Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (34)

Search Parameters:
Keywords = diesel engine age

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
9 pages, 2979 KiB  
Proceeding Paper
Utilizing ZSM-5 Zeolite, Synthesized from Kaolin Clay, as a Catalyst Presents an Efficient Approach for Reducing Emissions in Compression Ignition (CI) Engines
by Sethuraman Narayanan, Karthikeyan Duraisamy and Aasthiya Bharanitharan
Eng. Proc. 2025, 93(1), 16; https://doi.org/10.3390/engproc2025093016 - 30 Jun 2025
Viewed by 157
Abstract
This investigation focuses on synthesizing ZSM-5 zeolite from kaolin clay and its application as a catalytic converter to reduce NOx emissions in CRDI diesel engines. By doping the synthesized zeolite with CuCl2 and AgNO3 and coating it on a ceramic monolith, [...] Read more.
This investigation focuses on synthesizing ZSM-5 zeolite from kaolin clay and its application as a catalytic converter to reduce NOx emissions in CRDI diesel engines. By doping the synthesized zeolite with CuCl2 and AgNO3 and coating it on a ceramic monolith, this study demonstrated superior catalytic activity for NOx reduction compared to conventional converters. A set of experimental trials conducted by using a diesel engine with an AVL DI-gas analyzer showed that CuCl2-ZSM5 and AgNO3-ZSM5 catalysts reduced the NOx conversion efficiencies to 72% and 66%. Additionally, these catalysts effectively reduced CO and HC emissions. The results highlight the potential of kaolin-derived zeolites with copper and cobalt dopants as efficient catalysts for emission control in internal combustion engines, offering a promising, sustainable solution for improving air quality and environmental sustainability. Full article
Show Figures

Figure 1

25 pages, 3186 KiB  
Article
Emission Inspections of Vehicles in Operation—Case Study for Slovakia
by Miloš Poliak, Michal Loman and Roman Stovička
Vehicles 2025, 7(2), 51; https://doi.org/10.3390/vehicles7020051 - 27 May 2025
Viewed by 721
Abstract
Air pollution poses a serious threat to human health and the environment. Emissions from motor vehicles, especially in large cities, contribute significantly to this problem. This study analyzes the results of emission inspections in the Slovak Republic to identify factors influencing emissions and [...] Read more.
Air pollution poses a serious threat to human health and the environment. Emissions from motor vehicles, especially in large cities, contribute significantly to this problem. This study analyzes the results of emission inspections in the Slovak Republic to identify factors influencing emissions and their impact on air quality. The research analyzed data from emission inspections and their relationship to vehicle age, fuel type, and type of failure. The results show that older vehicles, especially those aged 10 to 20 years, have a higher probability of failing to meet emission standards. Specifically, up to 42.75% of diesel vehicles aged 15 to 20 years were rated as unfit, compared to 33.07% of gasoline vehicles in the same age category. An increased proportion of unfit vehicles was recorded for diesel engines, which indicates their negative impact on air quality. The most common failures were related to direct emission measurements. These findings have implications for environmental policy and the regulation of vehicle imports to improve air quality and reduce pollution. Data on emission inspections were drawn from the national system and show knowledge about the observation of emission inspections carried out during one calendar year. The study recommends the introduction of stricter control mechanisms for older vehicles, supporting the renewal of the vehicle fleet, and the implementation of modern technologies to reduce emissions. Rigorous emission inspections are essential for the protection of public health. Regular inspections and modern technologies reduce emissions of harmful substances, thus contributing to the improvement of air quality and public health. Full article
Show Figures

