Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (9,004)

Search Parameters:
Keywords = different regions in China

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
32 pages, 444 KiB  
Article
Does Digital Literacy Increase Farmers’ Willingness to Adopt Livestock Manure Resource Utilization Modes: An Empirical Study from China
by Xuefeng Ma, Yahui Li, Minjuan Zhao and Wenxin Liu
Agriculture 2025, 15(15), 1661; https://doi.org/10.3390/agriculture15151661 - 1 Aug 2025
Abstract
Enhancing farmers’ digital literacy is both an inevitable requirement for adapting to the digital age and an important measure for promoting the sustainable development of livestock and poultry manure resource utilization. This study surveyed and obtained data from 1047 farm households in Ningxia [...] Read more.
Enhancing farmers’ digital literacy is both an inevitable requirement for adapting to the digital age and an important measure for promoting the sustainable development of livestock and poultry manure resource utilization. This study surveyed and obtained data from 1047 farm households in Ningxia and Gansu, two provinces in China that have long implemented livestock manure resource utilization policies, from December 2023 to January 2024, and employed the binary probit model to analyze how digital literacy influences farmers’ willingness to adopt two livestock manure resource utilization modes, as well as to analyze the moderating role of three policy regulations. This paper also explores the heterogeneous results in different village forms and income groups. The results are as follows: (1) Digital literacy significantly and positively impacts farmers’ willingness to adopt both the “household collection” mode and the “livestock community” mode. For every one-unit increase in a farmer’s digital literacy, the probability of farmers’ willingness to adopt the “household collection” mode rises by 22 percentage points, and the probability of farmers’ willingness to adopt the “livestock community” mode rises by 19.8 percentage points. After endogeneity tests and robustness checks, the conclusion still holds. (2) Mechanism analysis results indicate that guiding policy and incentive policy have a positive moderation effect on the link between digital literacy and the willingness to adopt the “household collection” mode. Meanwhile, incentive policy also positively moderates the relationship between digital literacy and the willingness to adopt the “livestock community” mode. (3) Heterogeneity analysis results show that the positive effect of digital literacy on farmers’ willingness to adopt two livestock manure resource utilization modes is stronger in “tight-knit society” rural areas and in low-income households. (4) In further discussion, we find that digital literacy removes the information barriers for farmers, facilitating the conversion of willingness into behavior. The value of this study is as follows: this paper provides new insights for the promotion of livestock and poultry manure resource utilization policies in countries and regions similar to the development process of northwest China. Therefore, enhancing farmers’ digital literacy in a targeted way, strengthening the promotion of grassroots policies on livestock manure resource utilization, formulating diversified ecological compensation schemes, and establishing limited supervision and penalty rules can boost farmers’ willingness to adopt manure resource utilization models. Full article
(This article belongs to the Special Issue Application of Biomass in Agricultural Circular Economy)
Show Figures

Figure 1

36 pages, 1921 KiB  
Article
Policy Synergies for Advancing Energy–Environmental Productivity and Sustainable Urban Development: Empirical Evidence from China’s Dual-Pilot Energy Policies
by Si Zhang and Xiaodong Zhu
Sustainability 2025, 17(15), 6992; https://doi.org/10.3390/su17156992 (registering DOI) - 1 Aug 2025
Abstract
Achieving synergies between government-led and market-based policy instruments is critical to advancing Energy–Environmental Productivity and Sustainable Urban Development. This study investigates the effects of China’s dual-pilot energy policies (New Energy Demonstration Cities (NEDCs) and Energy Consumption Permit Trading (ECPT)) on urban environmental productivity [...] Read more.
Achieving synergies between government-led and market-based policy instruments is critical to advancing Energy–Environmental Productivity and Sustainable Urban Development. This study investigates the effects of China’s dual-pilot energy policies (New Energy Demonstration Cities (NEDCs) and Energy Consumption Permit Trading (ECPT)) on urban environmental productivity (UEP) across 279 prefecture-level cities from 2006 to 2023. Utilizing a Non-Radial Directional Distance Function (NDDF) approach, combined with Difference-in-Differences (DID) estimation and spatial econometric models, the analysis reveals that these synergistic policies significantly enhance both comprehensive and net measures of UEP. Mechanism analysis highlights the roles of industrial restructuring, technological innovation, and energy transition in driving these improvements, while heterogeneity analysis indicates varying effects across different city types. Spatial spillover analysis further demonstrates that policy impacts extend beyond targeted cities, contributing to broader regional gains in UEP. These findings offer important insights for the design of integrated energy and environmental policies and support progress toward key Sustainable Development Goals (SDG 7, SDG 11, and SDG 12). Full article
Show Figures

