Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (644)

Search Parameters:
Keywords = differentiation by habitat

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 6731 KiB  
Article
Combined Impacts of Acute Heat Stress on the Histology, Antioxidant Activity, Immunity, and Intestinal Microbiota of Wild Female Burbot (Lota Lota) in Winter: New Insights into Heat Sensitivity in Extremely Hardy Fish
by Cunhua Zhai, Yutao Li, Ruoyu Wang, Haoxiang Han, Ying Zhang and Bo Ma
Antioxidants 2025, 14(8), 947; https://doi.org/10.3390/antiox14080947 (registering DOI) - 31 Jul 2025
Abstract
Temperature fluctuations caused by climate change and global warming pose a threat to fish. The burbot (lota lota) population is particularly sensitive to increased water temperature, but the systematic impacts of high-temperature exposure on their liver and intestinal health remain unclear. [...] Read more.
Temperature fluctuations caused by climate change and global warming pose a threat to fish. The burbot (lota lota) population is particularly sensitive to increased water temperature, but the systematic impacts of high-temperature exposure on their liver and intestinal health remain unclear. In January of 2025, we collected wild adult burbot individuals from the Ussuri River (water temperature: about 2 °C), China. The burbot were exposed to 2 °C, 7 °C, 12 °C, 17 °C, and 22 °C environments for 96 h; then, the liver and intestinal contents were subsequently collected for histopathology observation, immunohistochemistry, biochemical index assessment, and transcriptome/16S rDNA sequencing analysis. There was obvious liver damage including hepatocyte necrosis, fat vacuoles, and cellular peripheral nuclei. Superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GSH-Px) activities were elevated and subsequently decreased. Additionally, the malondialdehyde (MDA) level significantly increased with increasing temperature. These results indicate that 7 °C (heat stress temperature), 12 °C (tipping point for normal physiological metabolism status), 17 °C (tipping point for individual deaths), and 22 °C (thermal limit) are critical temperatures in terms of the physiological response of burbot during their breeding period. In the hepatic transcriptome profiling, 6538 differentially expressed genes (DEGs) were identified, while KEGG enrichment analysis showed that high-temperature stress could affect normal liver function by regulating energy metabolism, immune, and apoptosis-related pathways. Microbiomics also revealed that acute heat stress could change the intestinal microbe community structure. Additionally, correlation analysis suggested potential regulatory relationships between intestinal microbe taxa and immune/apoptosis-related DEGs in the liver. This study revealed the potential impact of environmental water temperature changes in cold habitats in winter on the physiological adaptability of burbot during the breeding period and provides new insights for the ecological protection of burbot in the context of global climate change and habitat warming. Full article
(This article belongs to the Special Issue Antioxidant Response in Aquatic Animals)
Show Figures

Figure 1

16 pages, 3339 KiB  
Article
Accurate Identification of Native Asian Honey Bee Populations in Jilong (Xizang, China) by Population Genomics and Deep Learning
by Zhiyu Liu, Yongqiang Xu, Wei Sun, Bing Yang, Tenzin Nyima, Zhuoma Pubu, Xin Zhou, Wa Da and Shiqi Luo
Insects 2025, 16(8), 788; https://doi.org/10.3390/insects16080788 (registering DOI) - 31 Jul 2025
Abstract
The Jilong Valley, situated in Rikaze, Xizang, China, is characterized by its complex topography and variable climatic conditions, providing a suitable habitat for Apis cerana Fabricius, 1793. To facilitate the conservation of germplasm resources and maintain genetic diversity, it is imperative to elucidate [...] Read more.
The Jilong Valley, situated in Rikaze, Xizang, China, is characterized by its complex topography and variable climatic conditions, providing a suitable habitat for Apis cerana Fabricius, 1793. To facilitate the conservation of germplasm resources and maintain genetic diversity, it is imperative to elucidate the population structure and lineage differentiation of A. cerana within this ecologically distinct region. In this study, we collected A. cerana specimens from 12 geographically disparate locations across various altitudinal gradients within the Jilong Valley, and also integrated publicly available sequencing data of A. cerana from various regions across mainland Asia. In total, our analysis encompassed sequencing data from 296 individuals. Population structure analyses based on SNP data revealed that A. cerana in Jilong represents a genetically distinct population that differs markedly from other regional A. cerana populations in terms of genetic lineage, although its subspecies identity remains to be confirmed. Through screening based on FST values, we identified SNP loci that contribute significantly to distinguishing between Jilong and non-Jilong A. cerana. Using these loci, the convolutional neural network model TraceNet was trained, which demonstrated specific recognition capabilities for Jilong versus non-Jilong A. cerana. This further confirmed the universality and efficiency of TraceNet in identifying honey bee lineages. These findings contribute valuable insights for the identification and conservation of A. cerana germplasm resources in specific geographical regions. Full article
(This article belongs to the Section Insect Systematics, Phylogeny and Evolution)
Show Figures

