Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (49)

Search Parameters:
Keywords = diesel exhaust after-treatment systems

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 1087 KiB  
Review
After-Treatment Technologies for Emissions of Low-Carbon Fuel Internal Combustion Engines: Current Status and Prospects
by Najunzhe Jin, Wuqiang Long, Chunyang Xie and Hua Tian
Energies 2025, 18(15), 4063; https://doi.org/10.3390/en18154063 - 31 Jul 2025
Viewed by 334
Abstract
In response to increasingly stringent emission regulations, low-carbon fuels have received significant attention as sustainable energy sources for internal combustion engines. This study investigates four representative low-carbon fuels, methane, methanol, hydrogen, and ammonia, by systematically summarizing their combustion characteristics and emission profiles, along [...] Read more.
In response to increasingly stringent emission regulations, low-carbon fuels have received significant attention as sustainable energy sources for internal combustion engines. This study investigates four representative low-carbon fuels, methane, methanol, hydrogen, and ammonia, by systematically summarizing their combustion characteristics and emission profiles, along with a review of existing after-treatment technologies tailored to each fuel type. For methane engines, unburned hydrocarbon (UHC) produced during low-temperature combustion exhibits poor oxidation reactivity, necessitating integration of oxidation strategies such as diesel oxidation catalyst (DOC), particulate oxidation catalyst (POC), ozone-assisted oxidation, and zoned catalyst coatings to improve purification efficiency. Methanol combustion under low-temperature conditions tends to produce formaldehyde and other UHCs. Due to the lack of dedicated after-treatment systems, pollutant control currently relies on general-purpose catalysts such as three-way catalyst (TWC), DOC, and POC. Although hydrogen combustion is carbon-free, its high combustion temperature often leads to elevated nitrogen oxide (NOx) emissions, requiring a combination of optimized hydrogen supply strategies and selective catalytic reduction (SCR)-based denitrification systems. Similarly, while ammonia offers carbon-free combustion and benefits from easier storage and transportation, its practical application is hindered by several challenges, including low ignitability, high toxicity, and notable NOx emissions compared to conventional fuels. Current exhaust treatment for ammonia-fueled engines primarily depends on SCR, selective catalytic reduction-coated diesel particulate filter (SDPF). Emerging NOx purification technologies, such as integrated NOx reduction via hydrogen or ammonia fuel utilization, still face challenges of stability and narrow effective temperatures. Full article
(This article belongs to the Special Issue Engine Combustion Characteristics, Performance, and Emission)
Show Figures

Figure 1

23 pages, 9227 KiB  
Article
Achieving NOx Emissions with Zero-Impact on Air Quality from Diesel Light-Duty Commercial Vehicles
by Theodoros Kossioris, Robert Maurer, Stefan Sterlepper, Marco Günther and Stefan Pischinger
Energies 2025, 18(8), 1882; https://doi.org/10.3390/en18081882 - 8 Apr 2025
Viewed by 728
Abstract
Many cities are still struggling to comply with current air quality regulations. Road transport is usually a significant source of NOx emissions, especially in urban areas. Therefore, NOx from road vehicles needs to be further reduced below current standards to ultra-low or even [...] Read more.
Many cities are still struggling to comply with current air quality regulations. Road transport is usually a significant source of NOx emissions, especially in urban areas. Therefore, NOx from road vehicles needs to be further reduced below current standards to ultra-low or even zero-impact levels. In a novel, holistic powertrain design approach, this paper presents powertrain solutions to achieve zero-impact NOx emissions with an N1 class III diesel light commercial vehicle. The design is based on a compliance test matrix consisting of six real-world scenarios that are critical for emissions and air quality. As a design baseline, a vehicle concept meeting the emission requirements as set out in the European Commission’s 2022 Euro 7 regulation proposal is used. The baseline vehicle concept can achieve zero-impact NOx emissions in 67% of these scenarios. To achieve zero-impact NOx emissions in all scenarios, further advanced emission solutions are mandatory. In congested urban areas, the use of an exhaust gas aftertreatment system preheating device with at least 20 kW of power for 1 min is required. In high-traffic highway situations, an underfloor SCR unit with a minimum volume of 12 l or the restriction of the maximum vehicle speed at 130 km/h is required. Full article
(This article belongs to the Special Issue Emission Control Technology in Internal Combustion Engines)
Show Figures