Figure 1

17 pages, 2404 KiB  
Article
Geographically Weighted Regression Enhances Spectral Diversity–Biodiversity Relationships in Inner Mongolian Grasslands
by Yu Dai, Huawei Wan, Longhui Lu, Fengming Wan, Haowei Duan, Cui Xiao, Yusha Zhang, Zhiru Zhang, Yongcai Wang, Peirong Shi and Xuwei Sun
Diversity 2025, 17(8), 541; https://doi.org/10.3390/d17080541 (registering DOI) - 1 Aug 2025
Abstract
The spectral variation hypothesis (SVH) posits that the complexity of spectral information in remote sensing imagery can serve as a proxy for regional biodiversity. However, the relationship between spectral diversity (SD) and biodiversity differs for different environmental conditions. Previous SVH studies often overlooked [...] Read more.
The spectral variation hypothesis (SVH) posits that the complexity of spectral information in remote sensing imagery can serve as a proxy for regional biodiversity. However, the relationship between spectral diversity (SD) and biodiversity differs for different environmental conditions. Previous SVH studies often overlooked these differences. We utilized species data from field surveys in Inner Mongolia and drone-derived multispectral imagery to establish a quantitative relationship between SD and biodiversity. A geographically weighted regression (GWR) model was used to describe the SD–biodiversity relationship and map the biodiversity indices in different experimental areas in Inner Mongolia, China. Spatial autocorrelation analysis revealed that both SD and biodiversity indices exhibited strong and statistically significant spatial autocorrelation in their distribution patterns. Among all spectral diversity indices, the convex hull area exhibited the best model fit with the Margalef richness index (Margalef), the coefficient of variation showed the strongest predictive performance for species richness (Richness), and the convex hull volume provided the highest explanatory power for Shannon diversity (Shannon). Predictions for Shannon achieved the lowest relative root mean square error (RRMSE = 0.17), indicating the highest predictive accuracy, whereas Richness exhibited systematic underestimation with a higher RRMSE (0.23). Compared to the commonly used linear regression model in SVH studies, the GWR model exhibited a 4.7- to 26.5-fold improvement in goodness-of-fit. Despite the relatively low R2 value (≤0.59), the model yields biodiversity predictions that are broadly aligned with field observations. Our approach explicitly considers the spatial heterogeneity of the SD–biodiversity relationship. The GWR model had significantly higher fitting accuracy than the linear regression model, indicating its potential for remote sensing-based biodiversity assessments. Full article
(This article belongs to the Special Issue Ecology and Restoration of Grassland—2nd Edition)
Show Figures

