Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (255)

Search Parameters:
Keywords = diffuse fibrosis

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 482 KiB  
Article
In Vitro Antimicrobial Activity of the Novel Antimicrobial Peptide OMN51 Against Multi-Drug-Resistant Pseudomonas aeruginosa Isolated from People with Cystic Fibrosis
by Moshe Heching, Moshe Cohen-Kutner, Haim Ben-Zvi, Liora Slomianksy, Elital Chass Maurice, Noa Nur Maymon, Shira Mandel, Michal Oholy, Rony Moses, Michal Lavon, Katherine Kaufman, Orel Mayost Lev-Ari, Tamar Shachar, Joel Weinberg, Mordechai R. Kramer and Niv Bachnoff
J. Clin. Med. 2025, 14(15), 5208; https://doi.org/10.3390/jcm14155208 - 23 Jul 2025
Abstract
Background: People with cystic fibrosis (pwCF) frequently suffer from chronic lung infections, with Pseudomonas aeruginosa being the predominant pathogen contributing to disease progression and morbidity. The increasing prevalence of multi-drug-resistant (MDR) P. aeruginosa has diminished treatment options. Antimicrobial peptides (AMPs) have emerged as [...] Read more.
Background: People with cystic fibrosis (pwCF) frequently suffer from chronic lung infections, with Pseudomonas aeruginosa being the predominant pathogen contributing to disease progression and morbidity. The increasing prevalence of multi-drug-resistant (MDR) P. aeruginosa has diminished treatment options. Antimicrobial peptides (AMPs) have emerged as promising alternatives to conventional antibiotics due to their unique membrane-targeting mechanisms. OMN51, a novel bioengineered AMP derived from capitellacin, was evaluated for antimicrobial activity against P. aeruginosa in sputum samples from pwCF. This study aimed to compare the bactericidal effects of OMN51 with those of a range of conventional antibiotics known to have activity against P. aeruginosa clinical isolates derived from pwCF. Methods:P. aeruginosa clinical isolates were obtained from fifty-six unique sputum cultures of pwCF at a tertiary-university-affiliated hospital. Minimum inhibitory concentrations (MICs) of OMN51 and comparator antibiotics were determined using broth microdilution. Antimicrobial susceptibility was evaluated using the Kirby–Bauer disc diffusion method. Results: OMN51 demonstrated in vitro bactericidal activity across all P. aeruginosa isolates, including MDR strains. MIC values for OMN51 ranged from 4 to 16 µg/mL, with no observed resistance or cross-resistance. Comparative analysis revealed the superior efficacy of OMN51 compared with conventional antibiotics. Conclusions: OMN51 exhibits robust in vitro activity against MDR P. aeruginosa, supporting its candidacy as a therapeutic agent for MDR P. aeruginosa- associated infections. Further studies are warranted to assess pharmacokinetics and in vivo safety and efficacy. OMN51 represents a first-in-class, membrane-targeting therapeutic showing promise against MDR P. aeruginosa. Full article
(This article belongs to the Special Issue Cystic Fibrosis: Novel Strategies of Diagnosis and Treatments)
Show Figures

Figure 1

13 pages, 674 KiB  
Article
The Relationship Between Chest Wall Muscle Thickness, Pulmonary Function, and Prognostic Markers in Idiopathic Pulmonary Fibrosis
by Pelin Pınar Deniz, Sevgül Köse, İsmail Hanta, Pelin Duru Çetinkaya, Merisa Sinem Arslan and Erolcan Datlı
Medicina 2025, 61(7), 1181; https://doi.org/10.3390/medicina61071181 - 29 Jun 2025
Viewed by 231
Abstract
Background and Objectives: Idiopathic pulmonary fibrosis (IPF) is a specific form of chronic, progressive interstitial lung disease with an unknown etiology. It is often accompanied by skeletal muscle mass loss. Chest wall muscles play a crucial role in respiratory movements and form [...] Read more.
Background and Objectives: Idiopathic pulmonary fibrosis (IPF) is a specific form of chronic, progressive interstitial lung disease with an unknown etiology. It is often accompanied by skeletal muscle mass loss. Chest wall muscles play a crucial role in respiratory movements and form part of the skeletal muscles. The aim of this study is to evaluate the relationship between chest wall muscle thickness and pulmonary function test (PFT) results, as well as other prognostic markers, in patients with IPF. Materials and Methods: A retrospective analysis was conducted on 108 patients diagnosed with IPF and 53 control subjects. Chest wall muscle thickness was measured on thoracic computed tomography (CT) images at specific anatomical levels. PFT parameters, the Gender-Age-Physiology (GAP) index, number of acute exacerbations, and mortality data were evaluated in relation to muscle thickness. Results: IPF patients had significantly reduced thickness in the bilateral external scapular muscles at both the aortic and pulmonary trunk levels compared to controls. Bilateral pectoral muscle thickness at the aortic level was positively correlated with forced vital capacity (FVC) and negatively correlated with the number of exacerbations. Internal scapular muscle thickness at the aortic level showed a significant positive correlation with diffusion capacity of the lung for carbon monoxide (DLCO) and a negative correlation with both GAP scores and exacerbation frequency. External scapular muscle thickness at the pulmonary trunk level was positively associated with PFT parameters and inversely correlated with the GAP index, exacerbations, and mortality. Conclusions: In patients with IPF, the bilateral external scapular muscle thickness at the aortic and pulmonary trunk levels was significantly reduced compared to controls. Significant associations were found between some chest wall muscle thicknesses and the GAP index, pulmonary function, acute exacerbations, and mortality, underscoring the prognostic value of baseline muscle measurements. Measurement of chest wall muscle thickness using routine thoracic CT scans may offer additional prognostic value in IPF. Incorporating this parameter into clinical evaluation may help identify patients who could benefit from supportive interventions, such as nutritional therapy or pulmonary rehabilitation. Full article
(This article belongs to the Section Pulmonology)
Show Figures

