Serum Proteomic Markers in Patients with Systemic Sclerosis in Relation to Silica Exposure
Abstract
:1. Introduction
2. Material and Methods
2.1. Study Design
- Inclusion criteria: patients exposed to silica dust were selected as cases (si-SSc) and patients not exposed as controls (nosi-SSc).
- The exclusion criteria were failure to provide written informed consent, comorbidity with another serious diagnosis or concomitant disease that could affect the results, pregnancy or lactation in women, or being a minor (<18 years).
2.2. Data Collection
- Working Life Epidemiological Survey.
- Review of clinical and analytical data.
2.3. Quantitative Proteomic Studies by Sequential Window Acquisition of All Theoretical Mass Spectrometry (SWATH MS) Method
- Protein Digestion.
- Mass Spectrometric Analysis by Sequential Window Acquisition of All Theoretical Mass Spectra (SWATH MS).
- Functional Enrichment and Interaction Network Analysis:
2.4. Ethical Aspects
3. Results
3.1. Selected Patients
3.2. Occupational Exposure Study
3.3. Proteins with Statistically Significant Differences Between Exposed and Non-Exposed Groups
- −
- Negative regulation of fibrinolysis (GO: 0051918)—Relevant proteins: A2M and PLG. Imbalances in this process may be associated with thrombosis or bleeding disorders. In autoimmune diseases, altered fibrinolysis may contribute to chronic inflammation.
- −
- Complement activation (GO: 0006956)—Relevant proteins: C4A, C2, and other components of the complement cascade. This pathway plays a key role in systemic autoimmune diseases. Its excessive activation can damage tissue and perpetuate inflammation.
- −
- Positive regulation of wound healing (GO: 0090303)—Relevant proteins: SERPINF1 and PLG. Critical for the resolution of inflammation and tissue remodelling. Deregulation could lead to fibrosis or repair defects.
- −
- Regulation of response to stimuli (GO: 0032102 and GO: 0048584)—Relevant proteins: A2M, SERPINF1, and C9. These proteins are involved in the modulation of inflammation. Changes in their function are associated with uncontrolled immune responses.
- −
- Coagulation and negative regulation of coagulation (GO: 0030195)—Relevant proteins: PLG and CPB2. Alterations in this balance contribute to thrombotic phenomena and cardiovascular disease.
GO-Term | Description | Count in Network | Strength | Signal | False Discovery Rate |
---|---|---|---|---|---|
GO-0051918 | Negative regulation of fibrinolysis | 3 of 13 | 2.62 | 1.9 | 0.00032 |
GO-0006956 | Complement activation | 4 of 60 | 2.08 | 1.78 | 0.00032 |
GO-0090303 | Positive regulation of wound healing | 4 of 60 | 2.08 | 1.78 | 0.00032 |
GO-0032102 | Negative regulation of response to external stimulus | 6 of 387 | 1.44 | 1.38 | 0.00032 |
GO-0032101 | Regulation of response to external stimulus | 7 of 964 | 1.11 | 1.04 | 0.00032 |
GO-0080134 | Regulation of response to stress | 8 of 1373 | 1.02 | 0.93 | 0.00032 |
GO-0048584 | Positive regulation of response to stimulus | 9 of 2131 | 0.88 | 0.78 | 0.00032 |
GO-0048583 | Regulation of response to stimulus | 11 of 3931 | 0.7 | 0.59 | 0.00032 |
GO-0045861 | Negative regulation of proteolysis | 5 of 339 | 1.42 | 1.25 | 0.00082 |
GO-0006958 | Complement activation, classical pathway | 3 of 40 | 2.13 | 1.47 | 0.0015 |
GO-0006955 | Immune response | 7 of 1321 | 0.98 | 0.8 | 0.0015 |
GO-0030195 | Negative regulation of blood coagulation | 3 of 46 | 2.07 | 1.42 | 0.0018 |
GO-0002376 | Immune system process | 8 of 2121 | 0.83 | 0.66 | 0.0018 |
4. Discussion
4.1. Differential Proteins
- Adiponectin:
- Immunoglobulin lambda variable 3–19 (IGLV3-19) and immunoglobulin lambda variable 2–18 (IGLV2-18):
- Complement C2:
- α2-macroglobulin (A2M) and vitronectin (VTN):
- Actin, cytoplasmic 2:
- Pigment epithelium-derived factor (PEDF):
4.2. Biological Pathway Analysis
- Regulation of fibrinolysis and coagulation: Imbalances in these pathways may explain the thrombotic and vascular events observed in patients with SSc, particularly those with silica exposure.