Figure 1

20 pages, 6322 KiB  
Article
Alluvial Fan Fringe Reservoir Architecture Anatomy—A Case Study of the X4-X5 Section of the Xihepu Formation in the Kekeya Oilfield
by Baiyi Zhang, Lixin Wang and Yanshu Yin
Appl. Sci. 2025, 15(15), 8547; https://doi.org/10.3390/app15158547 (registering DOI) - 31 Jul 2025
Abstract
The Kekeya oilfield is located at the southwestern edge of the Tarim Basin, in the southern margin of the Yecheng depression, at the western end of the second structural belt of the northern foothills of the Kunlun Mountains. It is one of the [...] Read more.
The Kekeya oilfield is located at the southwestern edge of the Tarim Basin, in the southern margin of the Yecheng depression, at the western end of the second structural belt of the northern foothills of the Kunlun Mountains. It is one of the important oil and gas fields in western China, with significant oil and gas resource potential in the X4-X5 section of the Xihepu Formation. This study focuses on the edge of the alluvial fan depositional system, employing various techniques, including core data and well logging data, to precisely characterize the sand body architecture and comprehensively analyze the reservoir architecture in the study area. First, the regional geological background of the area is analyzed, clarifying the sedimentary environment and evolutionary process of the Xihepu Formation. Based on the sedimentary environment and microfacies classification, the sedimentary features of the region are revealed. On this basis, using reservoir architecture element analysis, the interfaces of the reservoir architecture are finely subdivided. The spatial distribution characteristics of the planar architecture are discussed, and the spatial distribution and internal architecture of individual sand body units are analyzed. The study focuses on the spatial combination of microfacies units along the profile and their internal distribution patterns. Additionally, a quantitative analysis of the sizes of various types of sand bodies is conducted, constructing the sedimentary model for the region and revealing the control mechanisms of different sedimentary architectures on reservoir properties and oil and gas accumulation patterns. This study pioneers a quantitative model for alluvial fan fringe in gentle-slope basins, featuring the following: (1) lobe width-thickness ratios (avg. 128), (2) four base-level-sensitive boundary markers, and (3) a retrogradational stacking mechanism. The findings directly inform reservoir development in analogous arid-climate systems. This research not only provides a scientific basis for the exploration and development of the Kekeya oilfield but also serves as an important reference for reservoir architecture studies in similar geological contexts. Full article
Show Figures

Figure 1

28 pages, 1277 KiB  
Article
The Penetration of Digital Currency for Sustainable and Inclusive Urban Development: Evidence from China’s e-CNY Pilot Using SDID-SCM
by Ying Chen and Ke Zhang
Sustainability 2025, 17(15), 6981; https://doi.org/10.3390/su17156981 (registering DOI) - 31 Jul 2025
Abstract
Against the backdrop of China’s fast-growing digital economy and its financial inclusion agenda, there is still little city-level evidence on whether the e-CNY pilot accelerates financial deepening at the grassroots. Using a balanced panel of 271 prefecture-and-above cities for 2016–2022, this study employs [...] Read more.
Against the backdrop of China’s fast-growing digital economy and its financial inclusion agenda, there is still little city-level evidence on whether the e-CNY pilot accelerates financial deepening at the grassroots. Using a balanced panel of 271 prefecture-and-above cities for 2016–2022, this study employs a staggered difference-in-differences (SDID) design augmented by the synthetic control method (SCM) to rigorously identify the policy effect of the e-CNY pilot. The results show that the pilot program significantly improves urban financial inclusion, contributing to more equitable access to financial services and supporting inclusive socio-economic development. Mechanism analysis suggests that the effect operates mainly through two channels, a merchant-coverage channel and a transaction-scale channel, with the former contributing the majority of the overall effect. Incorporating a migration-based mobility index shows that most studies’ focus on the merchant-coverage effect is amplified in cities under tight mobility restrictions but wanes where commercial networks are already saturated, whereas the transaction-scale channel is largely insensitive to mobility shocks. Heterogeneity tests further indicate stronger gains in non-provincial capital cities and in the eastern and central regions. Overall, the study uncovers a “penetration-inclusion” network logic and provides policy insights for advancing sustainable financial inclusion through optimized terminal deployment, merchant incentives, and diversified scenario design. Full article
(This article belongs to the Section Economic and Business Aspects of Sustainability)
31 pages, 2291 KiB  
Article
Impact of Green Financial Reform on Urban Economic Resilience—A Quasi-Natural Experiment Based on Green Financial Reform and Innovation Pilot Zones
by Yahui Chen, Yi An, Zixun Nie, Yuanying Chi and Xinyue Jia
Sustainability 2025, 17(15), 6969; https://doi.org/10.3390/su17156969 (registering DOI) - 31 Jul 2025
Abstract
As a key engine driving China’s green financial transformation, the Green Financial Reform and Innovation Pilot Zones have demonstrated significant achievements in enhancing the capacity of financial services to support green real economies, preventing and mitigating green financial risks, and bolstering national and [...] Read more.
As a key engine driving China’s green financial transformation, the Green Financial Reform and Innovation Pilot Zones have demonstrated significant achievements in enhancing the capacity of financial services to support green real economies, preventing and mitigating green financial risks, and bolstering national and urban economic resilience. On this basis, a spatial Markov chain model is applied to further analyze the economic toughness of prefecture-level cities. This study treats the establishment of these pilot zones as a quasi-natural experiment, using panel data from 269 prefecture-level cities in China from 2013 to 2023 and employing a multi-period difference-in-differences (DID) model to empirically examine the impact of green financial reform on urban economic resilience and its underlying mechanisms. The results reveal that the establishment of these pilot zones significantly enhances urban economic resilience. Specifically, green financial reforms primarily improve urban economic resilience by increasing credit accessibility and capital allocation efficiency in the pilot cities. Furthermore, the policy effects are more pronounced in large cities and resource-dependent cities compared to small and medium-sized cities and non-resource-dependent cities, with stronger impacts observed in southern and coastal regions than in northern inland areas. Additionally, the policy effects are significantly greater in environmentally prioritized cities than in non-prioritized cities. By integrating green financial reforms and urban economic resilience into a unified analytical framework, this study provides valuable insights for policymakers to refine green financial strategies and design resilience-enhancing policies. Full article
Show Figures

