Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (621)

Search Parameters:
Keywords = differential hypoxia

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 1247 KiB  
Review
When Bone Forms Where It Shouldn’t: Heterotopic Ossification in Muscle Injury and Disease
by Anthony Facchin, Sophie Lemaire, Li Gang Toner, Anteneh Argaw and Jérôme Frenette
Int. J. Mol. Sci. 2025, 26(15), 7516; https://doi.org/10.3390/ijms26157516 - 4 Aug 2025
Viewed by 216
Abstract
Heterotopic ossification (HO) refers to the pathological formation of bone in soft tissues, typically following trauma, surgical procedures, or as a result of genetic disorders. Notably, injuries to the central nervous system significantly increase the risk of HO, a condition referred to as [...] Read more.
Heterotopic ossification (HO) refers to the pathological formation of bone in soft tissues, typically following trauma, surgical procedures, or as a result of genetic disorders. Notably, injuries to the central nervous system significantly increase the risk of HO, a condition referred to as neurogenic HO (NHO). This review outlines the cellular and molecular mechanisms driving HO, focusing on the inflammatory response, progenitor cell reprogramming, and current treatment strategies. HO is primarily fuelled by a prolonged and dysregulated inflammatory response, characterized by sustained expression of osteoinductive cytokines secreted by M1 macrophages. These cytokines promote the aberrant differentiation of fibro-adipogenic progenitor cells (FAPs) into osteoblasts, leading to ectopic mineralization. Additional factors such as hypoxia, BMP signalling, and mechanotransduction pathways further contribute to extracellular matrix (ECM) remodelling and osteogenic reprogramming of FAPs. In the context of NHO, neuroendocrine mediators enhance ectopic bone formation by influencing both local inflammation and progenitor cell fate decisions. Current treatment options such as nonsteroidal anti-inflammatory drugs (NSAIDs), radiation therapy, and surgical excision offer limited efficacy and are associated with significant risks. Novel therapeutic strategies targeting inflammation, neuropeptide signalling, and calcium metabolism may offer more effective approaches to preventing or mitigating HO progression. Full article
Show Figures

Graphical abstract

29 pages, 1626 KiB  
Review
Alternative Arterial Access in Veno-Arterial ECMO: The Role of the Axillary Artery
by Debora Emanuela Torre and Carmelo Pirri
J. Clin. Med. 2025, 14(15), 5413; https://doi.org/10.3390/jcm14155413 - 1 Aug 2025
Viewed by 298
Abstract
Background: Veno-arterial extracorporeal membrane oxygenation (V-A ECMO) is increasingly used to support patients with refractory cardiogenic shock or cardiac arrest. While femoral artery cannulation remains the most common arterial access, axillary artery cannulation has emerged as a valuable alternative in selected cases. Objective [...] Read more.
Background: Veno-arterial extracorporeal membrane oxygenation (V-A ECMO) is increasingly used to support patients with refractory cardiogenic shock or cardiac arrest. While femoral artery cannulation remains the most common arterial access, axillary artery cannulation has emerged as a valuable alternative in selected cases. Objective: This narrative review aims to synthesize current evidence and expert opinion on axillary artery cannulation in V-A ECMO, focusing on its technical feasibility, physiologic implications, and clinical outcomes. Methods: A comprehensive literature search was performed in PubMed and Scopus using relevant keywords related to ECMO, axillary artery, cannulation techniques, and outcomes. Emphasis was placed on prospective and retrospective clinical studies, expert consensus statements, and technical reports published over the past two decades. Results: Axillary cannulation provides antegrade aortic flow, potentially reducing the risk of differential hypoxia and improving upper body perfusion. However, the technique presents unique technical challenges and may carry risks such as hyperperfusion syndrome or arterial complications. Emerging data suggest favorable outcomes in selected patient populations when performed in experienced centers. Conclusions: Axillary cannulation represents a promising arterial access route in V-A ECMO, particularly in cases with contraindications to femoral cannulation or when upper-body perfusion is a concern. Further prospective studies are needed to better define patient selection criteria and long-term outcomes. Full article
(This article belongs to the Special Issue Cardiac Surgery: Clinical Advances)
Show Figures