- Complement activation: This key pathogenic mechanism in autoimmunity is relevant in the exposed subgroup, possibly associated with exacerbated inflammation and more pronounced tissue damage.
- Regulation of wound healing: Proteins related to this process, such as SERPINF1, suggest altered tissue remodelling favouring fibrosis, a characteristic finding in SSc.
4.3. Clinical Relevance
4.4. Limitations and Future Directions
- −
- Cell culture experiments to analyse how these proteins influence immune cell activation, fibrosis, and vascular dysfunction.
- −
- Animal models of SSc to determine the impact of modulating these proteins on disease progression.
- −
- CRISPR-based gene editing or RNA interference (siRNA/shRNA) to assess the direct effects of silencing or overexpressing these biomarkers in relevant cell types.
- −
- Longitudinal patient studies to correlate protein expression levels with disease activity and treatment response over time.
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Arias-Nuñez, M.C.; Llorca, J.; Vazquez-Rodriguez, T.R.; Gomez-Acebo, I.; Miranda-Filloy, J.A.; Martin, J.; Gonzalez-Juanatey, C.; Gonzalez-Gay, M.A. Systemic sclerosis in northwestern Spain: A 19-year epidemiologic study. Medicine 2008, 87, 272–280. [Google Scholar] [CrossRef] [PubMed]
- Tyndall, A.J.; Bannert, B.; Vonk, M.; Airò, P.; Cozzi, F.; Carreira, P.E.; Bancel, D.F.; Allanore, Y.; Müller-Ladner, U.; Distler, O.; et al. Causes and risk factors for death in systemic sclerosis: A study from the EULAR Scleroderma Trials and Research (EUSTAR) database. Ann. Rheum. Dis. 2010, 69, 1809–1815. [Google Scholar] [CrossRef] [PubMed]
- Denton, C.P.; Khanna, D. Systemic sclerosis. Lancet 2017, 390, 1685–1699. [Google Scholar] [CrossRef] [PubMed]
- D’Amico, F.; Skarmoutsou, E.; Mazzarino, M.C. The sex bias in systemic sclerosis: On the possible mechanisms underlying the female disease preponderance. Clin. Rev. Allergy Immunol. 2014, 47, 334–343. [Google Scholar] [CrossRef]
- Chairta, P.; Nicolaou, P.; Christodoulou, K. Genomic and genetic studies of systemic sclerosis: A systematic review. Hum. Immunol. 2017, 78, 153–165. [Google Scholar] [CrossRef]
- Marie, I.; Menard, J.-F.; Duval-Modeste, A.-B.; Joly, P.; Dominique, S.; Bravard, P.; Noël, D.; Gehanno, J.-F.; Bubenheim, M.; Benichou, J.; et al. Association of occupational exposure with features of systemic sclerosis. J. Am. Acad. Dermatol. 2015, 72, 456–464. [Google Scholar] [CrossRef]
- Freire, M.; Alonso, M.; Rivera, A.; Sousa, A.; Soto, A.; Gómez-Sousa, J.M.; Baroja, A.; Vázquez-Triñanes, C.; Sopeña, B. Clinical peculiarities of patients with scleroderma exposed to silica: A systematic review of the literature. Semin. Arthritis Rheum. 2015, 45, 294–300. [Google Scholar] [CrossRef]