Figure 1

29 pages, 6179 KiB  
Article
Assessing the Provision of Ecosystem Services Using Forest Site Classification as a Basis for the Forest Bioeconomy in the Czech Republic
by Kateřina Holušová and Otakar Holuša
Forests 2025, 16(8), 1242; https://doi.org/10.3390/f16081242 - 28 Jul 2025
Viewed by 139
Abstract
The ecosystem services (ESs) of forests are the benefits that people derive from forest ecosystems. Their precise recognition is important for differentiating and determining the optimal principles of multifunctional forest management. The aim of this study is to identify some important ESs based [...] Read more.
The ecosystem services (ESs) of forests are the benefits that people derive from forest ecosystems. Their precise recognition is important for differentiating and determining the optimal principles of multifunctional forest management. The aim of this study is to identify some important ESs based on a site classification system at the lowest level—i.e., forest stands, at the forest owner level—as a tool for differentiated management. ESs were assessed within the Czech Republic and are expressed in units in accordance with the very sophisticated Forest Site Classification System. (1) Biomass production: The vertical differentiation of ecological conditions given by vegetation tiers, which reflect the influence of altitude, exposure, and climate, provides a basic overview of biomass production; the highest value is in the fourth vegetation tier, i.e., the Fageta abietis community. Forest stands are able to reach a stock of up to 900–1200 m3·ha−1. The lowest production is found in the eighth vegetation tier, i.e., the Piceeta community, with a wood volume of 150–280 m3·ha−1. (2) Soil conservation function: Geological bedrock, soil characteristics, and the geomorphological shape of the terrain determine which habitats serve a soil conservation function according to forest type sets. (3) The hydricity of the site, depending on the soil type, determines the hydric-water protection function of forest stands. Currently, protective forests occupy 53,629 ha in the Czech Republic; however, two subcategories of protective forests—exceptionally unfavorable locations and natural alpine spruce communities below the forest line—potentially account for 87,578 ha and 15,277 ha, respectively. Forests with an increased soil protection function—a subcategory of special-purpose forests—occupy 133,699 ha. The potential area of soil protection forests could be up to 188,997 ha. Water resource protection zones of the first degree—another subcategory of special-purpose forests—occupy 8092 ha, and there is potentially 289,973 ha of forests serving a water protection function (specifically, a water management function) in the Czech Republic. A separate subcategory of water protection with a bank protection function accounts for 80,529 ha. A completely new approach is presented for practical use by forest owners: based on the characteristics of the habitat, they can obtain information about the fulfillment of the habitat’s ecosystem services and, thus, have basic information for the determination of forest categories and the principles of differentiated management. Full article
(This article belongs to the Section Forest Economics, Policy, and Social Science)
Show Figures

Figure 1

28 pages, 3098 KiB  
Article
Geobotanical Study, DNA Barcoding, and Simple Sequence Repeat (SSR) Marker Analysis to Determine the Population Structure and Genetic Diversity of Rare and Endangered Prunus armeniaca L.
by Natalya V. Romadanova, Nazira A. Altayeva, Alina S. Zemtsova, Natalya A. Artimovich, Alexandr B. Shevtsov, Almagul Kakimzhanova, Aidana Nurtaza, Arman B. Tolegen, Svetlana V. Kushnarenko and Jean Carlos Bettoni
Plants 2025, 14(15), 2333; https://doi.org/10.3390/plants14152333 - 28 Jul 2025
Viewed by 323
Abstract
The ongoing genetic erosion of natural Prunus armeniaca populations in their native habitats underscores the urgent need for targeted conservation and restoration strategies. This study provides the first comprehensive characterization of P. armeniaca populations in the Almaty region of Kazakhstan, integrating morphological descriptors [...] Read more.
The ongoing genetic erosion of natural Prunus armeniaca populations in their native habitats underscores the urgent need for targeted conservation and restoration strategies. This study provides the first comprehensive characterization of P. armeniaca populations in the Almaty region of Kazakhstan, integrating morphological descriptors (46 parameters), molecular markers, geobotanical, and remote sensing analyses. Geobotanical and remote sensing analyses enhanced understanding of accession distribution, geological features, and ecosystem health across sites, while also revealing their vulnerability to various biotic and abiotic threats. Of 111 morphologically classified accessions, 54 were analyzed with 13 simple sequence repeat (SSR) markers and four DNA barcoding regions. Our findings demonstrate the necessity of integrated morphological and molecular analyses to differentiate closely related accessions. Genetic analysis identified 11 distinct populations with high heterozygosity and substantial genetic variability. Eight populations exhibited 100% polymorphism, indicating their potential as sources of adaptive genetic diversity. Cluster analysis grouped populations into three geographic clusters, suggesting limited gene flow across Gorges (features of a mountainous landscape) and greater connectivity within them. These findings underscore the need for site-specific conservation strategies, especially for genetically distinct, isolated populations with unique allelic profiles. This study provides a valuable foundation for prioritizing conservation targets, confirming genetic redundancies, and preserving genetic uniqueness to enhance the efficiency and effectiveness of the future conservation and use of P. armeniaca genetic resources in the region. Full article
Show Figures