Graphical abstract

17 pages, 6538 KiB  
Article
Research on the Measurement of Particulate Matter Concentration in Diesel Vehicle Exhaust Using the Light Scattering Method
by Jie Wang, Xinjian Liu, Chao Wang, Yiyang Qiu, Jie Zhou and Qi Dang
Sensors 2025, 25(6), 1898; https://doi.org/10.3390/s25061898 - 18 Mar 2025
Viewed by 670
Abstract
To address the current issues with diesel vehicle exhaust after-treatment system particulate sensors—such as low accuracy and inability to perform continuous measurements of particulate mass concentration—a new sensor based on the light scattering method is proposed. During the research, it was found that [...] Read more.
To address the current issues with diesel vehicle exhaust after-treatment system particulate sensors—such as low accuracy and inability to perform continuous measurements of particulate mass concentration—a new sensor based on the light scattering method is proposed. During the research, it was found that the light scattering method can be affected by soot particles in the exhaust, which contaminate the optical components and reduces measurement accuracy. To solve this issue, a structure with alumina ceramic embedded lenses and optical fibers was designed, effectively improving the sensor’s resistance to contamination. The detection device is based on the principle of light scattering, and a particulate concentration measurement system with a 90° scattering angle was built. Calibration experiments were conducted using the dust particles generated by the device. The experimental results show that this sensor can measure particulate concentrations accurately, in real time, and with good stability, achieving a calibration error of less than ±5%. Full article
(This article belongs to the Section Optical Sensors)
Show Figures

Figure 1

29 pages, 25677 KiB  
Article
Numerical Study of Nanoparticle Coagulation in Non-Road Diesel Engine Exhaust Based on the Principle of Split-Stream Rushing
by Yuchen Guo, Pei Wu, He Su, Jing Xue, Yongan Zhang and Peiyan Huang
Energies 2025, 18(1), 40; https://doi.org/10.3390/en18010040 - 26 Dec 2024
Viewed by 678
Abstract
Diesel engines employed in non-road machinery are significant contributors to nanoparticulate matters. This paper presents a novel device based on the principle of split-stream rushing to mitigate particulate matter emissions from these engines. By organizing and intensifying the airflow movement of the jet [...] Read more.
Diesel engines employed in non-road machinery are significant contributors to nanoparticulate matters. This paper presents a novel device based on the principle of split-stream rushing to mitigate particulate matter emissions from these engines. By organizing and intensifying the airflow movement of the jet in the rushing region, the probability of collisions between nanoparticles is enhanced. This accelerates the growth and coagulation of nanoparticles, reducing the number density of fine particulate matter. This, in turn, facilitates the capture or sedimentation of particulate matter in the diesel engine exhaust aftertreatment system. The coagulation kernel function tailored for diesel engine exhaust nanoparticles is developed. Then, the particle balance equation is solved to investigate the evolution and coagulation characteristics. Afterwards, three-dimensional numerical simulations are performed to study the flow field characteristics of the split-stream rushing device and the particle evolution within it. The results show that the device achieves a maximum coagulation efficiency of 59.73%, increasing the average particle diameter from 96 nm to 121 nm. The particle number density uniformity index exceeded 0.93 in most flow regions, highlighting the effectiveness of the device in ensuring consistent particle distribution. Full article
(This article belongs to the Section I1: Fuel)
Show Figures

Figure 1

18 pages, 4581 KiB  
Article
A Design-Oriented Model for Transmission Loss Optimization in Marine DOCs
by Jan Kašpar, Francesco Mauro, Marco Biot, Giovanni Rognoni and Giada Kyaw Oo D’Amore
J. Mar. Sci. Eng. 2024, 12(12), 2358; https://doi.org/10.3390/jmse12122358 - 22 Dec 2024
Viewed by 871
Abstract
The even more restrictive regulations imposed on chemical and acoustic emissions of ships necessitate the installation of after-treatment systems onboard. The spaces onboard are limited, and the Exhaust Gas Cleaning Systems (EGCSs) have big dimensions, so an appropriate integration and optimization of EGCSs [...] Read more.
The even more restrictive regulations imposed on chemical and acoustic emissions of ships necessitate the installation of after-treatment systems onboard. The spaces onboard are limited, and the Exhaust Gas Cleaning Systems (EGCSs) have big dimensions, so an appropriate integration and optimization of EGCSs allows to save space and comply with international regulations. Moreover, in the available literature, there is a lack of guidelines about the design of integrated EGCSs. This study aims to develop an ad hoc optimization methodology that uses combined Computational Fluid Dynamics (CFD)–Finite Element Method (FEM) simulations, surrogate models, and Genetic Algorithms to optimize the acoustic properties of EGCSs while considering the limits imposed by the efficiency of chemical reactions for the abatement of NOx and SOx. The developed methodology is applied to a Diesel Oxidation Catalyst (DOC), and the obtained results lead to a system that integrates the silencing effect into the DOC. Full article
(This article belongs to the Special Issue Novel Maritime Techniques and Technologies, and Their Safety)
Show Figures