- Ferri, C.; Artoni, E.; Sighinolfi, G.L.; Luppi, F.; Zelent, G.; Colaci, M.; Giuggioli, D. High serum levels of silica nanoparticles in systemic sclerosis patients with occupational exposure: Possible pathogenetic role in disease phenotypes. Semin. Arthritis Rheum. 2018, 48, 475–481. [Google Scholar] [CrossRef]
- Lee, S.; Hayashi, H.; Mastuzaki, H.; Kumagai-Takei, N.; Otsuki, T. Silicosis and autoimmunity. Curr. Opin. Allergy Clin. Immunol. 2017, 17, 78–84. [Google Scholar] [CrossRef]
- Pollard, K.M. Silica, Silicosis, and Autoimmunity. Front Immunol. 2016, 7, 97. [Google Scholar] [CrossRef]
- Chairta, P.P.; Nicolaou, P.; Christodoulou, K. Enrichr in silico analysis of MS-based extracted candidate proteomic biomarkers highlights pathogenic pathways in systemic sclerosis. Sci. Rep. 2023, 13, 1934. [Google Scholar] [CrossRef] [PubMed]
- Van den Hoogen, F.; Khanna, D.; Fransen, J.; Johnson, S.R.; Baron, M.; Tyndall, A.; Matucci-Cerinic, M.; Naden, R.P.; Medsger, T.A., Jr.; Carreira, P.E.; et al. 2013 classification criteria for systemic sclerosis: An American college of rheumatology/European league against rheumatism collaborative initiative. Ann. Rheum. Dis. 2013, 72, 1747–1755. [Google Scholar] [CrossRef] [PubMed]
- Arana, V.; Arias, M.; Ariza, M.; Arzallus, M.; Cabrerizo, J.I.; Carballo, M.; Fernández, P.; Fernández, A.; Fernández, E.; Freijo, A.; et al. Protocolo de Vigilancia Sanitaria Específica. Silicosis Comisión de Salud Pública. Consejo Interterritorial del Sistema Nacional de Salud. MInisterio de Sanidad. Gobierno de España. Available online: https://www.sanidad.gob.es/ciudadanos/saludAmbLaboral/docs/silicosis.pdf (accessed on 13 March 2024).
- Leung, C.C.; Yu, I.T.S.; Chen, W. Silicosis. Lancet 2012, 379, 2008–2018. [Google Scholar] [CrossRef] [PubMed]
- Schenker, M.B.; Pinkerton, K.E.; Mitchell, D.; Vallyathan, V.; Elvine-Kreis, B.; Green, F.H. Pneumoconiosis from agricultural dust exposure among young California farmworkers. Environ. Health Perspect. 2009, 117, 988–994. [Google Scholar] [CrossRef]
- Ferrero Arias, Á.; Rubio Navas, J.; Pérez Cerdán, F.; Baltuille Martín, J.M.; Fernández Suárez, J. Mapa de Rocas y Minerales Industriales de Galicia; Instituto Geológico y Minero de España: Madrid, Spain, 2008. [Google Scholar]
- Alonso-Sampedro, M.; Feás, X.; Bravo, S.B.; Chantada-Vázquez, M.P.; Vidal, C. Proteomics of Vespa velutina nigrithorax Venom Sac Queens and Workers: A Quantitative SWATH-MS Analysis. Toxins 2023, 15, 266. [Google Scholar] [CrossRef]
- Feás, X.; Alonso-Sampedro, M.; Bravo, S.B.; Vidal, C. Peeking into the Stingers: A Comprehensive SWATH-MS Study of the European Hornet Vespa crabro (Linnaeus, 1758) (Hymenoptera: Vespidae) Venom Sac Extracts. Int. J. Mol. Sci. 2024, 25, 3798. [Google Scholar] [CrossRef]