Figure 1

17 pages, 3249 KiB  
Article
An Integrated Methodological Approach for Interpreting Used Oil Analysis in Diesel Engines
by Reinaldo Ramirez Camba, Cristian Garcia Garcia, Milton Garcia Tobar and Jorge Fajardo Merchan
Lubricants 2025, 13(4), 169; https://doi.org/10.3390/lubricants13040169 - 8 Apr 2025
Viewed by 1226
Abstract
This study develops an integrated methodological approach for interpreting used oil analysis results in diesel engines, focusing on optimizing maintenance strategies. The methodology combines a literature review with a quantitative assessment of 156 lubricant analysis reports from a fleet of diesel waste collection [...] Read more.
This study develops an integrated methodological approach for interpreting used oil analysis results in diesel engines, focusing on optimizing maintenance strategies. The methodology combines a literature review with a quantitative assessment of 156 lubricant analysis reports from a fleet of diesel waste collection trucks operating in Cuenca, Ecuador, a high-altitude city. The framework includes critical limits for key lubricant parameters, correlation analysis, and Principal Component Analysis (PCA) to identify dominant degradation mechanisms. The Binary Segmentation (BS) algorithm is also used for Change-Point Detection. The findings indicate four primary degradation pathways: thermal–chemical degradation influenced by sulfur, oxidation, and soot; metallic wear and base depletion, involving iron, chromium, and copper; external contamination linked to silica and copper; and viscosity alteration due to lubricant aging. Significant degradation shifts were identified at approximately 346 and 444 service hours, suggesting critical points for condition-based maintenance interventions. This study highlights the effectiveness of multivariate statistical tools in enhancing the interpretation of used oil analysis and optimizing predictive maintenance strategies. The integration of Change-Point Detection and multivariate analysis provides a robust framework for defining oil change intervals based on lubricant condition rather than fixed time- or mileage-based criteria. This approach offers practical benefits for fleet operations, enabling the reduction in operational costs, enhancing engine reliability, and minimizing the environmental impact of unnecessary lubricant changes. Full article
(This article belongs to the Special Issue Intelligent Algorithms for Triboinformatics)
Show Figures

Figure 1

20 pages, 3480 KiB  
Article
Impact of Vehicle Aging and Mileage on Air Pollution Emissions
by Piotr Pryciński, Jacek Pielecha, Jarosław Korzeb, Roland Jachimowski and Piotr Pielecha
Energies 2025, 18(4), 939; https://doi.org/10.3390/en18040939 - 16 Feb 2025
Cited by 2 | Viewed by 1557
Abstract
The research described in this paper aimed to verify the impact of road vehicle aging on air pollutant emissions. The problem of vehicle aging and the resulting changing air pollutant emissions was identified with the operational mileage of passenger cars. The validity of [...] Read more.
The research described in this paper aimed to verify the impact of road vehicle aging on air pollutant emissions. The problem of vehicle aging and the resulting changing air pollutant emissions was identified with the operational mileage of passenger cars. The validity of such an approach to research on air pollutant emissions changing over time was confirmed by a preliminary review of publications in scientific databases such as Scopus and Web of Science. The research problem presented in this paper was to assess the impact of vehicle aging on essential air pollutant emissions (CO, CO2, NOX). The research method included measuring the actual RDE air pollutant emissions using research equipment, i.e., the SEMTECH DS gaseous exhaust gas component analyzer. This study was conducted on vehicles with diesel engines, different operating ages, different mileages, and engines with similar displacement, mostly 1.9–2.0 dm3, and equipped with manual transmissions. The tests were conducted in the Poznań agglomeration. The results of measured air pollutant emissions in the RDE mode allowed for mapping the changes in air pollutant emissions for diesel engine vehicles with similar displacement as a function of operating age (mileage) and also for collecting preliminary data for analyses in the field of modeling road air pollutant emissions within the vehicle aging phenomenon. Full article
(This article belongs to the Special Issue CO2 Emissions from Vehicles (Volume II))
Show Figures