Figure 1

17 pages, 877 KiB  
Review
Mitochondrial Metabolism in T-Cell Exhaustion
by Fei Li, Yu Feng, Zesheng Yin and Yahong Wang
Int. J. Mol. Sci. 2025, 26(15), 7400; https://doi.org/10.3390/ijms26157400 - 31 Jul 2025
Viewed by 475
Abstract
T cells play a vital role in resisting pathogen invasion and maintaining immune homeostasis. However, T cells gradually become exhausted under chronic antigenic stimulation, and this exhaustion is closely related to mitochondrial dysfunction in T cells. Mitochondria play a crucial role in the [...] Read more.
T cells play a vital role in resisting pathogen invasion and maintaining immune homeostasis. However, T cells gradually become exhausted under chronic antigenic stimulation, and this exhaustion is closely related to mitochondrial dysfunction in T cells. Mitochondria play a crucial role in the metabolic reprogramming of T cells to achieve the desired immune response. Here, we compiled the latest research on how mitochondrial metabolism determines T cell function and differentiation, with the mechanisms mainly including mitochondrial biogenesis, fission, fusion, mitophagy, and mitochondrial transfer. In addition, the alterations in mitochondrial metabolism in T-cell exhaustion were also reviewed. Furthermore, we discussed intervention strategies targeting mitochondrial metabolism to reverse T cell exhaustion in detail, including inducing PGC-1α expression, alleviating reactive oxygen species (ROS) production or hypoxia, enhancing ATP production, and utilizing mitochondrial transfer. Targeting mitochondrial metabolism in exhausted T cells may achieve the goal of reversing and preventing T cell exhaustion. Full article
(This article belongs to the Special Issue Mitochondria: Transport of Metabolites Across Biological Membranes)
Show Figures

Figure 1

14 pages, 1365 KiB  
Article
Molecular Genetic Basis of Reproductive Fitness in Tibetan Sheep on the Qinghai-Tibet Plateau
by Wangshan Zheng, Siyu Ge, Zehui Zhang, Ying Li, Yuxing Li, Yan Leng, Yiming Wang, Xiaohu Kang and Xinrong Wang
Genes 2025, 16(8), 909; https://doi.org/10.3390/genes16080909 - 29 Jul 2025
Viewed by 213
Abstract
Background: Complete environmental adaptation requires both survival and reproductive success. The hypoxic Qinghai-Tibet Plateau (>3000 m) challenges reproduction in indigenous species. Tibetan sheep, a key plateau-adapted breed, possess remarkable hypoxic tolerance, yet the genetic basis of their reproductive success remains poorly understood. [...] Read more.
Background: Complete environmental adaptation requires both survival and reproductive success. The hypoxic Qinghai-Tibet Plateau (>3000 m) challenges reproduction in indigenous species. Tibetan sheep, a key plateau-adapted breed, possess remarkable hypoxic tolerance, yet the genetic basis of their reproductive success remains poorly understood. Methods: We integrated transcriptomic and genomic data from Tibetan sheep and two lowland breeds (Small-tailed Han sheep and Hu sheep) to identify Tibetan sheep reproduction-associated genes (TSRGs). Results: We identified 165 TSRGs: four genes were differentially expressed (DEGs) versus Small-tailed Han sheep, 77 DEGs versus Hu sheep were found, and 73 genes were annotated in reproductive pathways. Functional analyses revealed enrichment for spermatogenesis, embryonic development, and transcriptional regulation. Notably, three top-ranked selection signals (VEPH1, HBB, and MEIKIN) showed differential expression. Murine Gene Informatics (MGI) confirmed that knockout orthologs exhibit significant phenotypes including male infertility, abnormal meiosis (male/female), oligozoospermia, and reduced neonatal weight. Conclusions: Tibetan sheep utilize an evolved suite of genes underpinning gametogenesis and embryogenesis under chronic hypoxia, ensuring high reproductive fitness—a vital component of their adaptation to plateaus. These genes provide valuable genetic markers for the selection, breeding, and conservation of Tibetan sheep as a critical genetic resource. Full article
(This article belongs to the Section Animal Genetics and Genomics)
Show Figures