Figure 1

18 pages, 976 KiB  
Review
Current Update on DWI-MRI and Its Radiomics in Liver Fibrosis—A Review of the Literature
by Ali S. Alyami
Tomography 2025, 11(6), 63; https://doi.org/10.3390/tomography11060063 - 30 May 2025
Viewed by 701
Abstract
Introduction: Diffusion-weighted imaging (DWI) is a non-invasive technique for acquiring liver pathology data and characterizing liver lesions. This modality shows promise for applications in the initial diagnosis and monitoring of liver diseases, providing valuable insights for clinical assessment and treatment strategies. Intravoxel incoherent [...] Read more.
Introduction: Diffusion-weighted imaging (DWI) is a non-invasive technique for acquiring liver pathology data and characterizing liver lesions. This modality shows promise for applications in the initial diagnosis and monitoring of liver diseases, providing valuable insights for clinical assessment and treatment strategies. Intravoxel incoherent motion (IVIM), diffusion kurtosis imaging (DKI), and diffusion tensor imaging (DTI) are advanced forms of DWI. These techniques have proven effective for assessing liver lesions, including liver tumors and fibrosis. However, the results can be inconsistent. Thus, it is essential to summarize the current applications of these methods in liver fibrosis, identify existing limitations, and suggest future directions for development. Methods: This review assessed studies concerning liver DWI and its applications published in the PubMed database over the last nine years. It presents these techniques’ fundamental principles and key factors before discussing their application in liver fibrosis. Results and conclusions: It has been observed that advanced DWI sequences remain unreliable in ensuring the robustness and reproducibility of measurements when assessing liver fibrosis grades, due to inconsistent results and significant overlap among these techniques across different stages of fibrotic conditions. Full article
Show Figures

Figure 1

13 pages, 741 KiB  
Article
Safety and Clinical Impact of the Concomitant Use of Antifibrotic Drugs and Anticoagulants: A Single-Centre Retrospective Study
by Alessandra Pagano, Matilde Bruni, Laura Tavanti, Francesco Pistelli, Davide Chimera, Laura Carrozzi, Alessandro Celi and Roberta Pancani
Therapeutics 2025, 2(2), 9; https://doi.org/10.3390/therapeutics2020009 - 30 May 2025
Viewed by 321
Abstract
Background: Idiopathic pulmonary fibrosis (IPF) and progressive pulmonary fibrosis (PPF) are chronic conditions often accompanied by a prothrombotic state. Antifibrotic therapies, including nintedanib and pirfenidone, have demonstrated efficacy in slowing disease progression. Despite the known interactions between coagulation pathways and fibrotic processes, there [...] Read more.
Background: Idiopathic pulmonary fibrosis (IPF) and progressive pulmonary fibrosis (PPF) are chronic conditions often accompanied by a prothrombotic state. Antifibrotic therapies, including nintedanib and pirfenidone, have demonstrated efficacy in slowing disease progression. Despite the known interactions between coagulation pathways and fibrotic processes, there is a lack of data in the literature on the safety of the concomitant use of anticoagulants and antifibrotics. Objectives: This study aimed to evaluate the safety and clinical impact of combining antifibrotics and anticoagulants in patients with IPF or PPF. A single-center, retrospective study was conducted on 137 patients diagnosed with IPF or PPF, 25 of whom were on concurrent anticoagulant therapy (AC+). Baseline demographics, pulmonary function tests (PFTs), bleeding risk scores (HAS-BLED, RIETE), and clinical outcomes were analyzed over a 12-month follow-up period. Methods: Statistical analyses included t-tests, χ2 tests, Kaplan–Meier survival analysis, and multivariate logistic regression. Results: Two clinically relevant bleeding events were observed, with one in the AC+ group. No major bleeding episodes occurred in either group. Baseline forced vital capacity (FVC) was lower in the AC+ group (73.4 ± 16.9% vs. 83.0 ± 21.9%; p = 0.04), but no significant differences were observed in FVC, forced expiratory volume (FEV1), or diffusing capacity for carbon monoxide (DLCO) at 6 and 12 months. Survival rates and radiological progression were comparable between groups. Multivariate analysis revealed that DLCO was an independent predictor of mortality (HR 0.84; p = 0.005), while anticoagulant use was not. Conclusions: The concomitant use of antifibrotics and anticoagulants appears safe, with no significant increase in bleeding risk or adverse effects on disease progression. Future prospective studies are required to confirm these findings and explore the long-term impact of this therapeutic combination. Full article
Show Figures

