilities in blockchain-based systems and offers practical guidance for developers and auditors aiming to strengthen smart contract security. Full article
(This article belongs to the Special Issue Blockchain-Based Networks: Security, Privacy, and Applications)
Show Figures

Figure 1

13 pages, 532 KiB  
Article
Medical and Biomedical Students’ Perspective on Digital Health and Its Integration in Medical Curricula: Recent and Future Views
by Srijit Das, Nazik Ahmed, Issa Al Rahbi, Yamamh Al-Jubori, Rawan Al Busaidi, Aya Al Harbi, Mohammed Al Tobi and Halima Albalushi
Int. J. Environ. Res. Public Health 2025, 22(8), 1193; https://doi.org/10.3390/ijerph22081193 - 30 Jul 2025
Viewed by 249
Abstract
The incorporation of digital health into the medical curricula is becoming more important to better prepare doctors in the future. Digital health comprises a wide range of tools such as electronic health records, health information technology, telemedicine, telehealth, mobile health applications, wearable devices, [...] Read more.
The incorporation of digital health into the medical curricula is becoming more important to better prepare doctors in the future. Digital health comprises a wide range of tools such as electronic health records, health information technology, telemedicine, telehealth, mobile health applications, wearable devices, artificial intelligence, and virtual reality. The present study aimed to explore the medical and biomedical students’ perspectives on the integration of digital health in medical curricula. A cross-sectional study was conducted on the medical and biomedical undergraduate students at the College of Medicine and Health Sciences at Sultan Qaboos University. Data was collected using a self-administered questionnaire. The response rate was 37%. The majority of respondents were in the MD (Doctor of Medicine) program (84.4%), while 29 students (15.6%) were from the BMS (Biomedical Sciences) program. A total of 55.38% agreed that they were familiar with the term ‘e-Health’. Additionally, 143 individuals (76.88%) reported being aware of the definition of e-Health. Specifically, 69 individuals (37.10%) utilize e-Health technologies every other week, 20 individuals (10.75%) reported using them daily, while 44 individuals (23.66%) indicated that they never used such technologies. Despite having several benefits, challenges exist in integrating digital health into the medical curriculum. There is a need to overcome the lack of infrastructure, existing educational materials, and digital health topics. In conclusion, embedding digital health into medical curricula is certainly beneficial for creating a digitally competent healthcare workforce that could help in better data storage, help in diagnosis, aid in patient consultation from a distance, and advise on medications, thereby leading to improved patient care which is a key public health priority. Full article
Show Figures

Figure 1

24 pages, 1806 KiB  
Article
Optimization of Cleaning and Hygiene Processes in Healthcare Using Digital Technologies and Ensuring Quality Assurance with Blockchain
by Semra Tebrizcik, Süleyman Ersöz, Elvan Duman, Adnan Aktepe and Ahmet Kürşad Türker
Appl. Sci. 2025, 15(15), 8460; https://doi.org/10.3390/app15158460 - 30 Jul 2025
Viewed by 161
Abstract
Many hospitals still lack digital traceability in hygiene and cleaning management, leading to operational inefficiencies and inconsistent quality control. This study aims to establish cleaning and hygiene processes in healthcare services that are planned in accordance with standards, as well as to enhance [...] Read more.
Many hospitals still lack digital traceability in hygiene and cleaning management, leading to operational inefficiencies and inconsistent quality control. This study aims to establish cleaning and hygiene processes in healthcare services that are planned in accordance with standards, as well as to enhance the traceability and sustainability of these processes through digitalization. This study proposes a Hyperledger Fabric-based blockchain architecture to establish a reliable and transparent quality assurance system in process management. The proposed Quality Assurance Model utilizes digital technologies and IoT-based RFID devices to ensure the transparent and reliable monitoring of cleaning processes. Operational data related to cleaning processes are automatically recorded and secured using a decentralized blockchain infrastructure. The permissioned nature of Hyperledger Fabric provides a more secure solution compared to traditional data management systems in the healthcare sector while preserving data privacy. Additionally, the execute–order–validate mechanism supports effective data sharing among stakeholders, and consensus algorithms along with chaincode rules enhance the reliability of processes. A working prototype was implemented and validated using Hyperledger Caliper under resource-constrained cloud environments, confirming the system’s feasibility through over 100 TPS throughput and zero transaction failures. Through the proposed system, cleaning/hygiene processes in patient rooms are conducted securely, contributing to the improvement of quality standards in healthcare services. Full article
Show Figures