- Álvarez, J.V.; Bravo, S.B.; Chantada-Vázquez, M.P.; Pena, C.; Colón, C.; Tomatsu, S.; Otero-Espinar, F.J.; Couce, M.L. Morquio A Syndrome: Identification of Differential Patterns of Molecular Pathway Interactions in Bone Lesions. Int. J. Mol. Sci. 2024, 25, 3232. [Google Scholar] [CrossRef]
- Casado-Fernández, L.; Laso-García, F.; Piniella, D.; Frutos, M.C.G.-D.; Otero-Ortega, L.; Bravo, S.-B.; Fuentes-Gimeno, B.; Docando, F.; Alonso-López, E.; Ruiz-Ares, G.; et al. The proteomic signature of circulating extracellular vesicles following intracerebral hemorrhage: Novel insights into mechanisms underlying recovery. Neurobiol. Dis. 2024, 201, 106665. [Google Scholar] [CrossRef]
- Fondevila, M.F.; Novoa, E.; Fernandez, U.; Dorta, V.; Parracho, T.; Kreimeyer, H.; Garcia-Vence, M.; Chantada-Vazquez, M.P.; Bravo, S.B.; Porteiro, B.; et al. Inhibition of hepatic p63 ameliorates steatohepatitis with fibrosis in mice. Mol. Metab. 2024, 85, 101962. [Google Scholar] [CrossRef]
- Pérez-Mato, M.; Dopico-López, A.; Akkoc, Y.; López-Amoedo, S.; Correa-Paz, C.; Candamo-Lourido, M.; Iglesias-Rey, R.; López-Arias, E.; Bugallo-Casal, A.; da Silva-Candal, A.; et al. Preclinical validation of human recombinant glutamate-oxaloacetate transaminase for the treatment of acute ischemic stroke. iScience 2024, 27, 111108. [Google Scholar] [CrossRef]
- Rodrigues, J.S.; Chenlo, M.; Bravo, S.B.; Perez-Romero, S.; Suarez-Fariña, M.; Sobrino, T.; Sanz-Pamplona, R.; González-Prieto, R.; Blanco Freire, M.N.; Nogueiras, R.; et al. dsRNAi-mediated silencing of PIAS2beta specifically kills anaplastic carcinomas by mitotic catastrophe. Nat. Commun. 2024, 15, 3736. [Google Scholar] [CrossRef] [PubMed]
- Iglesias, G.T.; López-Molina, M.; Botella, L.; Laso-García, F.; Chamorro, B.; Fernández-Fournier, M.; Puertas, I.; Bravo, S.B.; Alonso-López, E.; Díez-Tejedor, E.; et al. Differential Protein Expression in Extracellular Vesicles Defines Treatment Responders and Non-Responders in Multiple Sclerosis. Int. J. Mol. Sci. 2024, 25, 10761. [Google Scholar] [CrossRef] [PubMed]
- Vázquez-Mera, S.; Martelo-Vidal, L.; Miguéns-Suárez, P.; Bravo, S.B.; Saavedra-Nieves, P.; Arias, P.; Ferreiro-Posse, A.; Vázquez-Lago, J.; Salgado, F.J.; González-Barcala, F.J.; et al. Exploring CD26−/lo subpopulations of lymphocytes in asthma phenotype and severity: A novel CD4+ T cell subset expressing archetypical granulocyte proteins. Allergy 2024, 79, 3005–3021. [Google Scholar] [CrossRef] [PubMed]
- Lambert, J.-P.; Ivosev, G.; Couzens, A.L.; Larsen, B.; Taipale, M.; Lin, Z.-Y.; Zhong, Q.; Lindquist, S.; Vidal, M.; Aebersold, R.; et al. Mapping differential interactomes by affinity purification coupled with data-independent mass spectrometry acquisition. Nat. Methods 2013, 10, 1239–1245. [Google Scholar] [CrossRef]
- Riccardi, M.T.; Chialà, A.; Lannone, F.; Grattagliano, V.; Covelli, M.; Lapadula, G. Treatment of digital ulcers in systemtic sclerosis with endothelin-1 receptor antagonist (bosentan). Reumatismo 2007, 59, 135–139. [Google Scholar] [CrossRef]