Figure 1

24 pages, 528 KiB  
Review
Therapeutic and Prognostic Relevance of Cancer Stem Cell Populations in Endometrial Cancer: A Narrative Review
by Ioana Cristina Rotar, Elena Bernad, Liviu Moraru, Viviana Ivan, Adrian Apostol, Sandor Ianos Bernad, Daniel Muresan and Melinda-Ildiko Mitranovici
Diagnostics 2025, 15(15), 1872; https://doi.org/10.3390/diagnostics15151872 - 25 Jul 2025
Viewed by 250
Abstract
The biggest challenge in cancer therapy is tumor resistance to the classical approach. Thus, research interest has shifted toward the cancer stem cell population (CSC). CSCs are a small subpopulation of cancer cells within tumors with self-renewal, differentiation, and metastasis/malignant potential. They are [...] Read more.
The biggest challenge in cancer therapy is tumor resistance to the classical approach. Thus, research interest has shifted toward the cancer stem cell population (CSC). CSCs are a small subpopulation of cancer cells within tumors with self-renewal, differentiation, and metastasis/malignant potential. They are involved in tumor initiation and development, metastasis, and recurrence. Method. A narrative review of significant scientific publications related to the topic and its applicability in endometrial cancer (EC) was performed with the aim of identifying current knowledge about the identification of CSC populations in endometrial cancer, their biological significance, prognostic impact, and therapeutic targeting. Results: Therapy against the tumor population alone has no or negligible effect on CSCs. CSCs, due to their stemness and therapeutic resistance, cause tumor relapse. They target CSCs that may lead to noticeable persistent tumoral regression. Also, they can be used as a predictive marker for poor prognosis. Reverse transcription–polymerase chain reaction (RT-PCR) demonstrated that the cultured cells strongly expressed stemness-related genes, such as SOX-2 (sex-determining region Y-box 2), NANOG (Nanog homeobox), and Oct 4 (octamer-binding protein 4). The expression of surface markers CD133+ and CD44+ was found on CSC as stemness markers. Along with surface markers, transcription factors such as NF-kB, HIF-1a, and b-catenin were also considered therapeutic targets. Hypoxia is another vital feature of the tumor environment and aids in the maintenance of the stemness of CSCs. This involves the hypoxic activation of the WNT/b-catenin pathway, which promotes tumor survival and metastasis. Specific antibodies have been investigated against CSC markers; for example, anti-CD44 antibodies have been demonstrated to have potential against different CSCs in preclinical investigations. Anti-CD-133 antibodies have also been developed. Targeting the CSC microenvironment is a possible drug target for CSCs. Focusing on stemness-related genes, such as the transcription pluripotency factors SOX2, NANOG, and OCT4, is another therapeutic option. Conclusions: Stemness surface and gene markers can be potential prognostic biomarkers and management approaches for cases with drug-resistant endometrial cancers. Full article
(This article belongs to the Section Pathology and Molecular Diagnostics)
Show Figures

Figure 1

15 pages, 2284 KiB  
Article
O2-Generated Electrical and Mechanical Properties of Polyphenol-Mediated Hydrogel Sensor
by Sunu Hangma Subba, A Hyeon Kim, Anneshwa Dey, Byung Chan Lee and Sung Young Park
Gels 2025, 11(8), 566; https://doi.org/10.3390/gels11080566 - 22 Jul 2025
Viewed by 218
Abstract
The tumor microenvironment contains distinctive biomarkers, including acidic pH, elevated levels of reactive oxygen species (ROS), and hypoxia, necessitating the development of efficient biosensors for simplified cancer detection. This study presents an O2-responsive hydrogel biosensor composed of [1,1′-biphenyl]-2,2′,4,4′,5,5′-hexaol (HDP) and polyvinyl [...] Read more.
The tumor microenvironment contains distinctive biomarkers, including acidic pH, elevated levels of reactive oxygen species (ROS), and hypoxia, necessitating the development of efficient biosensors for simplified cancer detection. This study presents an O2-responsive hydrogel biosensor composed of [1,1′-biphenyl]-2,2′,4,4′,5,5′-hexaol (HDP) and polyvinyl alcohol (PVA) that exploits polyphenol-mediated interactions under N2 and O2 microenvironments. The oxidative susceptibility of the polyphenolic HDP moiety influences its distinct mechanical, physical, and electrochemical properties, allowing the differentiation between cancerous and normal cells. The in vitro assessments with cancer cell lines (HeLa and B16F10) and normal cell lines (CHO-K1) enabled distinctive electrical and mechanophysical outputs, as evidenced by enhanced mechanical compressive modulus and high conductivity, regulated by normoxic cellular states. In addition, the inherent ROS-scavenging capability of the HDP–PVA hydrogel sensor supports its potential application in hypoxia-related diseases, including cancer. Full article
Show Figures