Figure 1

14 pages, 1481 KiB  
Review
Recent Advances in SCR Systems of Heavy-Duty Diesel Vehicles—Low-Temperature NOx Reduction Technology and Combination of SCR with Remote OBD
by Zhengguo Chen, Qingyang Liu, Haoye Liu and Tianyou Wang
Atmosphere 2024, 15(8), 997; https://doi.org/10.3390/atmos15080997 - 20 Aug 2024
Cited by 11 | Viewed by 5269
Abstract
Heavy-duty diesel vehicles are a significant source of nitrogen oxides (NOx) in the atmosphere. The Selective Catalytic Reduction (SCR) system is a primary aftertreatment device for reducing NOx emissions from heavy-duty diesel vehicles. With increasingly stringent NOx emission regulations for heavy-duty vehicles in [...] Read more.
Heavy-duty diesel vehicles are a significant source of nitrogen oxides (NOx) in the atmosphere. The Selective Catalytic Reduction (SCR) system is a primary aftertreatment device for reducing NOx emissions from heavy-duty diesel vehicles. With increasingly stringent NOx emission regulations for heavy-duty vehicles in major countries, there is a growing focus on reducing NOx emissions under low exhaust temperature conditions, as well as monitoring the conversion efficiency of the SCR system over its entire lifecycle. By reviewing relevant literature mainly from the past five years, this paper reviews the development trends and related research results of SCR technology, focusing on two main aspects: low-temperature NOx reduction technology and the combination of SCR systems with remote On-Board Diagnostics (OBD). Regarding low-temperature NOx reduction technology, the results of the review indicate that the combination of multiple catalytic shows potential for achieving high conversion efficiency across a wide temperature range; advanced SCR system arrangement can accelerate the increase in exhaust temperature within the SCR system; solid ammonium and gaseous reductants can effectively address the issue of urea not being able to be injected under low-temperature exhaust conditions. As for the combination of SCR systems with remote OBD, remote OBD can accurately assess NOx emissions from heavy-duty vehicles, but it needs algorithms to correct data and match the emission testing process required by regulations. Remote OBD systems are crucial for detecting SCR tampering, but algorithms must be developed to balance accuracy with computational efficiency. This review provides updated information on the current research status and development directions in SCR technologies, offering valuable insights for future research into advanced SCR systems. Full article
(This article belongs to the Special Issue Recent Advances in Mobile Source Emissions (2nd Edition))
Show Figures

Figure 1

26 pages, 9370 KiB  
Article
The Impact of Vehicle Technology, Size Class, and Driving Style on the GHG and Pollutant Emissions of Passenger Cars
by Martin Opetnik, Stefan Hausberger, Claus Uwe Matzer, Silke Lipp, Lukas Landl, Konstantin Weller and Miriam Elser
Energies 2024, 17(9), 2052; https://doi.org/10.3390/en17092052 - 26 Apr 2024
Cited by 3 | Viewed by 1851
Abstract
Although technical improvements to engines and aftertreatment systems have the greatest impact on pollutant emissions, there is also potential for reducing emissions through driver behavior. This potential can be realized in the very short term, while better emission-control technologies only take effect once [...] Read more.
Although technical improvements to engines and aftertreatment systems have the greatest impact on pollutant emissions, there is also potential for reducing emissions through driver behavior. This potential can be realized in the very short term, while better emission-control technologies only take effect once they have penetrated the market. In addition to a change in driving style, the vehicle owner’s choice of vehicle technology and size class will also have an impact on the future emissions of the vehicle fleet. The effects of different driving styles, the tire choice, the vehicle size class, and propulsion technologies on energy consumption and tailpipe and non-exhaust emissions are analyzed in this paper for different traffic situations and start temperatures for cars with petrol and diesel combustion engines and for battery electric vehicles. The analysis is completed with the corresponding upstream emissions from fuel and electricity production. The analysis is based on a vehicle simulation using the Passenger car and Heavy-duty Emission Model (PHEM), which is based on a large database of vehicles created using measurements of real driving conditions. For the assessment of the driving style, a novel method was developed in an H2020 project, which reproduces a measured trip with a virtual eco-driver. Carbon dioxide equivalent emissions (CO2eq) increase with increasing vehicle size, but can be reduced by around 20% for conventional vehicles and 17% for battery electric vehicles (BEVs) through an environmentally conscious driving style. On average, BEVs have around 50% lower CO2eq emissions than conventional vehicles, if the emissions from vehicle production are also taken into account. On an average journey of 35 km, the cold start of modern diesel vehicles accounts for around half of the total NOx emissions, while the proportion of cold starts for petrol vehicles is around 25%. Tire and brake wear together generate a similar amount of PN23 emissions as the exhaust gases from new cars. Full article
(This article belongs to the Collection Energy Efficiency and Environmental Issues)
Show Figures