Figure 1

10 pages, 834 KiB  
Article
Advanced Methods for Monitoring and Fault Diagnosis of Control Loops in Common Rail Systems
by Riccardo Bacci di Capaci and Gabriele Pannocchia
Processes 2024, 12(11), 2371; https://doi.org/10.3390/pr12112371 - 29 Oct 2024
Cited by 1 | Viewed by 1589
Abstract
Common rail systems are a key component of modern diesel engines and highly increase their performance. During their working lifetime, there could be critical damages or failures related to aging, like backlash or friction, or out-of-spec operating conditions, like low-quality fuel with, e.g., [...] Read more.
Common rail systems are a key component of modern diesel engines and highly increase their performance. During their working lifetime, there could be critical damages or failures related to aging, like backlash or friction, or out-of-spec operating conditions, like low-quality fuel with, e.g., the presence of water or particles or a high percentage of biodiesel. In this work, suitable data-driven methods are adopted to develop an automatic procedure to monitor, diagnose, and estimate some types of faults in common rail systems. In particular, the pressure control loop operating within the engine control unit is investigated; the system is described using a Hammerstein model composed of a nonlinear model for the control valve behavior and an extended linear model for the process dynamics, which also accounts for the presence of external disturbances. Three different sources of oscillations can be successfully detected and quantified: valve stiction, aggressive controller tuning, and external disturbance. Selected case studies are used to demonstrate the effectiveness of the developed methodology. Full article
Show Figures

Figure 1

9 pages, 1047 KiB  
Article
Diesel Engine Age and Fine Particulate Matter Concentrations in School Buses
by Mieczysław Szyszkowicz
Air 2024, 2(3), 220-228; https://doi.org/10.3390/air2030013 - 1 Jul 2024
Viewed by 1227
Abstract
In this study, we examine and assess the potential impact of diesel engine age on the levels of fine particulate matter (PM2.5) in school buses. The concentration of air pollutants is influenced by several factors, including the technical characteristics of the [...] Read more.
In this study, we examine and assess the potential impact of diesel engine age on the levels of fine particulate matter (PM2.5) in school buses. The concentration of air pollutants is influenced by several factors, including the technical characteristics of the bus and its engine, the type of fuel used, the length of the commute, the weather conditions, and the ambient air pollution. The behavior of the bus on the road, during the commute to and from school, is also important. This includes its position in traffic, the number of bus stops, boarding procedures, as well as the opening of doors and windows. Data were collected by accompanying a student during their commute to and from school, with bus commutes serving as the sampling unit. A semi-parametric regression was applied to assess the link between the PM2.5 concentration and the bus engine age. It was demonstrated that the bus engine age has a statistically significant positive correlation with the PM2.5 concentration inside the bus. The fine particulate matter concentrations during boarding at the school also depend on the engine age, indicating that bus idling affects the PM2.5 concentration. In the first two minutes before boarding in front of the school and the first two minutes inside the bus, the PM2.5 concentrations were 26.3 and 40.3 μg/m3, respectively. The findings of this study highlight the impact of bus engine age on the PM2.5 concentration, showing that the PM2.5 concentration increases with the engine age. However, the effect becomes less visible as the duration of the bus ride increases. Full article
Show Figures

Figure 1

31 pages, 13301 KiB  
Article
The Long-Term Usage of an Off-Grid Photovoltaic System with a Lithium-Ion Battery-Based Energy Storage System on High Mountains: A Case Study in Paiyun Lodge on Mt. Jade in Taiwan
by Hsien-Ching Chung
Batteries 2024, 10(6), 202; https://doi.org/10.3390/batteries10060202 - 13 Jun 2024
Cited by 4 | Viewed by 6275
Abstract
Energy supply on high mountains remains an open issue since grid connection is not feasible. In the past, diesel generators with lead–acid battery energy storage systems (ESSs) were applied in most cases. Recently, photovoltaic (PV) systems with lithium-ion (Li-ion) battery ESSs have become [...] Read more.
Energy supply on high mountains remains an open issue since grid connection is not feasible. In the past, diesel generators with lead–acid battery energy storage systems (ESSs) were applied in most cases. Recently, photovoltaic (PV) systems with lithium-ion (Li-ion) battery ESSs have become suitable for solving this problem in a greener way. In 2016, an off-grid PV system with a Li-ion battery ESS was installed in Paiyun Lodge on Mt. Jade (the highest lodge in Taiwan). After operating for more than 7 years, the aging of the whole electric power system became a critical issue for its long-term usage. In this work, a method is established for analyzing the massive energy data (over 7 million rows), such as daily operation patterns, as well as the C-rate, temperature, and accumulated energy distributions, and estimating the health of the Li-ion battery system. A completed electric power improvement project dealing with power system aging is reported. Based on the long-term usage experience, a simple cost analysis model comparing lead–acid and Li-ion battery systems is built, revealing that expensive Li-ion batteries can compete with cheap lead–acid batteries for long-term usage on high mountains. This case study can provide engineers and researchers with a fundamental understanding of the long-term usage of off-grid PV ESSs and engineering on high mountains. Full article
(This article belongs to the Section Battery Performance, Ageing, Reliability and Safety)
Show Figures