Figure 1

27 pages, 4223 KiB  
Article
Prolyl Hydroxylase Inhibitor-Mediated HIF Activation Drives Transcriptional Reprogramming in Retinal Pigment Epithelium: Relevance to Chronic Kidney Disease
by Tamás Gáll, Dávid Pethő, Annamária Nagy, Szilárd Póliska, György Balla and József Balla
Cells 2025, 14(14), 1121; https://doi.org/10.3390/cells14141121 - 21 Jul 2025
Viewed by 517
Abstract
Chronic kidney disease (CKD)-associated anemia is a global health concern and is linked to vascular and ocular complications. Hypoxia-inducible factor (HIF) stabilizers, or HIF prolyl hydroxylase inhibitors (PHIs), are promising candidates for the treatment of CKD-associated anemia. Since hypoxia and angiogenesis are involved [...] Read more.
Chronic kidney disease (CKD)-associated anemia is a global health concern and is linked to vascular and ocular complications. Hypoxia-inducible factor (HIF) stabilizers, or HIF prolyl hydroxylase inhibitors (PHIs), are promising candidates for the treatment of CKD-associated anemia. Since hypoxia and angiogenesis are involved in eye diseases, this study examined the effects of HIF-PHIs on metabolism and gene expression in retinal pigment epithelium (RPE) cells. Results revealed that PHIs differentially induced angiogenic (VEGFA, ANG) and glycolytic (PDK1, GLUT1) gene expression, with Roxadustat causing the strongest transcriptional changes. However, Roxadustat-induced angiogenic signals did not promote endothelial tube formation. Moreover, it did not induce oxidative stress, inflammation, or significant antioxidant gene responses in ARPE-19 cells. Roxadustat also reduced the inflammatory cytokine response to tumor necrosis factor-α, including IL-6, IL-8, and MCP-1, and did not exacerbate VEGF expression under high-glucose conditions. Overall, Roxadustat triggered complex gene expression changes without promoting inflammation or oxidative stress in RPE cells. Despite these findings, ophthalmologic monitoring is advised during PHI treatment in CKD patients receiving HIF-PHIs. Full article
(This article belongs to the Section Cellular Immunology)
Show Figures

Figure 1

13 pages, 6330 KiB  
Article
Erythroblasts Promote the Development of a Suppressive Lymphocyte Phenotype via Treg Induction and PD1 Upregulation on the Surfaces of B-Cells: A Study on the Subpopulation-Specific Features of Erythroblasts
by Kirill Nazarov, Roman Perik-Zavodskii, Julia Shevchenko and Sergey Sennikov
Curr. Issues Mol. Biol. 2025, 47(7), 550; https://doi.org/10.3390/cimb47070550 - 15 Jul 2025
Viewed by 247
Abstract
This study identifies the novel effects of soluble factors derived from murine erythroblasts on lymphoid cell phenotypes. These effects were observed following the treatment of splenic mononuclear cells with erythroblast-conditioned media received from both healthy mice and mice subjected to hematopoiesis-activating conditions (hypoxia, [...] Read more.
This study identifies the novel effects of soluble factors derived from murine erythroblasts on lymphoid cell phenotypes. These effects were observed following the treatment of splenic mononuclear cells with erythroblast-conditioned media received from both healthy mice and mice subjected to hematopoiesis-activating conditions (hypoxia, blood loss, and hemolytic anemia), suggesting a common mechanism of action. Using flow cytometry, we elucidated that erythroblast-derived soluble products modulate T cell differentiation by promoting Treg development and increasing PD-1 surface expression on B cells. The immunoregulatory potential of erythroblasts is subpopulation-dependent: CD45+ erythroblasts respond to hemolytic stress by upregulating the surface expression of immunosuppressive molecules PDL1 and Galectin-9, while CD45- erythroblasts primarily increase TGFb production. These findings highlight the regulatory role of erythroblasts in modulating immune responses. Full article
(This article belongs to the Section Biochemistry, Molecular and Cellular Biology)
Show Figures