Figure 1

19 pages, 15746 KiB  
Article
Description of a New Eyeless Cavefish Using Integrative Taxonomic Methods—Sinocyclocheilus wanlanensis (Cypriniformes, Cyprinidae), from Guizhou, China
by Yewei Liu, Tingru Mao, Hiranya Sudasinghe, Rongjiao Chen, Jian Yang and Madhava Meegaskumbura
Animals 2025, 15(15), 2216; https://doi.org/10.3390/ani15152216 - 28 Jul 2025
Viewed by 549
Abstract
China’s southwestern karst landscapes support remarkable cavefish diversity, especially within Sinocyclocheilus, the world’s largest cavefish genus. Using integrative taxonomic methods, we describe Sinocyclocheilus wanlanensis sp. nov., found in a subterranean river in Guizhou Province. This species lacks horn-like cranial structures; its eyes [...] Read more.
China’s southwestern karst landscapes support remarkable cavefish diversity, especially within Sinocyclocheilus, the world’s largest cavefish genus. Using integrative taxonomic methods, we describe Sinocyclocheilus wanlanensis sp. nov., found in a subterranean river in Guizhou Province. This species lacks horn-like cranial structures; its eyes are either reduced to a dark spot or absent. It possesses a pronounced nuchal hump and a forward-protruding, duckbill-shaped head. Morphometric analysis of 28 individuals from six species shows clear separation from related taxa. Nano-CT imaging reveals distinct vertebral and cranial features. Phylogenetic analyses of mitochondrial cytb and ND4 genes place S. wanlanensis within S. angularis group as sister to S. bicornutus, with p-distances of 1.7% (cytb) and 0.7% (ND4), consistent with sister-species patterns within the genus. Sinocyclocheilus wanlanensis is differentiated from S. bicornutus by its eyeless or degenerate-eye condition and lack of bifurcated horns. It differs from S. zhenfengensis, its morphologically closest species, in having degenerate or absent eyes, shorter maxillary barbels, and pelvic fins that reach the anus. The combination of morphological and molecular evidence supports its recognition as a distinct species. Accurate documentation of such endemic and narrowly distributed taxa is important for conservation and for understanding speciation in cave habitats. Full article
(This article belongs to the Section Aquatic Animals)
Show Figures