Graphical abstract

17 pages, 7717 KiB  
Article
A Quantitative and Qualitative Analysis of the Lubricity of Used Lubricating Oil Diluted with Diesel Oil
by Leszek Chybowski, Marcin Szczepanek, Robert Sztangierski and Piotr Brożek
Appl. Sci. 2024, 14(11), 4567; https://doi.org/10.3390/app14114567 - 26 May 2024
Cited by 5 | Viewed by 1793
Abstract
Experience shows that dilution of lubricating oil with diesel oil is unfavorable to the engine, causing issues including deterioration of engine performance, shortening of oil life, and reduction in engine reliability and safety. This paper presents the verification of the hypothesis that the [...] Read more.
Experience shows that dilution of lubricating oil with diesel oil is unfavorable to the engine, causing issues including deterioration of engine performance, shortening of oil life, and reduction in engine reliability and safety. This paper presents the verification of the hypothesis that the changes in lubricity, friction coefficient, and decreasing oil film thickness (using a relative approach, given as a percentage) are similar for lubricating oil and diesel mixtures prepared from fresh lubricating oil and used lubricating oil. To validate this hypothesis, an experiment is conducted using a high-frequency reciprocating rig (HFFR), in which the lubricity is determined by the corrected average wear scar WS1.4, the coefficient of friction μ, and the percentage relative decrease in oil film thickness r. A qualitative visual assessment of the wear scars on the test specimens is also performed after the HFFR tests. The testing covers mixtures of SAE 30 grade Marinol CB-30 RG1230 lubricating oil with Orlen Efecta Diesel Biodiesel. The used lubricating oil is extracted from the circulating lubrication system of a supercharged, trunk-piston, four-stroke ZUT Zgoda Sulzer 5 BAH 22 engine installed in the laboratory of ship power plants of the Maritime University of Szczecin. Mixtures for the experiment are prepared for fresh lubricating oil with diesel oil and used lubricating oil with diesel oil. Mixtures of these lubricating oils with diesel oil are examined for diesel oil concentrations in the mixture equal to 1, 2, 5, 10, 15, and 20% m/m. The results of the experiment confirm the hypothesis, proving that, for up to 20% m/m diesel oil concentration in lubricating oil, the changes in the lubricity of used lubricating oil diluted with diesel oil can be evaluated based on reference data prepared for mixtures of diesel oil with fresh lubricating oil. The linear approximation of μ and r trends is made with a certain margin of error we estimated. The experiment also confirms the results of previous studies which state that oil aging products in small quantities contribute to improved lubricity. Full article
(This article belongs to the Special Issue Digital and Computational Tribology)
Show Figures