Figure 1

19 pages, 815 KiB  
Article
Oxygen-Enhanced R2* Weighted MRI and Diffusion Weighted MRI of Head and Neck Squamous Cell Cancer Lymph Nodes in Prediction of 2-Year Outcome Following Chemoradiotherapy
by Harbir Singh Sidhu, David Price, Tim Beale, Simon Morley, Sola Adeleke, Marianthi-Vasiliki Papoutsaki, Martin Forster, Dawn Carnell, Ruheena Mendes, Stuart Andrew Taylor and Shonit Punwani
Cancers 2025, 17(14), 2333; https://doi.org/10.3390/cancers17142333 - 14 Jul 2025
Viewed by 283
Abstract
Background: We evaluated the utility of HNSCC LN R2* relaxation times to infer the oxygenation status of LN non-invasively at baseline and when breathing air and 100% oxygen to predict chemoradiotherapeutic locoregional response at 2 years. Hypoxia within LNs has been associated with [...] Read more.
Background: We evaluated the utility of HNSCC LN R2* relaxation times to infer the oxygenation status of LN non-invasively at baseline and when breathing air and 100% oxygen to predict chemoradiotherapeutic locoregional response at 2 years. Hypoxia within LNs has been associated with poorer outcomes following CRT. Deoxyhaemoglobin decreases MRI transverse relaxation time (T2*) (lengthening inverse, R2*). Methods: A total of 54 patients underwent 1.5T-MRI before CRT. Conventional MR sequences were supplemented with T2* sequences breathing both air and 100% oxygen; pathological nodes identified in consensus were volumetrically contoured to T2* parametric maps. Results: Patients followed-up with for >2 years were categorised by multidisciplinary consensus into post-therapy complete local response (CR; n = 32/54) and local nodal disease relapse (RD; n = 22/54). Our data demonstrated, by R2*, that nodes that sustained post-therapy CR are significantly more hypoxic compared with relapsing nodes and paradoxically demonstrate a significant increase in hypoxia on 100% oxygen. Pre-treatment LN short axis diameter, various qualitative descriptors of malignancy, and quantitative DWI were not useful in discriminating successful response to CRT. Conclusions: This study demonstrates that a significant differential response to 100% oxygen and higher baseline R2* LN measurements could be exploited in risk stratification prior to CRT, and future work could be directed towards understanding the contrast mechanisms of R2* imaging, underpinning the observed differences in the context of hypoxia. Full article
(This article belongs to the Special Issue Clinical and Translational Research in Head and Neck Cancer)
Show Figures