Figure 1

18 pages, 1740 KiB  
Article
Cytoimmunological Profile of Lower Airways in Post-COVID-19 Syndrome (PCS): Predictive Value of Bronchoalveolar Lavage
by Justyna Dolna-Michno, Piotr Kopiński, Grzegorz Przybylski, Ewa Wypasek, Magdalena Szymańska, Ewelina Wędrowska, Klaudia Mikołajczyk, Tomasz Senderek and Maciej Gagat
J. Clin. Med. 2025, 14(10), 3361; https://doi.org/10.3390/jcm14103361 - 12 May 2025
Viewed by 608
Abstract
Background: It has yet to be determined whether the immunocytological profile of the bronchoalveolar lavage (BAL) in respiratory post-COVID syndrome (PCS) reflects the risk of persistent interstitial lung disease (ILD), including pulmonary fibrosis. In this study, we aimed to assess the prognostic [...] Read more.
Background: It has yet to be determined whether the immunocytological profile of the bronchoalveolar lavage (BAL) in respiratory post-COVID syndrome (PCS) reflects the risk of persistent interstitial lung disease (ILD), including pulmonary fibrosis. In this study, we aimed to assess the prognostic value of the BAL cytoimmunologic profile in PCS-related ILD. Materials and Methods: We enrolled 58 non-smoking patients with a history of COVID-19 and new-onset ILD, divided into PCS remission and PCS persistence groups based on clinical data, including repeated computed tomography and pulmonary function tests. We phenotyped BAL major T cell subsets, immune checkpoints (including programmed cell death-1, PD1), and markers of Th1/Th2/Th17 polarization. Results: The PCS groups compared to the control showed increased total cell, lymphocyte, and neutrophil counts and a high BAL neutrophil:lymphocyte ratio (NLR). PCS persistence compared to the controls presented an increased neutrophil count (26 [17–36] vs. 2.6 [1.9–5.4] 103/mL, median [Q1–Q3], p < 0.001) and percentage, BAL NLR (0.77 [0.26–1.63] vs. 0.21 [0.17–0.31], p < 0.0001), CD8+PD1+ cell percentage (43.5 [34–60.5] vs. 24.5 [22–44]%, p = 0.045), and a decreased CD4:CD8 ratio. A high percentage of CD4+CD196+CD183 cells (relevant to Th17 activity, 6.2 [2.0–9.4] vs. 1.2 [0.7–2.7]%, p = 0.02) and increased BAL supernatant elevated IL-8 levels (62.5 [16–243] vs. 10.9 [3.44–32] pg/mL, p = 0.002) were found in the PCS persistence vs. control groups. In the total PCS group, predicted values of Vital Capacity (VC) [16–243] and Diffusing Lung Capacity for CO (DLCO) correlated negatively with BAL NLR; VC correlated negatively with BAL CD8+PD1+; and DLCO correlated positively with the CD4:CD8 ratio. Conclusions: Worse prognosis in PCS is associated with higher BAL NLR, BAL neutrophilia, an elevated percentage of CD8+PD1+ lymphocytes, and a decline in the CD4:CD8 ratio. Th17 cells and IL-8 participate in lung PCS persistence. Full article
(This article belongs to the Special Issue Novel Insights into COVID-19-Associated Complications and Sequelae)
Show Figures