Figure 1

20 pages, 5020 KiB  
Article
Role of Vanadium in Thermal and Hydrothermal Aging of a Commercial V2O5-WO3/TiO2 Monolith for Selective Catalytic Reduction of NOx: A Case Study
by Luca Consentino, Giuseppe Pantaleo, Valeria La Parola, Eleonora La Greca, Nunzio Gallì, Giuseppe Marcì, Roberto Fiorenza, Salvatore Scirè and Leonarda Francesca Liotta
Catalysts 2024, 14(4), 241; https://doi.org/10.3390/catal14040241 - 5 Apr 2024
Cited by 1 | Viewed by 1978
Abstract
In recent years, increased attention to air pollutants such as NOx has led the scientific community to focus meaningfully on developing strategies for NOx reduction. Selective catalytic reduction of NOx by ammonia (NO SCR by NH3) is currently [...] Read more.
In recent years, increased attention to air pollutants such as NOx has led the scientific community to focus meaningfully on developing strategies for NOx reduction. Selective catalytic reduction of NOx by ammonia (NO SCR by NH3) is currently the main method to remove NOx from diesel engine exhaust emissions. The catalysts with typical V2O5-WO3/TiO2 (VWTi) composition are widely used in NH3-SCR for their high NOx conversion activity, low cost, and robustness, especially concerning sulfur poisoning. However, in real diesel engine working conditions, the thermal and hydrothermal aging of catalysts can occur after several hours of operation at high temperature, affecting the catalytic performance. In this study, the stability of a commercial VWTi monolith, self-supported and containing glass fibers and bentonite in its matrix, was investigated as a case study. In laboratory conditions, NO SCR tests were performed for 50 h in the range of 150 to 350 °C. Subsequently, the VWTi monolith was thermally and hydrothermally aged at 600 °C for 6 h. The thermal aging increased the NOx conversion, especially at low temperature (<250 °C), while the hydrothermal aging did not affect the SCR. The differences in NOx conversion before and after aging were associated with the change in vanadium and tungsten oxide surface coverage and with the reduction in the surface area of catalysts. In order to correlate the change in SCR activity with the modifications occurring after aging processes, the monolithic samples were characterized by several techniques, namely XRD, SSA and pore analysis, TPR, XPS, Raman, TGA and SEM/EDX. Full article
Show Figures

Figure 1

20 pages, 9272 KiB  
Article
Increasing Al-Pair Abundance in SSZ-13 Zeolite via Zeolite Synthesis in the Presence of Alkaline Earth Metal Hydroxide Produces Hydrothermally Stable Co-, Cu- and Pd-SSZ-13 Materials
by Konstantin Khivantsev, Miroslaw A. Derewinski, Libor Kovarik, Mark Bowden, Xiaohong Shari Li, Nicholas R. Jaegers, Daria Boglaienko, Xavier I. Pereira-Hernandez, Carolyn Pearce, Yong Wang and Janos Szanyi
Catalysts 2024, 14(1), 56; https://doi.org/10.3390/catal14010056 - 12 Jan 2024
Cited by 3 | Viewed by 2766
Abstract
Replacing alkaline for alkaline-earth metal hydroxide in the synthesis gel during the synthesis of siliceous SSZ-13 zeolite (Si/Al~10) yields SSZ-13 with novel, advantageous properties. Its NH4-form ion-exchanges higher amount of isolated divalent M(II) ions than the conventional one: this is the [...] Read more.
Replacing alkaline for alkaline-earth metal hydroxide in the synthesis gel during the synthesis of siliceous SSZ-13 zeolite (Si/Al~10) yields SSZ-13 with novel, advantageous properties. Its NH4-form ion-exchanges higher amount of isolated divalent M(II) ions than the conventional one: this is the consequence of an increased number of Al pairs in the structure induced by the +2 charge of Sr(II) cations in the synthesis gel that force two charge-compensating AlO4 motives to reside closer together. We characterize the +2 state of Co(II) ions in these materials with infra-red spectroscopy and X-ray absorption spectroscopy measurements and show their utility for NOx pollutant adsorption from ambient air: the ones derived from SSZ-13 with higher Al pair content contain more isolated cobalt(II) and, thus, perform better as ambient-air NOx adsorbers. Notably, Co(II)/SSZ-13 with an increased number of Al pairs is significantly more hydrothermally stable than its NaOH-derived analogue. Loading Pd(II) into Co-SSZ-13(Sr) produces an active NOx adsorber (PNA) material that can be used for NOx adsorption from simulated diesel engine exhaust. The critical issue for these applications is hydrothermal stability of Pd-zeolites. Pd/SSZ-13 synthesized in the presence of Sr(OH)2 does not lose its PNA capacity after extremely harsh aging at 850 and 900 °C (10 h in 10% H2O/air flow) and loses only ~55% capacity after hydrothermal aging at 930 °C. This can be extended to other divalent metals for catalytic applications, such as copper: we show that Cu/SSZ-13 catalyst can survive hydrothermal aging at 920 °C without losing its catalytic properties, metal dispersion and crystalline structure. Thus, we provide a new, simple, and scalable strategy for making remarkably (hydro)thermally stable metal-zeolite materials/catalysts with a number of useful applications. Full article
(This article belongs to the Special Issue Catalysis on Zeolites and Zeolite-Like Materials II)
Show Figures