Figure 1

25 pages, 3040 KiB  
Article
Transcriptomic Alterations of Canine Histiocytic Sarcoma Cells in Response to Different Stressors
by Thanaporn Asawapattanakul, Klaus Schughart, Maren von Köckritz-Blickwede, Federico Armando, Peter Claus, Wolfgang Baumgärtner and Christina Puff
Int. J. Mol. Sci. 2025, 26(14), 6629; https://doi.org/10.3390/ijms26146629 - 10 Jul 2025
Viewed by 430
Abstract
Canine histiocytic sarcoma (HS) is a rare tumor with a poor prognosis. Rapid tumor growth often causes central hypoxia and starvation, impacting tumor progression. In the present study, HS cells were cultured under hypoxia and starvation for 1 and 3 days, simulating intermediate [...] Read more.
Canine histiocytic sarcoma (HS) is a rare tumor with a poor prognosis. Rapid tumor growth often causes central hypoxia and starvation, impacting tumor progression. In the present study, HS cells were cultured under hypoxia and starvation for 1 and 3 days, simulating intermediate and central tumor zones, respectively. Cells were counted at each time point, followed by RNAseq analysis. Only hypoxia significantly reduced the cell number (p < 0.05). Short-term hypoxia altered 1645 differentially expressed genes (DEGs). Upregulated genes belonged to vasculature development, and downregulated genes to cell cycle processes. Short-term starvation affected 157 genes, mainly involving responses to stimuli. Prolonged hypoxia and starvation induced 1301 and 836 DEGs, respectively. Prolonged hypoxia upregulated genes mainly involved in immune responses, response to stimulus, adhesion, and angiogenesis. Prolonged starvation upregulated genes associated with signaling, adhesion, circulatory system development, and response to stimulus. Lipid metabolism and cell cycle pathways were downregulated under prolonged hypoxia and starvation, respectively. KEGG “pathways in cancer” were enriched under all conditions (adjusted p-values < 0.05). These findings indicate that hypoxia and starvation significantly alter the expression of genes involved in tumor progression. Further studies, namely post-translational analyses, are needed to elucidate the functional impact of these changes and identify potential therapeutic targets. Full article
(This article belongs to the Section Molecular Oncology)
Show Figures

Figure 1

22 pages, 17031 KiB  
Article
AZU1 as a DNA Methylation-Driven Gene: Promoting Oxidative Stress in High-Altitude Pulmonary Edema
by Qiong Li, Zhichao Xu, Qianhui Gong, Liyang Chen, Xiaobing Shen and Xiaowei Chen
Antioxidants 2025, 14(7), 835; https://doi.org/10.3390/antiox14070835 - 8 Jul 2025
Viewed by 399
Abstract
High-altitude pulmonary edema (HAPE) is a severe condition associated with high-altitude environments, and its molecular mechanism has not been fully elucidated. This study systematically analyzed the DNA methylation status of HAPE patients and healthy controls using reduced-representation bisulfite sequencing (RRBS) and 850K DNA [...] Read more.
High-altitude pulmonary edema (HAPE) is a severe condition associated with high-altitude environments, and its molecular mechanism has not been fully elucidated. This study systematically analyzed the DNA methylation status of HAPE patients and healthy controls using reduced-representation bisulfite sequencing (RRBS) and 850K DNA methylation chips, identifying key differentially methylated regions (DMRs). Targeted bisulfite sequencing (TBS) revealed significant abnormalities in DMRs of five genes, azurocidin 1 (AZU1), growth factor receptor bound protein 7 (GRB7), mannose receptor C-type 2 (MRC2), RUNX family transcription factor 3 (RUNX3), and septin 9 (SEPT9). The abnormal expression of AZU1 was validated using peripheral blood leukocytes from HAPE patients and normal controls, as well as rat lung tissue, indicating its potential importance in the pathogenesis of HAPE. To further validate the function of AZU1, we conducted experimental studies using a hypobaric hypoxia injury model in Human Umbilical Vein Endothelial Cells (HUVEC). The results showed that AZU1 was significantly upregulated under hypobaric hypoxia. Knocking down AZU1 mitigates the reduction in HUVEC proliferation, angiogenesis, and oxidative stress damage induced by acute hypobaric hypoxia. AZU1 induces cellular oxidative stress via the p38/mitogen-activated protein kinase (p38/MAPK) signaling pathway. This study is the first to elucidate the mechanism of AZU1 in HAPE via the p38/MAPK pathway, offering novel insights into the molecular pathology of HAPE and laying a foundation for future diagnostic and therapeutic strategies. Full article
Show Figures