Figure 1

33 pages, 9069 KiB  
Article
Integrated 1D Simulation of Aftertreatment System and Chemistry-Based Multizone RCCI Combustion for Optimal Performance with Methane Oxidation Catalyst
by Alireza Kakoee, Jacek Hunicz and Maciej Mikulski
J. Mar. Sci. Eng. 2024, 12(4), 594; https://doi.org/10.3390/jmse12040594 - 29 Mar 2024
Cited by 4 | Viewed by 1744
Abstract
This paper presents a comprehensive investigation into the design of a methane oxidation catalyst aftertreatment system specifically tailored for the Wärtsilä W31DF natural gas engine which has been converted to a reactivity-controlled compression ignition NG/Diesel engine. A GT-Power model was coupled with a [...] Read more.
This paper presents a comprehensive investigation into the design of a methane oxidation catalyst aftertreatment system specifically tailored for the Wärtsilä W31DF natural gas engine which has been converted to a reactivity-controlled compression ignition NG/Diesel engine. A GT-Power model was coupled with a predictive physical base chemical kinetic multizone model (MZM) as a combustion object. In this MZM simulation, a set of 54 species and 269 reactions as chemical kinetic mechanism were used for modelling combustion and emissions. Aftertreatment simulations were conducted using a 1D air-path model in the same GT-Power model, integrated with a chemical kinetic model featuring 15 catalytic reactions, based on activation energy and species concentrations from combustion outputs. The latter offered detailed exhaust composition and exhaust thermodynamic data under specific operating conditions, effectively capturing the intricate interactions between the investigated aftertreatment system, combustion, and exhaust composition. Special emphasis was placed on the formation of intermediate hydrocarbons such as C2H4 and C2H6, despite their concentrations being lower than that of CH4. The analysis of catalytic conversion focused on key species, including H2O, CO2, CO, CH4, C2H4, and C2H6, examining their interactions. After consideration of thermal management and pressure drop, a practical choice of a 400 mm long catalyst with a density of 10 cells per cm2 was selected. Investigations of this catalyst’s specification revealed complete CO conversion and a minimum of 89% hydrocarbon conversion efficiency. Integrating the exhaust aftertreatment system into the air path resulted in a reduction in engine-indicated efficiency by up to 2.65% but did not affect in-cylinder combustion. Full article
Show Figures

Figure 1

32 pages, 10642 KiB  
Review
A Review of Thermal Energy Management of Diesel Exhaust after-Treatment Systems Technology and Efficiency Enhancement Approaches
by Gang Wu, Guoda Feng, Yuelin Li, Tao Ling, Xuejun Peng, Zhilai Su and Xiaohuan Zhao
Energies 2024, 17(3), 584; https://doi.org/10.3390/en17030584 - 25 Jan 2024
Cited by 9 | Viewed by 3767
Abstract
The DOC (diesel oxidation catalyst), DPF (diesel particulate filter), SCR (selective catalytic reduction), and ASC (ammonia slip catalyst) are widely used in diesel exhaust after-treatment systems. The thermal management of after-treatment systems using DOC, DPF, SCR, and ASC were investigated to improve the [...] Read more.
The DOC (diesel oxidation catalyst), DPF (diesel particulate filter), SCR (selective catalytic reduction), and ASC (ammonia slip catalyst) are widely used in diesel exhaust after-treatment systems. The thermal management of after-treatment systems using DOC, DPF, SCR, and ASC were investigated to improve the efficiency of these devices. This paper aims to identify the challenges of this topic and seek novel methods to control the temperature. Insulation methods and catalysts decrease the energy required for thermal management, which improves the efficiency of thermal management. Thermal insulation decreases the heat loss of the exhaust gas, which can reduce the after-treatment light-off time. The DOC light-off time was reduced by 75% under adiabatic conditions. A 400 W microwave can heat the DPF to the soot oxidation temperature of 873 K at a regeneration time of 150 s. An SCR burner can decrease NOx emissions by 93.5%. Electrically heated catalysts can decrease CO, HC, and NOx emissions by 80%, 80%, and 66%, respectively. Phase-change materials can control the SCR temperature with a two-thirds reduction in NOx emissions. Pt-Pd application in the catalyst can decrease the CO light-off temperature to 113 °C. Approaches of catalysts can enhance the efficiency of the after-treatment systems and reduce the energy consumption of thermal management. Full article
(This article belongs to the Special Issue Advanced Thermal Management Technologies and Heat Transfer)
Show Figures