Figure 1

17 pages, 5301 KiB  
Article
Modeling of an Autonomous Electric Propulsion Barge for Future Inland Waterway Transport
by Andrzej Łebkowski and Wojciech Koznowski
Energies 2023, 16(24), 8053; https://doi.org/10.3390/en16248053 - 14 Dec 2023
Cited by 1 | Viewed by 2567
Abstract
International trade is continuously rising, leading to an increase in the flow of goods passing through transportation hubs, including air and sea. In addition, the aging fleet of inland vessels necessitates renewal through the construction of new vessels, presenting opportunities for the adoption [...] Read more.
International trade is continuously rising, leading to an increase in the flow of goods passing through transportation hubs, including air and sea. In addition, the aging fleet of inland vessels necessitates renewal through the construction of new vessels, presenting opportunities for the adoption of modern transport technologies. Autonomous barges can transport bulk and containerized cargo between the central port of a specific region and smaller satellite ports, enabling the dispersal of goods over a wider area. Equipping autonomous barges with advanced sensors, such as LIDAR, computer vision systems that operate in visible light and thermal infrared, and incorporating advanced path finding and cooperation algorithms may enable them to operate autonomously, subject only to remote supervision. The purpose of this study is to explore the potential of autonomous electric propulsion barges in inland waterway transport. Given the increasing demand for efficient and sustainable transport solutions as a result of various new policies, which have set new ambitious goals in clean transportation, this study aims to develop a proposition of an electric propulsion hybrid drive inland waterway barge, and compare it to a conventional diesel-powered barge. The methodology involves the creation of a simulation model of an inland waterway class IV electric barge, equipped with advanced sensors and autonomous control systems. The barge’s navigation is managed through a multi-agent system, with evolutionary algorithms determining a safe passage route. This research also utilizes a proprietary networked ship traffic simulator, based on real inland vessel recorded routes, to conduct the autonomous navigation study. The energy consumption of the barge on a route resulting from the ship traffic simulation is then examined using the mathematical model using the OpenModelica package. As a result of the study, the proposed hybrid propulsion system achieved a 16% reduction in fuel consumption and CO2 emissions, while cutting engine operation time by more than 71%. The findings could provide valuable insights into the feasibility and efficiency of autonomous electric propulsion barges, potentially helping future developments in inland waterway transport. Full article
Show Figures