Graphical abstract

28 pages, 18319 KiB  
Review
Influence of Scaffold Structure and Biomimetic Properties on Adipose Stem Cell Homing in Personalized Reconstructive Medicine
by Doina Ramona Manu, Diana V. Portan, Monica Vuţă and Minodora Dobreanu
Biomimetics 2025, 10(7), 438; https://doi.org/10.3390/biomimetics10070438 - 3 Jul 2025
Viewed by 607
Abstract
Human adipose stem cells (ASCs) are multipotent cells expressing mesenchymal stem cell (MSC) markers that are capable of multilineage differentiation and secretion of bioactive factors. Their “homing” to injured tissues is mediated by chemokines, cytokines, adhesion molecules, and signaling pathways. Enhancing ASC homing [...] Read more.
Human adipose stem cells (ASCs) are multipotent cells expressing mesenchymal stem cell (MSC) markers that are capable of multilineage differentiation and secretion of bioactive factors. Their “homing” to injured tissues is mediated by chemokines, cytokines, adhesion molecules, and signaling pathways. Enhancing ASC homing is critical for improving regenerative therapies. Strategies include boosting chemotactic signaling, modulating immune responses to create a supportive environment, preconditioning ASCs with hypoxia or mechanical stimuli, co-culturing with supportive cells, applying surface modifications or genetic engineering, and using biomaterials to promote ASC recruitment, retention, and integration at injury sites. Scaffolds provide structural support and a biomimetic environment for ASC-based tissue regeneration. Natural scaffolds promote adhesion and differentiation but have mechanical limitations, while synthetic scaffolds offer tunable properties and controlled degradation. Functionalization with bioactive molecules improves the regenerative outcomes of different tissue types. Ceramic-based scaffolds, due to their strength and bioactivity, are ideal for bone healing. Composite scaffolds, combining polymers, ceramics, or metals, further optimize mechanical and biological properties, supporting personalized regenerative therapies. This review integrates concepts from cell biology, biomaterials science, and regenerative medicine to offer a comprehensive understanding of ASC homing and its impact on tissue engineering and clinical applications. Full article
(This article belongs to the Section Biomimetics of Materials and Structures)
Show Figures

Figure 1

34 pages, 765 KiB  
Review
Transcription Factors and Methods for the Pharmacological Correction of Their Activity
by Svetlana V. Guryanova, Tatiana V. Maksimova and Madina M. Azova
Int. J. Mol. Sci. 2025, 26(13), 6394; https://doi.org/10.3390/ijms26136394 - 2 Jul 2025
Viewed by 785
Abstract
Transcription factors (TFs) are proteins that control gene expression by binding to specific DNA sequences and are essential for cell development, differentiation, and homeostasis. Dysregulation of TFs is implicated in numerous diseases, including cancer, autoimmune disorders, and neurodegeneration. While TFs were traditionally considered [...] Read more.
Transcription factors (TFs) are proteins that control gene expression by binding to specific DNA sequences and are essential for cell development, differentiation, and homeostasis. Dysregulation of TFs is implicated in numerous diseases, including cancer, autoimmune disorders, and neurodegeneration. While TFs were traditionally considered “undruggable” due to their lack of well-defined binding pockets, recent advances have made it possible to modulate their activity using diverse pharmacological strategies. Major TF families include NF-κB, p53, STATs, HIF-1α, AP-1, Nrf2, and nuclear hormone receptors, which take part in the regulation of inflammation, tumor suppression, cytokine signaling, hypoxia and stress response, oxidative stress, and hormonal response, respectively. TFs can perform multiple functions, participating in the regulation of opposing processes depending on the context. NF-κB, for instance, plays dual roles in immunity and cancer, and is targeted by proteasome and IKKβ inhibitors. p53, often mutated in cancer, is reactivated using MDM2 antagonist Nutlin-3, refunctionalizing compound APR-246, or stapled peptides. HIF-1α, which regulates hypoxic responses and angiogenesis, is inhibited by agents like acriflavine or stabilized in anemia therapies by HIF-PHD inhibitor roxadustat. STATs, especially STAT3 and STAT5, are oncogenic and targeted via JAK inhibitors or novel PROTAC degraders, for instance SD-36. AP-1, implicated in cancer and arthritis, can be inhibited by T-5224 or kinase inhibitors JNK and p38 MAPK. Nrf2, a key antioxidant regulator, can be activated by agents like DMF or inhibited in chemoresistant tumors. Pharmacological strategies include direct inhibitors, activators, PROTACs, molecular glues, and epigenetic modulators. Challenges remain, including the structural inaccessibility of TFs, functional redundancy, off-target effects, and delivery barriers. Despite these challenges, transcription factor modulation is emerging as a viable and promising therapeutic approach, with ongoing research focusing on specificity, safety, and efficient delivery methods to realize its full clinical potential. Full article
(This article belongs to the Topic Research in Pharmacological Therapies, 2nd Edition)
Show Figures