Figure 1

35 pages, 2225 KiB  
Review
Myocardial Perfusion Imaging with Cardiovascular Magnetic Resonance in Nonischemic Cardiomyopathies: An In-Depth Review of Techniques and Clinical Applications
by Ilir Sharka, Giorgia Panichella, Chrysanthos Grigoratos, Matilda Muca, Carmelo De Gori, Petra Keilberg, Giovanni Novani, Valerio Barra, Hana Hlavata, Matteo Bianchi, Denisa Simona Zai, Francesca Frijia, Alberto Clemente, Giancarlo Todiere and Andrea Barison
Medicina 2025, 61(5), 875; https://doi.org/10.3390/medicina61050875 - 10 May 2025
Viewed by 2319
Abstract
Background and Objectives: Nonischemic cardiomyopathies comprise a wide spectrum of heart muscle disorders characterized by different morphological, functional, and tissue abnormalities. Cardiovascular magnetic resonance (CMR) represents the gold standard imaging modality for assessing cardiac morphology, systolic function, and tissue characterization, thereby aiding [...] Read more.
Background and Objectives: Nonischemic cardiomyopathies comprise a wide spectrum of heart muscle disorders characterized by different morphological, functional, and tissue abnormalities. Cardiovascular magnetic resonance (CMR) represents the gold standard imaging modality for assessing cardiac morphology, systolic function, and tissue characterization, thereby aiding in early diagnosis, precise phenotyping, and tailored treatment. The aim of this review is to provide an up-to-date overview of CMR techniques for studying myocardial perfusion and their applications to nonischemic cardiomyopathy, not only to rule out an underlying ischemic aetiology but also to investigate the pathophysiological characteristics of microcirculatory dysfunction in these patients. Materials and Methods: We performed a structured review of the literature focusing on first-pass gadolinium perfusion sequences, stress protocols, and emerging pixel-wise perfusion mapping approaches. Studies were selected to illustrate the methods for image acquisition, post-processing, and quantification of myocardial blood flow (MBF) and myocardial perfusion reserve (MPR), as well as to highlight associations with clinical endpoints. Results: First-pass CMR perfusion imaging reliably detects diffuse and regional microvascular dysfunction across cardiomyopathies. Semi-quantitative parameters (e.g., upslope, MPRI) and quantitative MBF mapping (mL/g/min) have demonstrated that impaired perfusion correlates with disease severity, extent of fibrosis, and adverse outcomes, including heart failure hospitalization, arrhythmias, and mortality. Novel automated pixel-wise mapping enhances reproducibility and diagnostic accuracy, distinguishing coronary microvascular dysfunction from balanced three-vessel disease. Microvascular dysfunction—present in approximately 50–60% of dilated cardiomyopathy (DCM), 40–80% of hypertrophic cardiomyopathy (HCM), and >95% of cardiac amyloidosis (CA) patients—has emerged as a key driver of adverse outcomes. Perfusion defects appear early, often preceding overt hypertrophy or fibrosis, and provide incremental prognostic value beyond conventional CMR metrics. Conclusions: CMR represents a powerful tool for detecting myocardial perfusion abnormalities in nonischemic cardiomyopathies, improving phenotyping, risk stratification, and personalized management. Further standardization of quantitative perfusion techniques will facilitate broader clinical adoption. Full article
Show Figures

Figure 1

13 pages, 690 KiB  
Review
Nitrofurantoin-Induced Pulmonary Toxicity: Mechanisms, Diagnosis, and Management
by Alan D. Kaye, Shivam S. Shah, Leon LaHaye, John A. Hennagin, Anna K. Ardoin, Alexandra Dubuisson, Shahab Ahmadzadeh and Sahar Shekoohi
Toxics 2025, 13(5), 382; https://doi.org/10.3390/toxics13050382 - 9 May 2025
Viewed by 1515
Abstract
Nitrofurantoin, a commonly prescribed antibiotic for urinary tract infections, has been associated with rare but potentially serious pulmonary toxicity, which can present in acute, subacute, or chronic forms. Acute toxicity typically manifests in the form of hypersensitivity pneumonitis, which is characterized by fever, [...] Read more.
Nitrofurantoin, a commonly prescribed antibiotic for urinary tract infections, has been associated with rare but potentially serious pulmonary toxicity, which can present in acute, subacute, or chronic forms. Acute toxicity typically manifests in the form of hypersensitivity pneumonitis, which is characterized by fever, dyspnea, and eosinophilia, often resolving rapidly after drug discontinuation. However, chronic toxicity can lead to interstitial lung disease with progressive fibrosis, causing significant and sometimes irreversible pulmonary impairment. The pathophysiology of nitrofurantoin-induced lung injury is thought to involve oxidative stress, immune-mediated mechanisms, and direct cytotoxic effects; however, the exact pathways remain incompletely understood. Clinical diagnosis is challenging due to nonspecific symptoms that often resemble other respiratory conditions, leading to delays in recognition and treatment. Radiographic findings vary, with acute cases showing diffuse ground-glass opacities, while chronic cases may demonstrate reticular interstitial changes and fibrosis. The discontinuation of nitrofurantoin is the primary intervention, but corticosteroids may be beneficial, particularly in chronic cases with persistent inflammation or fibrosis, though their efficacy remains uncertain. Given the risk of long-term respiratory complications, heightened awareness among healthcare providers is essential for early diagnosis and intervention. Future research is needed to better define risk factors, improve diagnostic criteria, and explore alternative treatment strategies that mitigate the potential for pulmonary toxicity while maintaining effective antimicrobial therapy. This review explores the pathophysiology, clinical presentation, diagnostic challenges, and management strategies for nitrofurantoin-induced pulmonary toxicity. Full article
(This article belongs to the Section Drugs Toxicity)
Show Figures