- Alsulimani, A.; Das, S.; Akhter, N.; Ahmad, A.; Jawed, A.; Beigh, S.; Zamzami, M.A.; Al-Thawadi, S.; Alfoud, M.Y.; Banerjee, B.D.; et al. Pesticide exposure promotes disease activity by decreasing lymphoproliferative activity and increasing IL-4 production in systemic sclerosis patients. Immunopharmacol. Immunotoxicol. 2025, 47, 112–119. [Google Scholar] [CrossRef]
- Dlala, A.; Gabsi, A.; Salem, K.B.; Boutabba, A.; Nacer, I.; Missaoui, F.; Neili, B.; Saïd, F.; Smiti-Khanfir, M.; Triki-Marrakchi, R. Elevated Interleukin-21 expression is correlated with systemic sclerosis’ severity in Tunisian patients. Hum. Immunol. 2024, 85, 111154. [Google Scholar] [CrossRef]
- Kirichenko, T.V.; Bogatyreva, A.I.; Gerasimova, E.V.; Popkova, T.V.; Markina, Y.V.; Markin, A.M.; Gerasimova, D.A.; Orekhov, A.N. Inflammatory Response of Monocytes/Macrophages in Patients with Systemic Sclerosis. Front. Biosci.-Landmark 2024, 29, 259. [Google Scholar] [CrossRef]
- Brezovec, N.; Perdan-Pirkmajer, K.; Čučnik, S.; Sodin-šemrl, S.; Varga, J.; Lakota, K. Adiponectin deregulation in systemic autoimmune rheumatic diseases. Int. J. Mol. Sci. 2021, 22, 4095. [Google Scholar] [CrossRef]
- Arakawa, H.; Jinnin, M.; Muchemwa, F.C.; Makino, T.; Kajihara, I.; Makino, K.; Honda, N.; Sakai, K.; Fukushima, S.; Ihn, H. Adiponectin expression is decreased in the involved skin and sera of diffuse cutaneous scleroderma patients. Exp. Dermatol. 2011, 20, 764–766. [Google Scholar] [CrossRef]
- Neumann, E.; Lepper, N.; Vasile, M.; Riccieri, V.; Peters, M.; Meier, F.; Hülser, M.L.; Distler, O.; Gay, S.; Mahavadi, P.; et al. Adipokine expression in systemic sclerosis lung and gastrointestinal organ involvement. Cytokine 2019, 117, 41–49. [Google Scholar] [CrossRef] [PubMed]
- Lakota, K.; Wei, J.; Carns, M.; Hinchcliff, M.; Lee, J.; Whitfield, M.L.; Sodin-Semrl, S.; Varga, J. Levels of adiponectin, a marker for PPAR-gamma activity, correlate with skin fibrosis in systemic sclerosis: Potential utility as biomarker? Arthritis Res. Ther. 2012, 14, R102. [Google Scholar] [CrossRef] [PubMed]
- Olewicz-Gawlik, A.; Danczak-Pazdrowska, A.; Kuznar-Kaminska, B.; Batura-Gabryel, H.; Katulska, K.; Wojciech, S.; Trzybulska, D.; Hrycaj, P. Circulating adipokines and organ involvement in patients with systemic sclerosis. Acta Reum. Port. 2015, 40, 156–162. [Google Scholar]
- Ryu, C.; Walia, A.; Ortiz, V.; Perry, C.; Woo, S.; Reeves, B.C.; Sun, H.; Winkler, J.; Kanyo, J.E.; Wang, W.; et al. Bioactive Plasma Mitochondrial DNA Is Associated With Disease Progression in Scleroderma-Associated Interstitial Lung Disease. Arthritis Rheumatol. 2020, 72, 1905–1915. [Google Scholar] [CrossRef]