Figure 1

12 pages, 5543 KiB  
Article
Hypoxic Conditions Promote Cartilage Repair in a Rat Knee Osteochondral Defect Model via Hypoxia-Inducible Factor-1α
by Kei Nakamura, Atsuo Inoue, Yuji Arai, Shuji Nakagawa, Yuta Fujii, Ryota Cha, Keisuke Sugie, Kentaro Hayashi, Tsunao Kishida, Osam Mazda and Kenji Takahashi
Int. J. Mol. Sci. 2025, 26(13), 6370; https://doi.org/10.3390/ijms26136370 - 2 Jul 2025
Viewed by 394
Abstract
Bone marrow stimulation is a treatment for articular cartilage injuries that promotes cartilage repair by inducing the migration and accumulation of mesenchymal stem cells (MSCs), but often results in fibrocartilage with limited durability. This study aimed to investigate the effect of hypoxic conditions [...] Read more.
Bone marrow stimulation is a treatment for articular cartilage injuries that promotes cartilage repair by inducing the migration and accumulation of mesenchymal stem cells (MSCs), but often results in fibrocartilage with limited durability. This study aimed to investigate the effect of hypoxic conditions on cartilage repair using a rat osteochondral defect model. Osteochondral defects (1.0 mm in diameter) were created in the femoral trochlear groove, and rats were exposed to hypoxic conditions (12% O2) for 4 weeks postoperatively. Histological analysis was performed, and protein expression of hypoxia-inducible factor-1α (HIF-1α) and SRY-box transcription factor 9 (SOX9) in the repair tissue was evaluated after 1 week. As a result, after 1 week, protein expression of HIF-1α and SOX9 in the Hypoxia group was significantly increased compared to the Normoxia group. After 4 weeks, the Hypoxia group exhibited a hyaline cartilage-like tissue structure with a significantly lower Modified Wakitani score compared to the Normoxia group. Furthermore, after 4 weeks, the inhibition of HIF-1α suppressed cartilage repair. These findings suggest that hypoxic conditions promote SOX9 expression via HIF-1α during the early phase of MSC chondrogenic differentiation and promote the formation of hyaline cartilage-like repair tissue. In conclusion, bone marrow stimulation under hypoxic conditions may enhance the repair effect on articular cartilage injuries. Full article
(This article belongs to the Special Issue Molecular Biology of Hypoxia)
Show Figures

Figure 1

25 pages, 672 KiB  
Review
Stem Cell Therapy Approaches for Ischemia: Assessing Current Innovations and Future Directions
by Changguo Ma, An Yu, Tingyan He, Yulin Qian and Min Hu
Int. J. Mol. Sci. 2025, 26(13), 6320; https://doi.org/10.3390/ijms26136320 - 30 Jun 2025
Viewed by 422
Abstract
Characterized by insufficient blood supply leading to tissue hypoxia and damage, ischemia is the underlying cause of major conditions such as ischemic stroke, myocardial infarction, and peripheral artery disease. Stem cell therapy, as a regenerative strategy, demonstrates significant potential in restoring tissue blood [...] Read more.
Characterized by insufficient blood supply leading to tissue hypoxia and damage, ischemia is the underlying cause of major conditions such as ischemic stroke, myocardial infarction, and peripheral artery disease. Stem cell therapy, as a regenerative strategy, demonstrates significant potential in restoring tissue blood flow and organ function in ischemic environments. This review systematically explores the latest advances in stem cell therapy for ischemic diseases, focusing on different cell types and their mechanisms of action, including direct differentiation, paracrine signaling, immunomodulation, and microenvironment regulation. Furthermore, it highlights innovations in gene editing and bioengineering technologies that enhance cell delivery, targeting, and therapeutic efficacy. Simultaneously, this article discusses the challenges faced, advances in cell tracking and delivery, and future research directions, aiming to provide insights for the development of more effective and personalized treatment strategies Full article
(This article belongs to the Special Issue Advances in the Prevention and Treatment of Ischemic Diseases)
Show Figures

Figure 1

Back to TopTop