Figure 1

24 pages, 5417 KiB  
Article
Nano-Spray-Drying of Cyclodextrin/Ibuprofen Complexes with Aerosolization-Enhancing Additives for Pulmonary Drug Delivery
by Anett Motzwickler-Németh, Endre Körmendi, Árpád Farkas, Ildikó Csóka and Rita Ambrus
Int. J. Mol. Sci. 2025, 26(9), 4320; https://doi.org/10.3390/ijms26094320 - 1 May 2025
Viewed by 743
Abstract
Cyclodextrins (CDs) enhance the solubility of poorly water-soluble drugs like ibuprofen (IBU), making them promising carriers for pulmonary drug delivery. This route lowers the required dose, minimizing side effects, which could be beneficial in treating cystic fibrosis. In this study, a nano-spray-drying technique [...] Read more.
Cyclodextrins (CDs) enhance the solubility of poorly water-soluble drugs like ibuprofen (IBU), making them promising carriers for pulmonary drug delivery. This route lowers the required dose, minimizing side effects, which could be beneficial in treating cystic fibrosis. In this study, a nano-spray-drying technique was applied to prepare CD/IBU complexes using sulfobutylether-β-cyclodextrin (SBECD) or (2-Hydroxy-3-N,N,N-trimethylamino)propyl-beta-cyclodextrin chloride (QABCD) as carriers as well as mannitol (MAN) and leucine (LEU) as aerosolization excipients. Various investigation techniques were utilized to examine and characterize the samples, including a Master Sizer particle size analyzer, scanning electron microscopy (SEM), X-ray powder diffraction (XRPD), differential scanning calorimetry (DSC), and Fourier-transform infrared spectroscopy (FT-IR). We applied in vitro Andersen Cascade Impactor measurements and in silico simulation analysis to determine the sample’s aerodynamic properties. We also performed in vitro dissolution and diffusion tests. Applying formulations with optimal aerodynamic properties, we achieved an improved ~50% fine particle fraction values based on the Andersen Cascade Impactor measurements. The in vitro dissolution and diffusion studies revealed rapid IBU release from the formulations; however, the QABCD-based sample exhibited reduced membrane diffusion compared to SBECD due to the formation of electrostatic interactions. Full article
Show Figures

Figure 1

14 pages, 937 KiB  
Article
Utility of Serum Biomarkers of Myocardial Fibrosis in High-Gradient Severe Aortic Stenosis: An Explorative Cardiovascular Magnetic Resonance Imaging-Based Study
by Megan R. Rajah, Erna Marais, Gerald J. Maarman, Emma Doubell, Anton F. Doubell and Philip G. Herbst
Diagnostics 2025, 15(9), 1143; https://doi.org/10.3390/diagnostics15091143 - 30 Apr 2025
Viewed by 512
Abstract
Background: Myocardial fibrosis in aortic stenosis (AS) is associated with a significant risk of poor clinical outcomes. Myocardial fibrosis can be evaluated using cardiovascular magnetic resonance (CMR) imaging and may be useful for risk-stratifying patients at high risk for poorer outcomes. A circulating [...] Read more.
Background: Myocardial fibrosis in aortic stenosis (AS) is associated with a significant risk of poor clinical outcomes. Myocardial fibrosis can be evaluated using cardiovascular magnetic resonance (CMR) imaging and may be useful for risk-stratifying patients at high risk for poorer outcomes. A circulating biomarker of fibrosis may be a cheaper, more accessible alternative to CMR in lower-to-middle-income countries. This study evaluated the correlation between serum biomarkers of myocardial fibrosis (TGF-β1, PICP, and PIIINP) with CMR markers of myocardial fibrosis (T1 mapping, extracellular volume fraction (ECV), and late gadolinium enhancement (LGE)). Methods: Twenty-one high-gradient (mean gradient ≥ 40 mmHg) severe AS (aortic valve area < 1.0 cm2) participants underwent T1 mapping and LGE imaging using CMR. Blood serum was collected for enzyme-linked immunosorbent assays of the listed biomarkers. Results: Serum TGF-β1 was associated significantly with the global T1 relaxation time on CMR (r = 0.46 with 95% CI 0.03 to 0.74, p = 0.04). In the high T1 time group (1056 vs. 1023 ms), trends toward elevated serum TGF-β1 concentration (13,044 vs. 10,341 pg/mL, p = 0.08) and ECV (26% vs. 24%, p = 0.07) were observed. The high T1 and trend towards elevated TGF-β1 concentration in this group tracked adverse LV remodeling and systolic dysfunction. There were no significant associations between PICP/PIIINP and T1 mapping or between the biomarkers and LGE quantity. Conclusions: Serum TGF-β1 is a potential surrogate for diffuse interstitial fibrosis measured by T1 mapping and ECV on CMR. Serum PICP and PIIINP may be less appropriate as surrogate markers of fibrosis in view of their temporal trends over the course of AS. Larger studies are needed to validate the utility of TGF-β1 as a marker of diffuse fibrosis and to evaluate the utility of serial PICP/PIIINP measurements to predict decompensation. Full article
(This article belongs to the Special Issue Cardiovascular Imaging)
Show Figures