Figure 1

24 pages, 11280 KiB  
Article
Identifying Landscape Character in Multi-Ethnic Areas in Southwest China: The Case of the Miao Frontier Corridor
by Yanjun Liu, Xiaomei Li, Shangjun Lu, Liyun Xie and Zongsheng Huang
Land 2025, 14(8), 1571; https://doi.org/10.3390/land14081571 - 31 Jul 2025
Abstract
The landscapes of China’s multi-ethnic areas are rich in natural and cultural value, but they are threatened by homogenization and urbanization. This study aims to establish a method for identifying and classifying the landscape characters in China’s multi-ethnic areas to support the protection [...] Read more.
The landscapes of China’s multi-ethnic areas are rich in natural and cultural value, but they are threatened by homogenization and urbanization. This study aims to establish a method for identifying and classifying the landscape characters in China’s multi-ethnic areas to support the protection and sustainable development of the landscape in these areas. Taking the Miao Frontier Corridor as an example, the study optimized a parameterization method of landscape character assessment (LCA), integrated relevant cultural and natural elements, and used the K-means clustering algorithm to determine the landscape character types and regions of the Miao Frontier Corridor. The results show that (1) the natural conditions, ethnic exchanges, and historical institutions of the Miao Frontier Corridor have had a significant impact on its overall landscape; and (2) using ethnic group culture as a cultural element in LCA helps to reveal the unique cultural value of areas with different landscape characters. This study expands the LCA framework and applies it to multi-ethnic areas in China, thereby establishing a database that can serve as the basis for cross-regional landscape protection, management, and development planning in these areas. The research methods can be widely used in other multi-ethnic areas in China. Full article
Show Figures