Figure 1

24 pages, 5785 KiB  
Article
Phylogenetic Reassessment of Murinae Inferred from the Mitogenome of the Monotypic Genus Dacnomys Endemic to Southeast Asia: New Insights into Genetic Diversity Erosion
by Zhongsong Wang, Di Zhao, Wenyu Song and Wenge Dong
Biology 2025, 14(8), 948; https://doi.org/10.3390/biology14080948 - 28 Jul 2025
Viewed by 242
Abstract
The Millard’s rat (Dacnomys millardi), a threatened murid endemic to Southeast Asian montane rainforests and the sole member of its monotypic genus, faces escalating endangered risks as a Near Threatened species in China’s Biodiversity Red List. This ecologically specialized rodent exhibits [...] Read more.
The Millard’s rat (Dacnomys millardi), a threatened murid endemic to Southeast Asian montane rainforests and the sole member of its monotypic genus, faces escalating endangered risks as a Near Threatened species in China’s Biodiversity Red List. This ecologically specialized rodent exhibits diagnostic morphological adaptations—hypertrophied upper molars and cryptic pelage—that underpin niche differentiation in undisturbed tropical/subtropical forests. Despite its evolutionary distinctiveness, the conservation prioritization given to Dacnomys is hindered due to a deficiency of data and unresolved phylogenetic relationships. Here, we integrated morphological analyses with the first complete mitogenome (16,289 bp in size; no structural rearrangements) of D. millardi to validate its phylogenetic placement within the subfamily Murinae and provide novel insights into genetic diversity erosion. Bayesian and maximum likelihood phylogenies robustly supported Dacnomys as sister to Leopoldamys (PP = 1.0; BS = 100%), with an early Pliocene divergence (~4.8 Mya, 95% HPD: 3.65–5.47 Mya). Additionally, based on its basal phylogenetic position within Murinae, we propose reclassifying Micromys from Rattini to the tribe Micromyini. Codon usage bias analyses revealed pervasive purifying selection (Ka/Ks < 1), constraining mitogenome evolution. Genetic diversity analyses showed low genetic variation (CYTB: π = 0.0135 ± 0.0023; COX1: π = 0.0101 ± 0.0025) in fragmented populations. We propose three new insights into this genetic diversity erosion. (1) Evolutionary constraints: genome-wide evolutionary conservation and shallow evolutionary history (~4.8 Mya) limited mutation accumulation. (2) Anthropogenic pressures: deforestation-driven fragmentation of habitats (>20,000 km2/year loss since 2000) has reduced effective population size, exacerbating genetic drift. (3) Ecological specialization: long-term adaptation to stable niches favored genomic optimization over adaptive flexibility. These findings necessitate suitable conservation action by enforcing protection of core habitats to prevent deforestation-driven population collapses and advocating IUCN reclassification of D. millardi from Data Deficient to Near Threatened. Full article
(This article belongs to the Section Genetics and Genomics)
Show Figures

Figure 1

16 pages, 6072 KiB  
Article
Climate Warming-Driven Expansion and Retreat of Alpine Scree in the Third Pole over the Past 45 Years
by Guanshi Zhang, Bingfang Wu, Lingxiao Ying, Yu Zhao, Li Zhang, Mengru Cheng, Liang Zhu, Lu Zhang and Zhiyun Ouyang
Remote Sens. 2025, 17(15), 2611; https://doi.org/10.3390/rs17152611 - 27 Jul 2025
Viewed by 206
Abstract
Alpine scree, a distinctive plateau ecosystem, serves as habitat for numerous rare and endangered species. However, current research does not differentiate it from desert in terms of spatial boundary, hindering biodiversity conservation and ecological monitoring efforts. Using the Tibetan Plateau as a case [...] Read more.
Alpine scree, a distinctive plateau ecosystem, serves as habitat for numerous rare and endangered species. However, current research does not differentiate it from desert in terms of spatial boundary, hindering biodiversity conservation and ecological monitoring efforts. Using the Tibetan Plateau as a case study, we defined the spatial boundary of alpine scree based on its surface formation process and examined its distribution and long-term evolution. The results show that in 2020, alpine scree on the Tibetan Plateau covered 73,735.34 km2, 1.5 times the area of glaciers. Alpine scree is mostly distributed at elevations between 4000 and 6000 m, with a slope of approximately 30–40 degrees. Characterized by low temperature and sparse rainfall, the regions are located in the humid zone. From 1975 to 2020, the area of alpine scree initially increased before declining, with an overall decrease of 560.68 km2. Climate warming was the primary driver of these changes, leading to an increase in scree from 1975 to 1995 and a decrease in scree from 1995 to 2020. Additionally, between 1975 and 2020, the Tibetan Plateau’s grasslands shifted upward by 16.47 km2. This study enhances our understanding of the spatial distribution and dynamics of this unique ecosystem, alpine scree, offering new insights into climate change impacts on alpine ecosystems. Full article
Show Figures