Figure 1

32 pages, 1899 KiB  
Review
Advances in Gene Therapy with Oncolytic Viruses and CAR-T Cells and Therapy-Related Groups
by Yasunari Matsuzaka and Ryu Yashiro
Curr. Issues Mol. Biol. 2025, 47(4), 268; https://doi.org/10.3390/cimb47040268 - 10 Apr 2025
Viewed by 1393
Abstract
Cancer gene therapy is attracting considerable attention as a new treatment method for overcoming intractable cancers. CAR-T cell therapy has already achieved remarkable results, particularly for hematological tumors. Because CAR-T cells can increase within the body, they have the advantage of requiring only [...] Read more.
Cancer gene therapy is attracting considerable attention as a new treatment method for overcoming intractable cancers. CAR-T cell therapy has already achieved remarkable results, particularly for hematological tumors. Because CAR-T cells can increase within the body, they have the advantage of requiring only a single administration. In addition, CAR-T cell therapy targeting the CD19 antigen has been established for relapsed or refractory disease in young people with CD19-positive acute B-cell leukemia (B-acute lymphoblastic leukemia, B-ALL) and diffuse large B-cell lymphoma (DLBCL). In addition to CAR-T cell therapy, oncolytic viruses represent a promising approach for cancer treatment, with some already in clinical use and others being researched for their potential benefits. These viruses infect and kill cancer cells, triggering an immune response that helps the body recognize and fight cancer. Oncolytic virus therapy is a form of immunotherapy that uses modified viruses to target and destroy tumor cells while potentially stimulating antitumor immune responses. These viruses have shown promising activity in clinical trials, with some approved for specific cancers like melanoma. Research is ongoing to improve their efficacy, expand their use to other cancer types, and overcome the logistical challenges associated with their delivery. Gene therapy can potentially treat diseases caused by recessive gene disorders like cystic fibrosis, hemophilia, muscular dystrophy, and sickle cell anemia, as well as acquired genetic diseases, such as cancer and viral infections like acquired immunodeficiency syndrome (AIDS). Full article
(This article belongs to the Special Issue New Immunological Therapeutic Strategies in Kidney Disease)
Show Figures

Figure 1

24 pages, 2622 KiB  
Review
Comprehending the Role of Metabolic and Hemodynamic Factors Alongside Different Signaling Pathways in the Pathogenesis of Diabetic Nephropathy
by Yashumati Ratan, Aishwarya Rajput, Ashutosh Pareek, Aaushi Pareek and Gurjit Singh
Int. J. Mol. Sci. 2025, 26(7), 3330; https://doi.org/10.3390/ijms26073330 - 3 Apr 2025
Cited by 3 | Viewed by 1442
Abstract
Diabetic nephropathy (DN) is a progressive microvascular disorder of diabetes that contributes as a primary reason for end-stage renal disease worldwide. The pathological hallmarks of DN include diffuse mesangial expansion, thicker basement membrane of glomeruli, and arteriole hyalinosis. Hypertension and chronic hyperglycemia are [...] Read more.
Diabetic nephropathy (DN) is a progressive microvascular disorder of diabetes that contributes as a primary reason for end-stage renal disease worldwide. The pathological hallmarks of DN include diffuse mesangial expansion, thicker basement membrane of glomeruli, and arteriole hyalinosis. Hypertension and chronic hyperglycemia are the primary risk factors contributing to the occurrence of DN. The complex pathophysiology of DN involves the interplay amongst metabolic and hemodynamic pathways, growth factors and cytokines production, oxidative stress, and ultimately impaired kidney function. Hyperglycemia-induced vascular dysfunction is the main pathological mechanism that initiates DN. However, several other pathogenic mechanisms, such as oxidative stress, inflammatory cell infiltration, and fibrosis, contribute to disease progression. Different vasoactive hormone processes, including endothelin and renin–angiotensin, are activated as a part of the pathophysiology of DN, which also involves increased intraglomerular and systemic pressure. The pathophysiology of DN will continue to be better understood because of recent developments in genomics and molecular biology, but attempts to develop a comprehensive theory that explains all existing cellular and biochemical pathways have been thwarted by the disease’s multifactorial nature. This review extensively discusses the current understanding regarding the metabolic and hemodynamic pathological mechanisms, along with other signaling pathways and molecules responsible for the pathogenesis of DN. This work will encourage a greater in-depth understanding and investigation of the present status of the biochemical mechanistic processes underlying the pathogenesis of DN, which may assist in the determination of different biomarkers and help in the design and development of novel drug candidates in the near future. Full article
(This article belongs to the Special Issue Molecular Mechanisms and Therapeutic Targets for Pain Regulation)
Show Figures