Figure 1

34 pages, 1156 KiB  
Systematic Review
Mathematical Modelling and Optimization Methods in Geomechanically Informed Blast Design: A Systematic Literature Review
by Fabian Leon, Luis Rojas, Alvaro Peña, Paola Moraga, Pedro Robles, Blanca Gana and Jose García
Mathematics 2025, 13(15), 2456; https://doi.org/10.3390/math13152456 - 30 Jul 2025
Viewed by 242
Abstract
Background: Rock–blast design is a canonical inverse problem that joins elastodynamic partial differential equations (PDEs), fracture mechanics, and stochastic heterogeneity. Objective: Guided by the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) protocol, a systematic review of mathematical methods for geomechanically informed [...] Read more.
Background: Rock–blast design is a canonical inverse problem that joins elastodynamic partial differential equations (PDEs), fracture mechanics, and stochastic heterogeneity. Objective: Guided by the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) protocol, a systematic review of mathematical methods for geomechanically informed blast modelling and optimisation is provided. Methods: A Scopus–Web of Science search (2000–2025) retrieved 2415 records; semantic filtering and expert screening reduced the corpus to 97 studies. Topic modelling with Bidirectional Encoder Representations from Transformers Topic (BERTOPIC) and bibliometrics organised them into (i) finite-element and finite–discrete element simulations, including arbitrary Lagrangian–Eulerian (ALE) formulations; (ii) geomechanics-enhanced empirical laws; and (iii) machine-learning surrogates and multi-objective optimisers. Results: High-fidelity simulations delimit blast-induced damage with ≤0.2 m mean absolute error; extensions of the Kuznetsov–Ram equation cut median-size mean absolute percentage error (MAPE) from 27% to 15%; Gaussian-process and ensemble learners reach a coefficient of determination (R2>0.95) while providing closed-form uncertainty; Pareto optimisers lower peak particle velocity (PPV) by up to 48% without productivity loss. Synthesis: Four themes emerge—surrogate-assisted PDE-constrained optimisation, probabilistic domain adaptation, Bayesian model fusion for digital-twin updating, and entropy-based energy metrics. Conclusions: Persisting challenges in scalable uncertainty quantification, coupled discrete–continuous fracture solvers, and rigorous fusion of physics-informed and data-driven models position blast design as a fertile test bed for advances in applied mathematics, numerical analysis, and machine-learning theory. Full article
Show Figures

Figure 1

15 pages, 5904 KiB  
Study Protocol
Protocol for the Digital, Individualized, and Collaborative Treatment of Type 2 Diabetes in General Practice Based on Decision Aid (DICTA)—A Randomized Controlled Trial
by Sofie Frigaard Kristoffersen, Jeanette Reffstrup Christensen, Louise Munk Ramo Jeremiassen, Lea Bolette Kylkjær, Nanna Reffstrup Christensen, Sally Wullf Jørgensen, Jette Kolding Kristensen, Sonja Wehberg, Ilan Esra Raymond, Dorte E. Jarbøl, Jesper Bo Nielsen, Jens Søndergaard, Michael Hecht Olsen, Jens Steen Nielsen and Carl J. Brandt
Nutrients 2025, 17(15), 2494; https://doi.org/10.3390/nu17152494 - 30 Jul 2025
Viewed by 207
Abstract
Background: Despite significant advancements in diabetes care, many individuals with type 2 diabetes (T2D) do not receive optimal care and treatment. Digital interventions promoting behavioral changes have shown promising long-term results in supporting healthier lifestyles but are not implemented in most healthcare [...] Read more.
Background: Despite significant advancements in diabetes care, many individuals with type 2 diabetes (T2D) do not receive optimal care and treatment. Digital interventions promoting behavioral changes have shown promising long-term results in supporting healthier lifestyles but are not implemented in most healthcare offerings, maybe due to lack of general practice support and collaboration. This study evaluates the efficacy of the Digital, Individualized, and Collaborative Treatment of T2D in General Practice Based on Decision Aid (DICTA), a randomized controlled trial integrating a patient-centered smartphone application for lifestyle support in conjunction with a clinical decision support (CDS) tool to assist general practitioners (GPs) in optimizing antidiabetic treatment. Methods: The present randomized controlled trial aims to recruit 400 individuals with T2D from approximately 70 GP clinics (GPCs) in Denmark. The GPCs will be cluster-randomized in a 2:3 ratio to intervention or control groups. The intervention group will receive one year of individualized eHealth lifestyle coaching via a smartphone application, guided by patient-reported outcomes (PROs). Alongside this, the GPCs will have access to the CDS tool to optimize pharmacological decision-making through electronic health records. The control group will receive usual care for one year, followed by the same intervention in the second year. Results: The primary outcome is the one-year change in estimated ten-year cardiovascular risk, assessed by SCORE2-Diabetes calculated from age, smoking status, systolic blood pressure, total and high-density lipoprotein cholesterol, age at diabetes diagnosis, HbA1c, and eGFR. Conclusions: If effective, DICTA could offer a scalable, digital-first approach for improving T2D management in primary care by combining patient-centered lifestyle coaching with real-time pharmacological clinical decision support. Full article
(This article belongs to the Section Nutrition and Diabetes)
Show Figures