Figure 1

16 pages, 3339 KiB  
Article
Accurate Identification of Native Asian Honey Bee Populations in Jilong (Xizang, China) by Population Genomics and Deep Learning
by Zhiyu Liu, Yongqiang Xu, Wei Sun, Bing Yang, Tenzin Nyima, Zhuoma Pubu, Xin Zhou, Wa Da and Shiqi Luo
Insects 2025, 16(8), 788; https://doi.org/10.3390/insects16080788 (registering DOI) - 31 Jul 2025
Abstract
The Jilong Valley, situated in Rikaze, Xizang, China, is characterized by its complex topography and variable climatic conditions, providing a suitable habitat for Apis cerana Fabricius, 1793. To facilitate the conservation of germplasm resources and maintain genetic diversity, it is imperative to elucidate [...] Read more.
The Jilong Valley, situated in Rikaze, Xizang, China, is characterized by its complex topography and variable climatic conditions, providing a suitable habitat for Apis cerana Fabricius, 1793. To facilitate the conservation of germplasm resources and maintain genetic diversity, it is imperative to elucidate the population structure and lineage differentiation of A. cerana within this ecologically distinct region. In this study, we collected A. cerana specimens from 12 geographically disparate locations across various altitudinal gradients within the Jilong Valley, and also integrated publicly available sequencing data of A. cerana from various regions across mainland Asia. In total, our analysis encompassed sequencing data from 296 individuals. Population structure analyses based on SNP data revealed that A. cerana in Jilong represents a genetically distinct population that differs markedly from other regional A. cerana populations in terms of genetic lineage, although its subspecies identity remains to be confirmed. Through screening based on FST values, we identified SNP loci that contribute significantly to distinguishing between Jilong and non-Jilong A. cerana. Using these loci, the convolutional neural network model TraceNet was trained, which demonstrated specific recognition capabilities for Jilong versus non-Jilong A. cerana. This further confirmed the universality and efficiency of TraceNet in identifying honey bee lineages. These findings contribute valuable insights for the identification and conservation of A. cerana germplasm resources in specific geographical regions. Full article
(This article belongs to the Section Insect Systematics, Phylogeny and Evolution)
Show Figures

Figure 1

24 pages, 2013 KiB  
Article
Can Local Industrial Policy Enhance Urban Land Green Use Efficiency? Evidence from the “Made in China 2025” National Demonstration Zone Policy
by Shoupeng Wang, Haixin Huang and Fenghua Wu
Land 2025, 14(8), 1567; https://doi.org/10.3390/land14081567 - 31 Jul 2025
Abstract
As the fundamental physical carrier for human production and socio-economic endeavors, enhancing urban land green use efficiency (ULGUE) is crucial for realizing sustainable development. To effectively enhance urban land green use efficiency, this study systematically examines the intrinsic relationship between industrial policies and [...] Read more.
As the fundamental physical carrier for human production and socio-economic endeavors, enhancing urban land green use efficiency (ULGUE) is crucial for realizing sustainable development. To effectively enhance urban land green use efficiency, this study systematically examines the intrinsic relationship between industrial policies and ULGUE based on panel data from 286 Chinese cities (2010–2022), employing an integrated methodology that combines the Difference-in-Differences (DID) model, Super-Efficiency Slacks-Based Measure Data Envelopment Analysis model, and ArcGIS spatial analysis techniques. The findings clearly demonstrate that the establishment of the “Made in China 2025” pilot policy significantly improves urban land green use efficiency in pilot cities, a conclusion that endures following a succession of stringent evaluations. Moreover, studying its mechanisms suggests that the pilot policy primarily enhances urban land green use efficiency by promoting industrial upgrading, accelerating technological innovation, and strengthening environmental regulations. Heterogeneity analysis further indicates that the policy effects are more significant in urban areas characterized by high manufacturing agglomeration, non-provincial capital/non-municipal status, high industrial intelligence levels, and less sophisticated industrial structure. This research not only provides valuable policy insights for China to enhance urban land green use efficiency and promote high-quality regional sustainable development but also offers meaningful references for global efforts toward advancing urban sustainability. Full article
Show Figures