Figure 1

14 pages, 346 KiB  
Article
On Considering Unoccupied Sites in Ecological Models
by Ricardo Concilio and Luiz H. A. Monteiro
Entropy 2025, 27(8), 798; https://doi.org/10.3390/e27080798 - 27 Jul 2025
Viewed by 102
Abstract
In ecosystems, spatial structure plays a fundamental role in shaping the observed dynamics. In particular, the availability and distribution of unoccupied sites—potential habitats—can strongly affect species persistence. However, mathematical models of ecosystems based on ordinary differential equations (ODEs) often neglect the explicit representation [...] Read more.
In ecosystems, spatial structure plays a fundamental role in shaping the observed dynamics. In particular, the availability and distribution of unoccupied sites—potential habitats—can strongly affect species persistence. However, mathematical models of ecosystems based on ordinary differential equations (ODEs) often neglect the explicit representation of these unoccupied sites. Here, probabilistic cellular automata (PCA) are used to reproduce two basic ecological scenarios: competition between two species and a predator–prey relationship. In these PCA-based models, unoccupied sites are taken into account. Subsequently, a mean field approximation of the PCA behavior is formulated in terms of ODEs. The variables of these ODEs are the numbers of individuals of both species and the number of empty cells in the PCA lattice. Including the empty cells in the ODEs leads to a modified version of the Lotka–Volterra system. The long-term behavior of the solutions of the ODE-based models is examined analytically. In addition, numerical simulations are carried out to compare the time evolutions generated by these two modeling approaches. The impact of explicitly considering unoccupied sites is discussed from a modeling perspective. Full article
(This article belongs to the Special Issue Aspects of Social Dynamics: Models and Concepts)
Show Figures

Figure 1

25 pages, 14199 KiB  
Article
A Nonlinear Cross-Diffusion Model for Disease Spread: Turing Instability and Pattern Formation
by Ravi P. Gupta, Arun Kumar and Shristi Tiwari
Mathematics 2025, 13(15), 2404; https://doi.org/10.3390/math13152404 - 25 Jul 2025
Viewed by 273
Abstract
In this article, we propose a novel nonlinear cross-diffusion framework to model the distribution of susceptible and infected individuals within their habitat using a reduced SIR model that incorporates saturated incidence and treatment rates. The study investigates solution boundedness through the theory of [...] Read more.
In this article, we propose a novel nonlinear cross-diffusion framework to model the distribution of susceptible and infected individuals within their habitat using a reduced SIR model that incorporates saturated incidence and treatment rates. The study investigates solution boundedness through the theory of parabolic partial differential equations, thereby validating the proposed spatio-temporal model. Through the implementation of the suggested cross-diffusion mechanism, the model reveals at least one non-constant positive equilibrium state within the susceptible–infected (SI) system. This work demonstrates the potential coexistence of susceptible and infected populations through cross-diffusion and unveils Turing instability within the system. By analyzing codimension-2 Turing–Hopf bifurcation, the study identifies the Turing space within the spatial context. In addition, we explore the results for Turing–Bogdanov–Takens bifurcation. To account for seasonal disease variations, novel perturbations are introduced. Comprehensive numerical simulations illustrate diverse emerging patterns in the Turing space, including holes, strips, and their mixtures. Additionally, the study identifies non-Turing and Turing–Bogdanov–Takens patterns for specific parameter selections. Spatial series and surfaces are graphed to enhance the clarity of the pattern results. This research provides theoretical insights into the implications of cross-diffusion in epidemic modeling, particularly in contexts characterized by localized mobility, clinically evident infections, and community-driven isolation behaviors. Full article
(This article belongs to the Special Issue Models in Population Dynamics, Ecology and Evolution)
Show Figures