Figure 1

48 pages, 835 KiB  
Review
Evaluating Maturity Models in Healthcare Information Systems: A Comprehensive Review
by Jorge Gomes and Mário Romão
Healthcare 2025, 13(15), 1847; https://doi.org/10.3390/healthcare13151847 - 29 Jul 2025
Viewed by 357
Abstract
Healthcare Information Systems (HISs) are essential for improving care quality, managing chronic diseases, and supporting clinical decision-making. Despite significant investments, HIS implementations often fail due to the complexity of healthcare environments. Maturity Models (MMs) have emerged as tools to guide organizational improvement by [...] Read more.
Healthcare Information Systems (HISs) are essential for improving care quality, managing chronic diseases, and supporting clinical decision-making. Despite significant investments, HIS implementations often fail due to the complexity of healthcare environments. Maturity Models (MMs) have emerged as tools to guide organizational improvement by assessing readiness, process efficiency, technology adoption, and interoperability. This study presents a comprehensive literature review identifying 45 Maturity Models used across various healthcare domains, including telemedicine, analytics, business intelligence, and electronic medical records. These models, often based on Capability Maturity Model Integration (CMMI), vary in structure, scope, and maturity stages. The findings demonstrate that structured maturity assessments help healthcare organizations plan, implement, and optimize HIS more effectively, leading to enhanced clinical and operational performance. This review contributes to an understanding of how different MMs can support healthcare digital transformation and provides a resource for selecting appropriate models based on specific organizational goals and technological contexts. Full article
Show Figures

Figure 1

21 pages, 5017 KiB  
Article
Vessel Trajectory Prediction with Deep Learning: Temporal Modeling and Operational Implications
by Nicos Evmides, Michalis P. Michaelides and Herodotos Herodotou
J. Mar. Sci. Eng. 2025, 13(8), 1439; https://doi.org/10.3390/jmse13081439 - 28 Jul 2025
Viewed by 178
Abstract
Vessel trajectory prediction is fundamental to maritime navigation, safety, and operational efficiency, particularly as the industry increasingly relies on digital solutions and real-time data analytics. This study addresses the challenge of forecasting vessel movements using historical Automatic Identification System (AIS) data, with a [...] Read more.
Vessel trajectory prediction is fundamental to maritime navigation, safety, and operational efficiency, particularly as the industry increasingly relies on digital solutions and real-time data analytics. This study addresses the challenge of forecasting vessel movements using historical Automatic Identification System (AIS) data, with a focus on understanding the temporal behavior of deep learning models under different input and prediction horizons. To this end, a robust data pre-processing pipeline was developed to ensure temporal consistency, filter anomalous records, and segment continuous vessel trajectories. Using a curated dataset from the eastern Mediterranean, three deep recurrent neural network architectures, namely LSTM, Bi-LSTM, and Bi-GRU, were evaluated for short- and long-term trajectory prediction. Empirical results demonstrate that Bi-LSTM consistently achieves higher accuracy across both horizons, with performance gradually degrading under extended forecast windows. The analysis also reveals key insights into the trade-offs between model complexity, horizon-specific robustness, and predictive stability. This work contributes to maritime informatics by offering a comparative evaluation of recurrent architectures and providing a structured and empirical foundation for selecting and deploying trajectory forecasting models in operational contexts. Full article
(This article belongs to the Special Issue Maritime Transport and Port Management)
Show Figures

Figure 1

12 pages, 1313 KiB  
Article
Chair-Time During Polishing with Different Burs and Drills After Cement Customized Brackets Bonding: An In Vitro Comparative Study
by Javier Flores-Fraile, Alba Belanche Monterde, Oscar Alonso-Ezpeleta, Cosimo Galletti and Álvaro Zubizarreta-Macho
Dent. J. 2025, 13(8), 347; https://doi.org/10.3390/dj13080347 - 28 Jul 2025
Viewed by 224
Abstract
Introduction: Digital planning and evolution of technology is allowing dentistry to be more efficient in time than before. In orthodontics the main purpose is to obtain fewer patient visits and to reduce the bonding time. For that, indirect bonding planned with CAD-CAM softwares [...] Read more.
Introduction: Digital planning and evolution of technology is allowing dentistry to be more efficient in time than before. In orthodontics the main purpose is to obtain fewer patient visits and to reduce the bonding time. For that, indirect bonding planned with CAD-CAM softwares is used to obtain a shorter treatment period, in general, and less chair-time. This waste of chair-time should also be reduced in other fields of dentistry such as endodontics, surgery, prosthodontics, and aesthetics. Methods: A total of 504 teeth were embedded into epoxy resin models mounted as a dental arch. Customized lingual multibracket appliances were bonded by a current adhesion protocol. After that, they were debonded, the polishing of cement remnants was performed with three different burs and two drills. The polishing time of each group was recorded by an iPhone 14 chronometer. Results: Descriptive and comparative statistical analyses were performed with the different study groups. Statistical differences (p < 0.005) between diamond bur and tungsten carbide and white stone burs and turbine were obtained, with the first being the slowest of them. Discussion: Enamel roughness was widely studied in orthodontics polishing protocol as the main variable for protocols establishment. However, in lingual orthodontics, due the difficulty of the access to the enamel surfaces, the protocol is not clear and efficiency should be considered. It was observed that the tungsten carbide bur is the safest bur. It was also recommended that a two-step protocol of polishing by tungsten carbide bur be followed by polishers. Conclusions: A tungsten carbide bur mounted in a turbine was the most efficient protocol for polishing after lingual bracket debonding. Full article
(This article belongs to the Special Issue Malocclusion: Treatments and Rehabilitation)
Show Figures

Figure 1

Back to TopTop