Figure 1

19 pages, 2495 KiB  
Article
Impact of the Human Leukocyte Antigen Complex on Idiopathic Pulmonary Fibrosis Development and Progression in the Sardinian Population
by Marina Serra, Stefano Mocci, Silvia Deidda, Maurizio Melis, Luchino Chessa, Sara Lai, Erika Giuressi, Caterina Mereu, Celeste Sanna, Michela Lorrai, Michela Murgia, Federica Cannas, Alessia Mascia, Andrea Perra, Roberto Littera and Sabrina Giglio
Int. J. Mol. Sci. 2025, 26(6), 2760; https://doi.org/10.3390/ijms26062760 - 19 Mar 2025
Viewed by 437
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive lung disease characterized by the disruption of the alveolar and interstitial architecture due to extracellular matrix deposition. Emerging evidence suggests that genetic susceptibility plays a crucial role in IPF development. This study explores the role [...] Read more.
Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive lung disease characterized by the disruption of the alveolar and interstitial architecture due to extracellular matrix deposition. Emerging evidence suggests that genetic susceptibility plays a crucial role in IPF development. This study explores the role of human leukocyte antigen (HLA) alleles and haplotypes in IPF susceptibility and progression within the genetically distinct Sardinian population. Genotypic data were analyzed for associations with disease onset and progression, focusing on allele and haplotype frequencies in patients exhibiting slow (S) or rapid (R) progression. While no significant differences in HLA allele frequencies were observed between IPF patients and controls, the HLA-DRB1*04:05 allele and the extended haplotype (HLA-A*30:02, B*18:01, C*05:01, DQA1*05:01, DQB1*02:01, DRB1*03:01) were associated with a slower disease progression and improved survival (log-rank = 0.032 and 0.01, respectively). At 36 months, carriers of these variants demonstrated significantly better pulmonary function, measured with single-breath carbon monoxide diffusing capacity (DLCO%p) (p = 0.005 and 0.02, respectively). Multivariate analysis confirmed these findings as being independent of confounding factors. These results highlight the impact of HLA alleles and haplotypes on IPF outcomes and underscore the potential of the Sardinian genetic landscape to illuminate immunological mechanisms, paving the way for predictive biomarkers and personalized therapies. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Figure 1

14 pages, 2207 KiB  
Article
Serum Proteomic Markers in Patients with Systemic Sclerosis in Relation to Silica Exposure
by Mayka Freire, Bernardo Sopeña, Susana Bravo, Carlos Spuch, Ana Argibay, Melania Estévez, Carmen Pena, Martín Naya, Adela Lama and Arturo González-Quintela
J. Clin. Med. 2025, 14(6), 2019; https://doi.org/10.3390/jcm14062019 - 16 Mar 2025
Viewed by 948
Abstract
Background: Systemic sclerosis (SSc) is a multisystem autoimmune disease characterised by fibrosis, vasculopathy, and immune dysfunction. Silica exposure has been associated with a more aggressive phenotype of the disease, including diffuse cutaneous involvement and interstitial lung disease. This study aims to identify proteomic [...] Read more.
Background: Systemic sclerosis (SSc) is a multisystem autoimmune disease characterised by fibrosis, vasculopathy, and immune dysfunction. Silica exposure has been associated with a more aggressive phenotype of the disease, including diffuse cutaneous involvement and interstitial lung disease. This study aims to identify proteomic differences between SSc patients exposed to silica and those not exposed to silica. Methods: An observational study of 32 SSc patients (11 silica-exposed and 21 non-exposed) was performed, with occupational history and quantitative proteomic analysis using SWATH-MS mass spectrometry. Differentially expressed proteins were analysed, and functional pathway enrichment was performed. Results: Eight proteins showed significant differences between groups, all with reduced levels in silica-exposed patients: adiponectin, immunoglobulins (IGLV3-19, IGLV2-18), complement C2, alpha-2-macroglobulin, vitronectin, cytoplasmic actin 2, and pigment epithelium-derived factor. Alterations in pathways related to fibrinolysis, complement activation, and inflammation were highlighted, suggesting that silica exposure may influence the pathogenesis of SSc and worsen its clinical course. Conclusions: This study supports the hypothesis that silica exposure is not only a triggering factor for SSc, but is also modulating its progression through inflammatory, procoagulant, and fibrotic pathways. The identification of proteomic biomarkers could contribute to the phenotypic classification of patients and the development of personalised therapies. Future studies should expand the cohort and further investigate the functional mechanisms of these proteins in SSc. Full article
Show Figures