Figure 1

20 pages, 753 KiB  
Article
Has the Free Trade Zone Enhanced the Regional Economic Resilience? Evidence from China
by Henglong Zhang and Congying Tian
Sustainability 2025, 17(15), 6951; https://doi.org/10.3390/su17156951 (registering DOI) - 31 Jul 2025
Abstract
This study examines the impact of free trade zone (FTZ) establishment on regional economic resilience (RER) in China, using provincial-level panel data spanning from 2010 to 2022 and a multi-period difference-in-differences (DID) approach. The empirical results indicate that FTZ implementation significantly enhances regional [...] Read more.
This study examines the impact of free trade zone (FTZ) establishment on regional economic resilience (RER) in China, using provincial-level panel data spanning from 2010 to 2022 and a multi-period difference-in-differences (DID) approach. The empirical results indicate that FTZ implementation significantly enhances regional economic resilience by 3.46%, with the development of green finance acting as a key moderating mechanism that amplifies this positive effect. Heterogeneity analysis uncovers notable disparities across policy cohorts and geographical regions: the first wave of FTZs demonstrates the most pronounced resilience-enhancing impact, whereas later cohorts exhibit weaker or even adverse effects. Coastal regions experience substantial benefits from FTZ policies, in contrast to statistically insignificant outcomes observed in inland areas. These findings suggest that strategically expanding the FTZ network, when paired with tailored implementation mechanisms and the integration of green finance, could serve as a powerful policy tool for post-COVID economic recovery. Importantly, by strengthening economic resilience through institutional openness and green investment, this study offers valuable insights into balancing economic growth with environmental sustainability. It provides empirical evidence to support the optimization of FTZ spatial governance and institutional innovation pathways, thereby contributing to the pursuit of sustainable regional development. Full article
Show Figures

Figure 1

27 pages, 1637 KiB  
Article
Collaborative Industrial Agglomeration and a Green Low-Carbon Circular Development Economy: A Study Based on Provincial Panel Data in China
by Mengqi Gong, Gege He, Yizi Wang, Yiyue Yang and Xinru Li
Sustainability 2025, 17(15), 6950; https://doi.org/10.3390/su17156950 (registering DOI) - 31 Jul 2025
Abstract
As an important direction in industrial evolution, the synergistic agglomeration of manufacturing and productive service industries has become a key path to promote the green transformation of the economy. Based on China’s provincial panel data, this study utilizes a variety of econometric methods [...] Read more.
As an important direction in industrial evolution, the synergistic agglomeration of manufacturing and productive service industries has become a key path to promote the green transformation of the economy. Based on China’s provincial panel data, this study utilizes a variety of econometric methods to explore in depth the mechanisms, spatial effects and regional differences in the impact of the synergistic agglomeration of manufacturing and productive service industries on the green, low-carbon and recycling development of the economy. The empirical results show that the synergistic agglomeration of manufacturing and productive services not only directly promotes the green, low-carbon and recycling development of the economy, but also generates an indirect impact through the intermediary channel and exhibits significant spillover characteristics in the spatial dimension. This conclusion holds firm after a series of robustness tests. In addition, environmental regulations and the level of regional industrialization play a moderating role on the impact of industrial synergistic agglomeration and green, low-carbon and recycling development of the economy, and the effect of the role varies across regions and levels of economic development. This paper provides a decision-making reference for further optimizing the regional layout of China’s industries and enhancing the green, low-carbon and recycling development of the economy in each province. Full article
Show Figures