Figure 1

20 pages, 7380 KiB  
Article
Copper Pyrithione Induces Hepatopancreatic Apoptosis and Metabolic Disruption in Litopenaeus vannamei: Integrated Transcriptomic, Metabolomic, and Histopathological Analysis
by Jieyu Guo, Yang Yang, Siying Yu, Cairui Jiang, Xianbin Su, Yongfeng Zou and Hui Guo
Animals 2025, 15(14), 2134; https://doi.org/10.3390/ani15142134 - 18 Jul 2025
Viewed by 216
Abstract
Copper pyrithione (CuPT), an emerging biocide used in ship antifouling coatings, may accumulate in marine sediments and pose risks to non-target organisms. However, current research on CuPT toxicity remains limited. Litopenaeus vannamei, one of the world’s most important aquaculture shrimp species, relies [...] Read more.
Copper pyrithione (CuPT), an emerging biocide used in ship antifouling coatings, may accumulate in marine sediments and pose risks to non-target organisms. However, current research on CuPT toxicity remains limited. Litopenaeus vannamei, one of the world’s most important aquaculture shrimp species, relies heavily on its hepatopancreas for energy metabolism, detoxification, and immune responses. Due to their benthic habitat, these shrimps are highly vulnerable to contamination in sediment environments. This study investigated the toxicological response in the hepatopancreas of L. vannamei exposed to CuPT (128 μg/L) for 3 and 48 h. Terminal deoxynucleotidyl transferase dUTP Nick-End Labeling (TUNEL) fluorescence staining revealed increased apoptosis, deformation of hepatic tubule lumens, and the loss of stellate structures in the hepatopancreas after CuPT 48 h exposure. A large number of differentially expressed genes (DEGs) were identified by transcriptomics analysis at 3 and 48 h, respectively. Most of these DEGs were related to detoxification, glucose transport, and immunity. Metabolomic analysis identified numerous significantly different metabolites (SDMs) at both 3 and 48 h post-exposure, with most SDMs associated with energy metabolism, fatty acid metabolism, and related pathways. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis of metabolomics and transcriptome revealed that both DEGs and SDMs were enriched in arachidonic acid metabolism, fatty acid biosynthesis, and glycolysis/gluconeogenesis pathways at 3 h, while at 48 h they were enriched in the starch and sucrose metabolism, amino sugar and nucleotide sugar metabolism, and galactose metabolism pathways. These results suggested that CuPT disrupts the energy and lipid homeostasis of L. vannamei. This disruption compelled L. vannamei to allocate additional energy toward sustaining basal physiological functions and consequently caused the accumulation of large amounts of reactive oxygen species (ROS) in the body, leading to apoptosis and subsequent tissue damage, and ultimately suppressed the immune system and impaired the health of L. vannamei. Our study elucidates the molecular mechanisms of CuPT-induced metabolic disruption and immunotoxicity in L. vannamei through integrated multi-omics analyses, providing new insights for ecological risk assessment of this emerging antifoulant. Full article
(This article belongs to the Special Issue Ecology of Aquatic Crustaceans: Crabs, Shrimps and Lobsters)
Show Figures

Figure 1

16 pages, 4744 KiB  
Article
Effects of Habitat Differences and Invasive Species Competition on Age and Growth of Triplophysa strauchii
by Ya-Han Meng, Wei-Zhen Gao, Yan Li and Lei Shi
Animals 2025, 15(14), 2128; https://doi.org/10.3390/ani15142128 - 18 Jul 2025
Viewed by 215
Abstract
Accurate age determination is fundamental for investigating fish population dynamics and growth patterns. This study used the lapillus to determine age in Triplophysa strauchii populations from an oxbow lake and a stream. Growth patterns were evaluated using three models (the Von Bertalanffy, Gompertz, [...] Read more.
Accurate age determination is fundamental for investigating fish population dynamics and growth patterns. This study used the lapillus to determine age in Triplophysa strauchii populations from an oxbow lake and a stream. Growth patterns were evaluated using three models (the Von Bertalanffy, Gompertz, and Logistic models). The oxbow lake population showed faster growth and longer lifespan (6 years in Dacao Lake; 5 years in Liutiao Stream). Conversely, the stream population displayed a trend toward smaller size and younger age. Both populations exhibited higher Fulton’s condition factor in juveniles than in adults. The species exhibited a fast-growth type, with similar fitting results across models. These findings reflect subtle differentiation in life history strategies across habitats, likely related to environmental conditions and competitive pressure from invasive species. These insights into T. strauchii life history underscore the importance of further research to support conservation and sustainable management of this endemic species. Full article
Show Figures