- Liu, Y.; Zhu, E.; Lei, Y.; Luo, A.; Yan, Y.; Cai, M.; Liu, S.; Huang, Y.; Guan, H.; Zhong, M.; et al. Diagnostic Values of METTL1-Related Genes and Immune Characteristics in Systemic Lupus Erythematosus. J. Inflamm. Res. 2023, 16, 5367–5383. [Google Scholar] [CrossRef]
- Birkenmeier, G.; Frank, R. Plasma concentration of total and transformed alpha 2-macroglobulin in systemic sclerosis. Arch. Dermatol. Res. 1996, 288, 405–407. [Google Scholar] [CrossRef]
- Gundogdu, B.; Yolbas, S.; Yilmaz, M.; Aydin, S.; Koca, S.S. Serum osteopontin and vitronectin levels in systemic sclerosis. Adv. Clin. Exp. Med. 2017, 26, 1231–1236. [Google Scholar] [CrossRef]
- López-Guisa, J.M.; Rassa, A.C.; Cai, X.; Collins, S.J.; Eddy, A.A. Vitronectin accumulates in the interstitium but minimally impacts fibrogenesis in experimental chronic kidney disease. Am. J. Physiol. Ren. Physiol. 2011, 300, F1244–F1254. [Google Scholar] [CrossRef]
- Showalter, K.; Gordon, J.K. Skin histology in systemic sclerosis: A relevant clinical biomarker. Curr. Rheumatol. Rep. 2020, 23, 3. [Google Scholar] [CrossRef]
- Del Galdo, F.; Shaw, M.A.; Jimenez, S.A. Proteomic analysis identification of a pattern of shared alterations in the secretome of dermal fibroblasts from systemic sclerosis and nephrogenic systemic fibrosis. Am. J. Pathol. 2010, 177, 1638–1646. [Google Scholar] [CrossRef]
- Liakouli, V.; Elies, J.; El-Sherbiny, Y.M.; Scarcia, M.; Grant, G.; Abignano, G.; Derrett-Smith, E.C.; Esteves, F.; Cipriani, P.; Emery, P.; et al. Scleroderma fibroblasts suppress angiogenesis via TGF-β/caveolin-1 dependent secretion of pigment epithelium-derived factor. Ann. Rheum. Dis. 2018, 77, 431–440. [Google Scholar] [CrossRef] [PubMed]
- Tsai, T.-H.; Shih, S.-C.; Ho, T.-C.; Ma, H.-I.; Liu, M.-Y.; Chen, S.-L.; Tsao, Y.-P. Pigment epithelium-derived factor 34-mer peptide prevents liver fibrosis and hepatic stellate cell activation through down-regulation of the PDGF receptor. PLoS ONE 2014, 9, e95443. [Google Scholar] [CrossRef] [PubMed]
- Steen, V.D. The many faces of scleroderma. Rheum. Dis. Clin. N. Am. 2008, 34, 1–15. [Google Scholar] [CrossRef] [PubMed]
Age *, Sex | Professions | |
---|---|---|
Exposed | ||
si-SSC 1 | 52, F | Paper factory, production of dental prostheses |
si-SSC 2 | 42, M | Marble |
si-SSC 3 | 50, F | Agriculture |
si-SSC 4 | 51, F | Foundry |
si-SSC 5 | 35, M | Marble |
si-SSC 6 | 80, F | Agriculture |
si-SSC 7 | 60, F | Stone mill |
si-SSC 8 | 45, M | Stonework |
si-SSC 9 | 55, F | Agriculture |
si-SSC 10 | 64, M | Foundry |
si-SSC 11 | 74, M | Stonework |
Nonexposed | ||
nosi-SSc 1 | 11, F | Housework |
nosi-SSc 2 | 47, F | Administration |
nosi-SSc 3 | 10, F | Cleaning |
nosi-SSc 4 | 32, M | Administration |
nosi-SSc 5 | 45, F | Housework |
nosi-SSc 6 | 54, F | Bakery |
nosi-SSc 7 | 40, F | Textile factory |
nosi-SSc 8 | 30, F | Quality technique |