Figure 1

14 pages, 5075 KiB  
Article
Time-Dependent Changes in Performance, Biochemistry, and Histology in Dairy Calves with Acute Aflatoxicosis
by María Carolina de Luna-López, Arturo G. Valdivia-Flores, Erika Janet Rangel-Muñoz, Emmanuel Hernández-Valdivia, Teódulo Quezada-Tristán, Fernando Jaramillo-Juárez and Raúl Ortiz-Martínez
Vet. Sci. 2025, 12(3), 273; https://doi.org/10.3390/vetsci12030273 - 14 Mar 2025
Viewed by 819
Abstract
Aflatoxins (AFs) are secondary metabolites of Aspergillus spp. They are highly toxic, carcinogenic, and immunosuppressive; AFs cause nonspecific disorders in humans and animals, which makes their diagnosis complex. The objective was to describe the time course of toxic effects of a single exposure [...] Read more.
Aflatoxins (AFs) are secondary metabolites of Aspergillus spp. They are highly toxic, carcinogenic, and immunosuppressive; AFs cause nonspecific disorders in humans and animals, which makes their diagnosis complex. The objective was to describe the time course of toxic effects of a single exposure to AFs-contaminated feed. Fifteen male calves (2 weeks old) were examined over 30 days for clinical, biochemical, and pathological changes resulting from the ingestion of AF-contaminated feed (1.0 mg/kg BW). Compared with 15 unexposed calves, exposed calves showed transient depression and rough coat; BW gain, dry matter intake, albumin, total plasma protein, and hepatic and renal glutathione-S-transferase concentrations progressively decreased. However, conversion ratio (feed/BW), total bilirubin, direct bilirubin, alkaline phosphatase, reduced glutathione, gamma-glutamyltransferase, and alanine and aspartate aminotransferases progressively increased. Necropsy and histology at 7 days postexposure (dpe) showed liver with multifocal hemorrhages, yellowish coloration, friable consistency, periportal fibrosis, and steatosis. Kidneys were hemorrhagic, with brush border losses, glomerular atrophy, sclerotic glomerulonephritis, and lymphocytic infiltration. However, at 30 dpe, the liver showed pale discoloration, diffuse macrovesicular steatosis, and periportal fibrosis. The kidneys had mottled appearance and firm consistency, fibrosis, loss of normal architecture, and thickening of Bowman’s capsule. These results suggest that the identification of alterations in animal performance and biochemical and histological characteristics could be useful for integrating a proper diagnosis of bovine aflatoxicosis. Full article
Show Figures

Figure 1

21 pages, 1827 KiB  
Article
Potential MRI Biomarkers for Predicting Kidney Function and Histological Damage in Transplanted Deceased Donor Kidney Recipients
by Andrejus Bura, Gintare Stonciute-Balniene, Audra Banisauskaite, Laura Velickiene, Inga Arune Bumblyte, Antanas Jankauskas and Ruta Vaiciuniene
J. Clin. Med. 2025, 14(4), 1349; https://doi.org/10.3390/jcm14041349 - 18 Feb 2025
Cited by 1 | Viewed by 702
Abstract
Background/Objectives: Kidney transplantation (kTx) is the preferred treatment for end-stage kidney disease. Limited evaluation of structural changes in transplanted kidneys hinders the timely prediction of disease progression and the implementation of treatment modifications. Protocol biopsies provide valuable insights but are invasive and [...] Read more.
Background/Objectives: Kidney transplantation (kTx) is the preferred treatment for end-stage kidney disease. Limited evaluation of structural changes in transplanted kidneys hinders the timely prediction of disease progression and the implementation of treatment modifications. Protocol biopsies provide valuable insights but are invasive and carry risks of biopsy-related complications. This study investigates whether multiparametric magnetic resonance imaging (MRI), including T1 and T2 mapping and diffusion-weighted imaging (DWI), can predict kidney function and the progression of interstitial fibrosis and tubular atrophy (IF/TA) in the early post-transplant period. Methods: A prospective study was conducted at The Hospital of Lithuanian University of Health Sciences Kauno Klinikos from May 2022 to March 2024. Thirty-four patients receiving kidney transplants from deceased donors underwent baseline biopsies and post-transplant MRI scans. Follow-up assessments included kidney function evaluation, biopsies, and MRI scans at three months post-transplant. Results: Significant correlations were observed between MRI parameters and kidney function: T1 and apparent diffusion coefficient (ADC) corticomedullary differentiation (CMD) correlated with eGFR at discharge (r = −0.338, p = 0.05; r = 0.392, p = 0.022, respectively). Linear and logistic regression models demonstrated that post-transplant T1 and ADC CMD values significantly predicted kidney function at discharge. Furthermore, T1 CMD values measured 10–15 days post-transplant predicted IF/TA progression at three months post-kTx, with an area under the curve of 0.802 (95% CI: 0.616–0.987, p = 0.001) and an optimal cut-off value of −149.71 ms. The sensitivity and specificity were 0.818 and 0.273, respectively (Youden’s index = 0.545). T2 mapping was not predictive. Conclusions: This study highlights the potential immediate clinical utility of MRI-derived biomarkers, particularly ADC and T1 CMD, in centers equipped with advanced imaging capabilities as tools for assessing kidney function in the early post-transplant period. With an AUROC of 0.802, T1 CMD demonstrates strong discriminatory power for predicting IF/TA progression early in the post-transplant period. Full article
(This article belongs to the Section Nephrology & Urology)
Show Figures

Figure 1

Back to TopTop