Figure 1

19 pages, 23863 KiB  
Article
Topographic Habitat Drive the Change of Soil Fungal Community and Vegetation Soil Characteristics in the Rhizosphere of Kengyilia thoroldiana in the Sanjiangyuan Region
by Liangyu Lyu, Pei Gao, Zongcheng Cai, Fayi Li and Jianjun Shi
J. Fungi 2025, 11(7), 531; https://doi.org/10.3390/jof11070531 - 17 Jul 2025
Viewed by 334
Abstract
This study aims to reveal the impact mechanisms of five typical topographic habitats in the Sanjiangyuan region (sunny slope, depression, shady slope, mountain pass, and transitional zone) on the characteristics and functions of rhizosphere soil fungal communities of Kengyilia thoroldiana, and to [...] Read more.
This study aims to reveal the impact mechanisms of five typical topographic habitats in the Sanjiangyuan region (sunny slope, depression, shady slope, mountain pass, and transitional zone) on the characteristics and functions of rhizosphere soil fungal communities of Kengyilia thoroldiana, and to elucidate the association patterns between these communities and soil physicochemical factors. The species composition, diversity, molecular co-occurrence network, and FUNGuild function of microbial communities were investigated based on high-throughput sequencing technology. By combining the Mantel test and RDA analysis, the key habitat factors affecting the structure of the soil fungal community in the rhizosphere zone of Kengyilia thoroldiana were explored. The results showed that: ① The composition of the soil fungal community in the rhizosphere of Kengyilia thoroldiana in five topographical habitats showed significant differentiation characteristics: the number of OTUs in H2 (depression) and H5 (transitional zone) habitats was the highest (336 and 326, respectively). Habitats H2 showed a significant increase in the abundance of Ascomycota and Mortierellomycota and a significant decrease in the abundance of Basidiomycota compared to the other topographical habitats. ② The diversity and aggregation degree of the soil fungal community in the rhizosphere of Kengyilia thoroldiana in five topographical habitats showed differences. ③ Cluster analysis showed that the rhizosphere soil fungi in five topographical habitats of Kengyilia thoroldiana could be divided into two groups, with H2, H4 (mountain pass), and H5 habitats as one group (group 1) and H1 and H3 (shady slope) as one group (group 2). ④ The characteristics of the Kengyilia thoroldiana community and the physical and chemical properties of rhizosphere soil in five topographical habitats were significantly different, and the height, coverage, biomass, and soil nutrient content were the highest in H2 and H5 habitats, while lower in H1 and H3 habitats, with significant differences (p < 0.05). ⑤ Redundancy analysis showed that soil water content was the main driving factor to change the structure and function of the soil fungal community in the rhizosphere of Kengyilia thoroldiana in five topographic habitats in the Sanjiangyuan region. This study demonstrated that topographic habitats affected the species composition, functional pattern, and ecosystem service efficiency of the Kengyilia thoroldiana rhizosphere fungal community by mediating soil environmental heterogeneity, which provides microbial mechanistic insights for alpine meadow ecosystem protection. Full article
(This article belongs to the Special Issue Fungal Communities in Various Environments, 2nd Edition)
Show Figures

Figure 1

19 pages, 3677 KiB  
Article
Land-Use Changes Largely Determine the Trajectory of Plant Species Distributions Under Climatic Uncertainty in a Mediterranean Landscape
by Spyros Tsiftsis, Anna Mastrogianni, Diogenis A. Kiziridis, Fotios Xystrakis, Magdalini Pleniou and Ioannis Tsiripidis
Land 2025, 14(7), 1438; https://doi.org/10.3390/land14071438 - 9 Jul 2025
Viewed by 519
Abstract
We investigated the combined effects of climate and land-use change on plant diversity in northwestern Greece, a region representative of broader European trends in land abandonment. We based our study on comprehensive field data on plants’ distribution and modelling of land-use changes based [...] Read more.
We investigated the combined effects of climate and land-use change on plant diversity in northwestern Greece, a region representative of broader European trends in land abandonment. We based our study on comprehensive field data on plants’ distribution and modelling of land-use changes based on socio-economic trends. We build distribution models for 358 taxa based on current (2015) and future (2055) conditions according to the combinations of three climate and three land-use change scenarios. We compared species distribution changes between current and future conditions for each scenario, and we investigated species trends concerning their ecological indicator values and strategies. Additionally, by analyzing the distribution changes in aggregated differential taxa representing the various plant communities in the study area, we identified patterns of distribution shifts at the community level. Our results indicated more pronounced differences between land-use scenarios than between climate ones, which was attributed to the local scale of the study area, its climatic and physiographic characteristics, and its complex land-use legacy. Both climate and land-use changes drastically reduced the distribution of some species, with species distribution loss exceeding 80% under certain combinations of socioeconomic and climate change scenarios. Species ecological indicator values and strategies showed a buffering effect of forest microclimate against climate change, which, however, may favor only species of forest communities. At the community level, land-use change had again a stronger impact than climate change, with consistent patterns within major vegetation types (forests and open habitats) but contrasting trends between them. Our results highlight the need for appropriate conservation plans to counteract the negative impacts of land abandonment and to take advantage of its positive impacts. Full article
Show Figures