Figure 1

24 pages, 2029 KiB  
Article
Study on Urea Crystallization Risk Assessment and Influencing Factors in After-Treatment System of Diesel Engines
by Ke Sun, Gecheng Zhang, Kui Zhao, Wen Sun, Guoxiang Li, Shuzhan Bai, Chunjin Lin and Hao Cheng
Appl. Sci. 2024, 14(2), 684; https://doi.org/10.3390/app14020684 - 13 Jan 2024
Viewed by 2998
Abstract
In order to meet the increasing pollutants discharge standard, the selective catalytic reduction (SCR) module in the diesel engine after-treatment system is an important means to reduce nitrogen oxide (NOx) emissions. SCR systems are prone to urea crystallization at lower temperatures, especially during [...] Read more.
In order to meet the increasing pollutants discharge standard, the selective catalytic reduction (SCR) module in the diesel engine after-treatment system is an important means to reduce nitrogen oxide (NOx) emissions. SCR systems are prone to urea crystallization at lower temperatures, especially during the cold-start conditions of diesel engines. In this study, we use the diesel engine after-treatment system test bench to obtain the boundary parameter of the simulation modules, and the urea crystallization risk assessment model of the diesel SCR system is established. Comparing the computational fluid dynamics (CFD) results with the test bench results, it is shown that the predicted urea film distribution of the assessment model is in good agreement with the experimental results. In order to clarify the various factors that affect the urea crystallization risk, this paper conducts a simulation analysis on a nozzle and mixer structure and operating parameters. The CFD results indicate that the increase in urea spray time will increase the maximum urea film thickness on the SCR system mixer surface. Exhaust temperature is the most important influencing factor. When the diesel engine exhaust temperature increases from 190 °C to 300 °C, the maximum urea film thickness decreases by 32 and the urea film mass accumulation decreases by 5%. Exhaust flow has a small impact on urea crystallization risk. When the exhaust flow increases from 300 kg/h to 600 kg/h, the maximum urea film thickness decreases by 39% and the urea film mass accumulation decreases by about 1%. In addition, urea spray rate, nozzle numbers, spray angle, and spray cone angle are also factors that affect urea crystallization risk. Full article
Show Figures

Figure 1

15 pages, 10494 KiB  
Article
Thermal Management of Diesel Engine Aftertreatment System Based on Ultra-Low Nitrogen Oxides Emission
by Ke Sun, Gecheng Zhang, Zhengyong Wang, Da Li, Guoxiang Li, Shuzhan Bai, Chunjin Lin and Hao Cheng
Appl. Sci. 2024, 14(1), 237; https://doi.org/10.3390/app14010237 - 27 Dec 2023
Cited by 1 | Viewed by 1891
Abstract
To achieve diesel engine ultra-low nitrogen oxide emission, light-off selective catalyst reduction (LO-SCR) has been suggested for better performance with lower exhaust temperature. An electric heater upstream of the exhaust aftertreatment system was applied to significantly decrease the NOx emission at a [...] Read more.
To achieve diesel engine ultra-low nitrogen oxide emission, light-off selective catalyst reduction (LO-SCR) has been suggested for better performance with lower exhaust temperature. An electric heater upstream of the exhaust aftertreatment system was applied to significantly decrease the NOx emission at a low exhaust temperature. With a 7.2 kW electric heater coupled with LO-SCR, the NOx emission during 200~500 s of the world harmonized transient cycle (WHTC) decreased from 282.6 ppm to 61.5 ppm, which is a decrease of 45%. Application of an upstream diesel oxidation catalyst (DOC) decreased the NOx emission by 63% at the same interval at the cost of worse cold-start performance. The urea input was also adjusted to avoid NOx emission during the latter part of the WHTC. Full article
Show Figures