Figure 1

22 pages, 4065 KiB  
Article
Characteristics of Lodging Resistance of Wheat Cultivars from Different Breeding Decades as Affected by the Application of Paclobutrazol Under Shading Stress
by Dianliang Peng, Haicheng Xu, Zhen Guo, Wenchao Cao, Jingmin Zhang, Mei Liu, Xingcui Wang, Yuhai Tang and Tie Cai
Agronomy 2025, 15(8), 1848; https://doi.org/10.3390/agronomy15081848 - 31 Jul 2025
Abstract
Low solar radiation, caused by climate change or dense planting patterns, now limits wheat production. Although wheat breeding has increased lodging resistance and yield potential through the introduction of dwarfing genes, it still reduces wheat yields. Few studies have been conducted to clarify [...] Read more.
Low solar radiation, caused by climate change or dense planting patterns, now limits wheat production. Although wheat breeding has increased lodging resistance and yield potential through the introduction of dwarfing genes, it still reduces wheat yields. Few studies have been conducted to clarify the lodging sensitivity to shading of different-era wheat cultivars in China’s Huang-Huai-Hai region, as well as the characteristics of lodging resistance as affected by paclobutrazol under shading stress. To address this gap, the experiment included two wheat cultivars released in different decades, grown under shade and treated with or without paclobutrazol. The results showed that reductions in filling degree and lignin content, together with increases in length of the basal internode and gravity center height, markedly reduced the section modulus and breaking strength of shaded wheat culms. These changes impaired lodging resistance and raised lodging risk. However, paclobutrazol application effectively reduced lodging incidence and increased wheat yield under shading stress. Furthermore, these responses were more pronounced in the old cultivar (YZM) than in the modern cultivar (S28). This indicates that the culm mechanical parameters of the old cultivar were more shade-sensitive than those of the modern cultivar. Moreover, shading downregulated the relative expression levels of key genes associated with lignin biosynthesis to decrease the activities of key enzymes, thereby inhibiting the biosynthesis and deposition of lignin in culms to increase the risk of wheat lodging. Paclobutrazol application alleviated the inhibitory effects of shading on lignin biosynthesis, thereby strengthening culms and enhancing lodging resistance. These findings may provide a basis for exploring cultivation regulation methods to enhance wheat lodging resistance under overcast and low-sunshine conditions, and to offer guidance for the breeding of wheat cultivars with lodging resistance and shade tolerance. Full article
Show Figures

Figure 1

25 pages, 425 KiB  
Article
Can Technological Innovation in Renewable Energy Promote Carbon Emission Efficiency in China? A U-Shaped Relationship
by Ruichen Yin, Haiying Pan and Yuqing Lu
Sustainability 2025, 17(15), 6940; https://doi.org/10.3390/su17156940 - 30 Jul 2025
Abstract
In the context of growing global climate change awareness and intensifying environmental degradation, technological innovation in renewable energy has become a key realization method for sustainable development. This paper uses data samples from 30 provinces, municipalities, and autonomous regions in China (excluding Tibet, [...] Read more.
In the context of growing global climate change awareness and intensifying environmental degradation, technological innovation in renewable energy has become a key realization method for sustainable development. This paper uses data samples from 30 provinces, municipalities, and autonomous regions in China (excluding Tibet, Hong Kong, Macao, and Taiwan due to data availability) from 2007–2022, constructs an SFA model to measure carbon emission efficiency, and innovatively investigates the U-shaped impact of technological innovation in renewable energy on carbon emission efficiency along with the moderating effects of informatization level and fiscal decentralization. The empirical findings reveal the following: (1) Technological innovation in renewable energy demonstrates a U-shaped impact on carbon emission efficiency, with a negative impact before inflection point 2.596605 and a positive impact after the inflection point. (2) The informatization level plays a positive regulating role in the impact of technological innovation in renewable energy toward carbon emission efficiency, while fiscal decentralization exerts a negative regulating effect. (3) The impact of technological innovation in renewable energy concerning carbon emission efficiency varies depending on regional differences, industrial structure levels, and technological innovation levels in renewable energy. The conclusions of this paper are helpful for promoting the development of technological innovation in renewable energy, improving carbon emission efficiency, and advancing sustainable socio-economic development. Full article
(This article belongs to the Section Environmental Sustainability and Applications)
Show Figures