Figure 1

27 pages, 18307 KiB  
Article
Analysis of Changes in Supply and Demand of Ecosystem Services in the Sanjiangyuan Region and the Main Driving Factors from 2000 to 2020
by Wenming Gao, Qian Song, Haoxiang Zhang, Shiru Wang and Jiarui Du
Land 2025, 14(7), 1427; https://doi.org/10.3390/land14071427 - 7 Jul 2025
Viewed by 293
Abstract
Research on the supply–demand relationships of ecosystem services (ESs) in alpine pastoral regions remains relatively scarce, yet it is crucial for regional ecological management and sustainable development. This study focuses on the Sanjiangyuan Region, a typical alpine pastoral area and significant ecological barrier, [...] Read more.
Research on the supply–demand relationships of ecosystem services (ESs) in alpine pastoral regions remains relatively scarce, yet it is crucial for regional ecological management and sustainable development. This study focuses on the Sanjiangyuan Region, a typical alpine pastoral area and significant ecological barrier, to quantitatively assess the supply–demand dynamics of key ESs and their spatial heterogeneity from 2000 to 2020. It further aims to elucidate the underlying driving mechanisms, thereby providing a scientific basis for optimizing regional ecological management. Four key ES indicators were selected: water yield (WY), grass yield (GY), soil conservation (SC), and habitat quality (HQ). ES supply and demand were quantified using an integrated approach incorporating the InVEST model, the Revised Universal Soil Loss Equation (RUSLE), and spatial analysis techniques. Building on this, the spatial patterns and temporal evolution characteristics of ES supply–demand relationships were analyzed. Subsequently, the Geographic Detector Model (GDM) and Geographically and Temporally Weighted Regression (GTWR) model were employed to identify key drivers influencing changes in the comprehensive ES supply–demand ratio. The results revealed the following: (1) Spatial Patterns: Overall ES supply capacity exhibited a spatial differentiation characterized by “higher values in the southeast and lower values in the northwest.” Areas of high ES demand were primarily concentrated in the densely populated eastern region. WY, SC, and HQ generally exhibited a surplus state, whereas GY showed supply falling short of demand in the densely populated eastern areas. (2) Temporal Dynamics: Between 2000 and 2020, the supply–demand ratios of WY and SC displayed a fluctuating downward trend. The HQ ratio remained relatively stable, while the GY ratio showed a significant and continuous upward trend, indicating positive outcomes from regional grass–livestock balance policies. (3) Driving Mechanisms: Climate and natural factors were the dominant drivers of changes in the ES supply–demand ratio. Analysis using the Geographical Detector’s q-statistic identified fractional vegetation cover (FVC, q = 0.72), annual precipitation (PR, q = 0.63), and human disturbance intensity (HD, q = 0.38) as the top three most influential factors. This study systematically reveals the spatial heterogeneity characteristics, dynamic evolution patterns, and core driving mechanisms of ES supply and demand in an alpine pastoral region, addressing a significant research gap. The findings not only provide a reference for ES supply–demand assessment in similar regions regarding indicator selection and methodology but also offer direct scientific support for precisely identifying priority areas for ecological conservation and restoration, optimizing grass–livestock balance management, and enhancing ecosystem sustainability within the Sanjiangyuan Region. Full article
(This article belongs to the Special Issue Water, Energy, Land, and Food (WELF) Nexus: An Ecosystems Perspective)
Show Figures

Figure 1

14 pages, 1124 KiB  
Article
Evolution of the Genetic Diversity and Spatial Distribution of Self-Establishing Black Locust (Robinia Pseudoacacia L.) Stands
by Sinilga Černulienė, Rita Verbylaitė and Vidas Stakėnas
Appl. Biosci. 2025, 4(3), 33; https://doi.org/10.3390/applbiosci4030033 - 7 Jul 2025
Viewed by 266
Abstract
Robinia pseudoacacia is one of the most widely introduced—but also controversial—tree species in Europe. On the one hand, it is valued for its productivity, timber quality, and melliferous blossom. On the other hand, it is highly invasive and causes habitat change and homogenization. [...] Read more.
Robinia pseudoacacia is one of the most widely introduced—but also controversial—tree species in Europe. On the one hand, it is valued for its productivity, timber quality, and melliferous blossom. On the other hand, it is highly invasive and causes habitat change and homogenization. The aim of the study reported on here was to assess the genetic diversity of selected R. pseudoacacia stands in Lithuania in districts with the highest black locust stands frequency and to evaluate its spatial distribution in self-establishing stands. To achieve this aim, we employed four nuclear SSR loci (Rops 02, Rops 05, Rops 06, and Rops 08) and investigated the genetic diversity of five R. pseudoacacia plots. The study results reveal that R. pseudoacacia in Lithuania is genetically diverse (the average allele number per plot was 3.66, and the average Ho was 0.83). R. pseudoacacia in the plots forms tight clonal groups that hardly intermix with each other; it also spreads by seeds (66 single-copy genotypes were found in total in all 5 investigated plots). R. pseudoacacia stands in Lithuania originate from different seed sources and from different introduction events, as revealed by the allelic pattern, genetic diversity, and genetic differentiation among the research plots. Full article
Show Figures

Figure 1

Back to TopTop