Figure 1

29 pages, 6413 KiB  
Article
Model-Based Calibration and Control of Tailpipe Nitrogen Oxide Emissions in a Light-Duty Diesel Engine and Its Assessment through Model-In-The-Loop
by Stefano d’Ambrosio, Cosimo Di Dio and Roberto Finesso
Energies 2023, 16(24), 8030; https://doi.org/10.3390/en16248030 - 12 Dec 2023
Cited by 1 | Viewed by 1568
Abstract
The present paper investigates two different strategies for model-based calibration and control of tailpipe nitrogen oxide emissions in a light-duty 3.0 L diesel engine equipped with an aftertreatment system (ATS). The latter includes a diesel oxidation catalyst (DOC), a diesel particulate filter (DPF), [...] Read more.
The present paper investigates two different strategies for model-based calibration and control of tailpipe nitrogen oxide emissions in a light-duty 3.0 L diesel engine equipped with an aftertreatment system (ATS). The latter includes a diesel oxidation catalyst (DOC), a diesel particulate filter (DPF), and an underfloor selective catalytic reduction (SCR) device, in which the injection of diesel exhaust fluid (DEF), marketed as ‘AdBlue’, is also taken into account. The engine was modeled in the GT-SUITE environment, and a previously developed model-based combustion controller was integrated in the model, which is capable of adjusting the start of injection of the main pulse and the total injected fuel mass, in order to achieve desired targets of engine-out nitrogen oxide emissions (NOx) and brake mean effective pressure (BMEP). First, a model-based calibration strategy consisting of the minimization of an objective function that takes into account fuel consumption and AdBlue injection was developed and assessed by exploring different weight factors. Then, a direct model-based controller of tailpipe nitrogen oxide emissions was designed, which exploits the real-time value of the SCR efficiency to define engine-out NOx emission targets for the combustion controller. Both strategies exploit the model-based combustion controller and were tested through a Model-in-the-Loop (MiL) under steady-state and transient conditions. The advantages in terms of tailpipe NOx emissions, fuel consumption, and AdBlue injection were finally discussed. Full article
(This article belongs to the Special Issue Vehicle Engines and Powertrains: Performance, Combustion and Emission)
Show Figures

Figure 1

16 pages, 9071 KiB  
Article
Study on Rates of NH3 Adsorption and Desorption in SCR on Various Engine Operation Conditions
by Hyun Jo, Ahyun Ko, Jinyoung Jang and Ocktaeck Lim
Sustainability 2023, 15(19), 14468; https://doi.org/10.3390/su151914468 - 4 Oct 2023
Cited by 1 | Viewed by 1795
Abstract
Aging diesel engines on the road require the development of an after-treatment system to meet current emission regulations, and a reduction in NOx (Nitrogen Oxide) is significant. The SCR (Selective Catalytic Reduction) system is the after-treatment system for removing NOx from exhaust gas [...] Read more.
Aging diesel engines on the road require the development of an after-treatment system to meet current emission regulations, and a reduction in NOx (Nitrogen Oxide) is significant. The SCR (Selective Catalytic Reduction) system is the after-treatment system for removing NOx from exhaust gas in diesel engines using NH3 (Ammonia) gas. However, the mixing and conversion process between NH3 and NOx in SCR has not been entirely clarified. That process produces NH3 slip in the catalyst surface; the NH3 slip will make the after-treatment performance worse. This study informs how the UWS (Urea Water Solution) injection controlling method can minimize the NH3 slip in the after-treatment system. For this, the NH3 adsorption and desorption rates are important factors for determining the quantity of UWS injection in the system. The NH3 adsorption rate and desorption rate in the SCR are not significantly affected by engine speed, i.e., the exhaust gas flow rate. However, as the exhaust gas temperature increased, the adsorption rate and desorption rate of NH3 in the SCR increased. Through this, the exhaust gas temperature dramatically affects the NH3 adsorption rate and desorption rate in the SCR. Therefore, if the urea water is injected based on this knowledge that the NH3 adsorption amount in the SCR decreases as the exhaust gas flow rate increases, NH3 slip can be suppressed and a high NOx reduction rate can be achieved. Therefore, if the SCR adsorption and desorption mechanisms are analyzed according to the exhaust temperature and the exhaust flow rate in this paper, it can be used as a reference for selecting an appropriate SCR when retrofitting an old diesel engine car. Full article
(This article belongs to the Collection Air Pollution Control and Sustainable Development)
Show Figures