nosi-SSc 9 | 39, F | Plastic factory |
nosi-SSc 10 | 51, F | Bakery |
nosi-SSc 11 | 23, F | Housework |
nosi-SSc 12 | 55, F | Textile factory |
nosi-SSc 13 | 22, F | Cook |
nosi-SSc 14 | -, F | Seamstress |
nosi-SSc 15 | 36, F | Gardening |
nosi-SSc 16 | 65, F | Dry cleaner |
nosi-SSc 17 | 46, M | Upholstery |
nosi-SSc 18 | 37, F | Hotels, car polishing |
nosi-SSc 19 | 67, F | Administration |
nosi-SSc 20 | 60, F | Screw factory |
nosi-SSc 21 | 51, F | Seamstress |
Name | m/z | Group | p-Value | Fold Change | Log (Fold Change) |
---|---|---|---|---|---|
Q15848 | ADIPO_HUMAN | Adiponectin OS = Homo sapiens OX = 9606 GN = ADIPOQ PE = 1 SV = 1 | 0.01 | 0.57 | −0.24 |
P01714 | LV319_HUMAN | Immunoglobulin lambda variable 3–19 OS = Homo sapiens OX = 9606 GN = IGLV3-19 PE = 1 SV = 2 | 0.01 | 0.61 | −0.21 |
P06681 | CO2_HUMAN | Complement C2 OS = Homo sapiens OX = 9606 GN = C2 PE = 1 SV = 2 | 0.02 | 0.77 | −0.10 |
P01023 | A2MG_HUMAN | Alpha-2-macroglobulin OS = Homo sapiens OX = 9606 GN = A2M PE = 1 SV = 3 | 0.02 | 0.71 | −0.14 |
P04004 | VTNC_HUMAN | Vitronectin OS = Homo sapiens OX = 9606 GN = VTN PE = 1 SV = 1 | 0.03 | 0.56 | −0.24 |
P63261 | ACTG_HUMAN | Actin, cytoplasmic 2 OS = Homo sapiens OX = 9606 GN = ACTG1 PE = 1 SV = 1 | 0.03 | 0.74 | −0.12 |
P36955 | PEDF_HUMAN | Pigment epithelium-derived factor OS = Homo sapiens OX = 9606 GN = SERPINF1 PE = 1 SV = 4 | 0.04 | 0.80 | −0.09 |
A0A075B6J9 | LV218_HUMAN | Immunoglobulin lambda variable 2–18 OS = Homo sapiens OX = 9606 GN = IGLV2-18 PE = 3 SV = 2 | 0.05 | 0.42 | −0.37 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Freire, M.; Sopeña, B.; Bravo, S.; Spuch, C.; Argibay, A.; Estévez, M.; Pena, C.; Naya, M.; Lama, A.; González-Quintela, A. Serum Proteomic Markers in Patients with Systemic Sclerosis in Relation to Silica Exposure. J. Clin. Med. 2025, 14, 2019. https://doi.org/10.3390/jcm14062019
Freire M, Sopeña B, Bravo S, Spuch C, Argibay A, Estévez M, Pena C, Naya M, Lama A, González-Quintela A. Serum Proteomic Markers in Patients with Systemic Sclerosis in Relation to Silica Exposure. Journal of Clinical Medicine. 2025; 14(6):2019. https://doi.org/10.3390/jcm14062019
Chicago/Turabian StyleFreire, Mayka, Bernardo Sopeña, Susana Bravo, Carlos Spuch, Ana Argibay, Melania Estévez, Carmen Pena, Martín Naya, Adela Lama, and Arturo González-Quintela. 2025. "Serum Proteomic Markers in Patients with Systemic Sclerosis in Relation to Silica Exposure" Journal of Clinical Medicine 14, no. 6: 2019. https://doi.org/10.3390/jcm14062019
APA StyleFreire, M., Sopeña, B., Bravo, S., Spuch, C., Argibay, A., Estévez, M., Pena, C., Naya, M., Lama, A., & González-Quintela, A. (2025). Serum Proteomic Markers in Patients with Systemic Sclerosis in Relation to Silica Exposure. Journal of Clinical Medicine, 14(6), 2019. https://doi.org/10.3390/jcm14062019