Figure 1

16 pages, 378 KiB  
Article
The Influence of Environmental Policy on Green Total Factor Productivity in the Chinese Construction Industry
by Weizhong Zhou, Chunlu Liu, Yu Zhou, Qihui Li and Yuanhua Wang
Buildings 2025, 15(15), 2688; https://doi.org/10.3390/buildings15152688 - 30 Jul 2025
Abstract
As an environmental policy, the Action Plan of Atmosphere Pollution Control in Beijing-Tianjin-Hebei and Surrounding Areas in Autumn and Winter (Action Plan of APC) was implemented in 2017, with the goal of achieving the sustainable growth of the regional economy. This study examines [...] Read more.
As an environmental policy, the Action Plan of Atmosphere Pollution Control in Beijing-Tianjin-Hebei and Surrounding Areas in Autumn and Winter (Action Plan of APC) was implemented in 2017, with the goal of achieving the sustainable growth of the regional economy. This study examines the effect of the Action Plan of APC on green total factor productivity (GTFP) in the Chinese construction industry employing a difference-in-differences (DID) approach. The findings indicate the following: Firstly, the environmental policy of the Action Plan of APC has significantly improved the GTFP of the aforementioned areas, and the result is still valid after robustness testing; secondly, the dynamic effect testing reveals that the influence follows an increasing trend over time; thirdly, due to the different degrees of marketization, the influence of the Action Plan of APC on GTFP in Chinese construction industry exhibits notable regional heterogeneity. From the perspectives of both the government and enterprises, this study offers recommendations for promoting the GTFP of China’s construction industry. It also provides a novel framework for assessing the effect of environmental policies on the GTFP of the Chinese construction industry. Full article
(This article belongs to the Special Issue Promoting Green, Sustainable, and Resilient Urban Construction)
Show Figures

Figure 1

15 pages, 2006 KiB  
Article
Hydrological Responses to Territorial Spatial Change in the Xitiaoxi River Basin: A Simulation Study Using the SWAT Model Driven by China Meteorological Assimilation Driving Datasets
by Dongyan Kong, Huiguang Chen and Kongsen Wu
Water 2025, 17(15), 2267; https://doi.org/10.3390/w17152267 - 30 Jul 2025
Viewed by 93
Abstract
The use of the Soil and Water Assessment Tool (SWAT) model driven by China Meteorological Assimilation Driving Datasets (CMADS) for runoff simulation research is of great significance for regional flood prevention and control. Therefore, from the perspective of production-living-ecological space, this article combined [...] Read more.
The use of the Soil and Water Assessment Tool (SWAT) model driven by China Meteorological Assimilation Driving Datasets (CMADS) for runoff simulation research is of great significance for regional flood prevention and control. Therefore, from the perspective of production-living-ecological space, this article combined multi-source data such as DEM, soil texture and land use type, in order to construct scenarios of territorial spatial change (TSC) across distinct periods. Based on the CMADS-L40 data and the SWAT model, it simulated the runoff dynamics in the Xitiaoxi River Basin, and analyzed the hydrological response characteristics under different TSCs. The results showed that The SWAT model, driven by CMADS-L40 data, demonstrated robust performance in monthly runoff simulation. The coefficient of determination (R2), Nash–Sutcliffe efficiency coefficient (NSE), and the absolute value of percentage bias (|PBIAS|) during the calibration and validation period all met the accuracy requirements of the model, which validated the applicability of CMADS-L40 data and the SWAT model for runoff simulation at the watershed scale. Changes in territorial spatial patterns are closely correlated with runoff variation. Changes in agricultural production space and forest ecological space show statistically significant negative correlation with runoff change, while industrial production space change exhibits a significant positive correlation with runoff change. The expansion of production space, particularly industrial production space, leads to increased runoff, whereas the enlargement of agricultural production space and forest ecological space can reduce runoff. This article contributes to highlighting the role of land use policy in hydrological regulation, providing a scientific basis for optimizing territorial spatial planning to mitigate flood risks and protect water resources. Full article
(This article belongs to the Topic Natural Hazards and Disaster Risks Reduction, 2nd Edition)
Show Figures

Figure 1

Back to TopTop