Figure 1

28 pages, 8270 KiB  
Article
CFD Simulation of SCR Systems Using a Mass-Fraction-Based Impingement Model
by Max Quissek, Uladzimir Budziankou, Sebastian Pollak and Thomas Lauer
Fluids 2023, 8(8), 216; https://doi.org/10.3390/fluids8080216 - 25 Jul 2023
Cited by 4 | Viewed by 2873
Abstract
Computational fluid dynamics (CFD) are an essential tool for the development of diesel engine aftertreatment systems using selective catalytic reduction (SCR) to reduce nitrous oxides (NOx). In urea-based SCR, liquid urea–water solution (UWS) is injected into the hot exhaust gas, [...] Read more.
Computational fluid dynamics (CFD) are an essential tool for the development of diesel engine aftertreatment systems using selective catalytic reduction (SCR) to reduce nitrous oxides (NOx). In urea-based SCR, liquid urea–water solution (UWS) is injected into the hot exhaust gas, where it transforms into gaseous ammonia. This ammonia serves as a reducing agent for NOx. CFD simulations are used to predict the ammonia distribution in the exhaust gas at the catalyst inlet. The goal is to achieve the highest possible uniformity to realize homogeneous NOx reduction across the catalyst cross section. The current work focuses on the interaction of UWS droplets with the hot walls of the exhaust system. This is a crucial part of the preparation of gaseous ammonia from the injected liquid UWS. Following experimental investigations, a new impingement model is described based on the superposition of four basic impingement behaviors, each featuring individual secondary droplet characteristics. The droplet–wall heat transfer, depending on surface temperature and impingement behavior, is also calculated using a newly parameterized model. Applying the presented approach, the cooling of a steel plate from intermittent spray impingement is simulated and compared to measurements. The second validation case is the distribution of ammonia at the catalyst inlet of an automotive SCR system. Both applications show good agreement and demonstrate the quality of the new model. Full article
(This article belongs to the Special Issue Industrial CFD and Fluid Modelling in Engineering)
Show Figures

Figure 1

11 pages, 1707 KiB  
Article
Assessment of a NOx Measurement Procedure for Periodic Technical Inspection (PTI) of Light-Duty Diesel Vehicles
by Jacopo Franzetti, Tommaso Selleri, Christian Ferrarese, Anastasios Melas, Dario Manara, Barouch Giechaskiel and Ricardo Suarez-Bertoa
Energies 2023, 16(14), 5520; https://doi.org/10.3390/en16145520 - 21 Jul 2023
Cited by 5 | Viewed by 2154
Abstract
A Periodic Technical Inspection (PTI) of vehicles promotes road safety and environmental protection. Indeed, a PTI is also used to verify the proper functioning of the vehicle’s aftertreatment system (ATS) over its lifetime. While the current Directive 2014/45/EU, which covers the PTI, does [...] Read more.
A Periodic Technical Inspection (PTI) of vehicles promotes road safety and environmental protection. Indeed, a PTI is also used to verify the proper functioning of the vehicle’s aftertreatment system (ATS) over its lifetime. While the current Directive 2014/45/EU, which covers the PTI, does not require a NOx emissions measurement, the ongoing revision of the roadworthiness package aims at including new methods for measuring exhaust NOx and particle number (PN) emissions. PTI tests are required to be simple, quick, inexpensive and effective. In this study, a new methodology for a NOx measurement during the PTIs of Diesel vehicles equipped with a selective catalytic reduction (SCR) unit is assed. Seven Euro 6 light-duty Diesel vehicles fulfilling post-Real Driving Emissions (RDE) regulations were tested. The NOx-PTI methodology consists of measuring NOx emissions from the vehicle tailpipe at engine low idle speed after properly conditioning the vehicle ATS. In such conditions, a well-functioning SCR unit reduced NOx emissions and the methodology proved to be suitable to discriminate between functioning and malfunctioning SCR systems. Full article
(This article belongs to the Section I2: Energy and Combustion Science)
Show Figures

Figure 1

Back to TopTop