Figure 1

20 pages, 2800 KiB  
Article
Comparison of Pollutant Effects on Cutaneous Inflammasomes Activation
by John Ivarsson, Francesca Ferrara, Andrea Vallese, Anna Guiotto, Sante Colella, Alessandra Pecorelli and Giuseppe Valacchi
Int. J. Mol. Sci. 2023, 24(23), 16674; https://doi.org/10.3390/ijms242316674 - 23 Nov 2023
Cited by 18 | Viewed by 2271
Abstract
The skin is the outermost layer of the body and, therefore, is exposed to a variety of stressors, such as environmental pollutants, known to cause oxinflammatory reactions involved in the exacerbation of several skin conditions. Today, inflammasomes are recognized as important modulators of [...] Read more.
The skin is the outermost layer of the body and, therefore, is exposed to a variety of stressors, such as environmental pollutants, known to cause oxinflammatory reactions involved in the exacerbation of several skin conditions. Today, inflammasomes are recognized as important modulators of the cutaneous inflammatory status in response to air pollutants and ultraviolet (UV) light exposure. In this study, human skin explants were exposed to the best-recognized air pollutants, such as microplastics (MP), cigarette smoke (CS), diesel engine exhaust (DEE), ozone (O3), and UV, for 1 or 4 days, to explore how each pollutant can differently modulate markers of cutaneous oxinflammation. Exposure to environmental pollutants caused an altered oxidative stress response, accompanied by increased DNA damage and signs of premature skin aging. The effect of specific pollutants being able to exert different inflammasomes pathways (NLRP1, NLRP3, NLRP6, and NLRC4) was also investigated in terms of scaffold formation and cell pyroptosis. Among all environmental pollutants, O3, MP, and UV represented the main pollutants affecting cutaneous redox homeostasis; of note, the NLRP1 and NLRP6 inflammasomes were the main ones modulated by these outdoor stressors, suggesting their role as possible molecular targets in preventing skin disorders and the inflammaging events associated with environmental pollutant exposure. Full article
(This article belongs to the Special Issue Sustainable Approaches in Skin Conditions 2.0)
Show Figures

Graphical abstract

16 pages, 9071 KiB  
Article
Study on Rates of NH3 Adsorption and Desorption in SCR on Various Engine Operation Conditions
by Hyun Jo, Ahyun Ko, Jinyoung Jang and Ocktaeck Lim
Sustainability 2023, 15(19), 14468; https://doi.org/10.3390/su151914468 - 4 Oct 2023
Cited by 1 | Viewed by 1795
Abstract
Aging diesel engines on the road require the development of an after-treatment system to meet current emission regulations, and a reduction in NOx (Nitrogen Oxide) is significant. The SCR (Selective Catalytic Reduction) system is the after-treatment system for removing NOx from exhaust gas [...] Read more.
Aging diesel engines on the road require the development of an after-treatment system to meet current emission regulations, and a reduction in NOx (Nitrogen Oxide) is significant. The SCR (Selective Catalytic Reduction) system is the after-treatment system for removing NOx from exhaust gas in diesel engines using NH3 (Ammonia) gas. However, the mixing and conversion process between NH3 and NOx in SCR has not been entirely clarified. That process produces NH3 slip in the catalyst surface; the NH3 slip will make the after-treatment performance worse. This study informs how the UWS (Urea Water Solution) injection controlling method can minimize the NH3 slip in the after-treatment system. For this, the NH3 adsorption and desorption rates are important factors for determining the quantity of UWS injection in the system. The NH3 adsorption rate and desorption rate in the SCR are not significantly affected by engine speed, i.e., the exhaust gas flow rate. However, as the exhaust gas temperature increased, the adsorption rate and desorption rate of NH3 in the SCR increased. Through this, the exhaust gas temperature dramatically affects the NH3 adsorption rate and desorption rate in the SCR. Therefore, if the urea water is injected based on this knowledge that the NH3 adsorption amount in the SCR decreases as the exhaust gas flow rate increases, NH3 slip can be suppressed and a high NOx reduction rate can be achieved. Therefore, if the SCR adsorption and desorption mechanisms are analyzed according to the exhaust temperature and the exhaust flow rate in this paper, it can be used as a reference for selecting an appropriate SCR when retrofitting an old diesel engine car. Full article
(This article belongs to the Collection Air Pollution Control and Sustainable Development)
Show Figures

Figure 1

13 pages, 7252 KiB  
Article
Revealing the Roles of Cu/Ba on Ce-Based Passive NOx Adsorbers
by Mingming Pei, Yuxin Fan, Haidi Xu, Zhihua Lian, Wei Tan, Jianli Wang and Yaoqiang Chen
Catalysts 2023, 13(8), 1180; https://doi.org/10.3390/catal13081180 - 2 Aug 2023
Cited by 4 | Viewed by 1690
Abstract
At present, passive NOx adsorbers (PNAs) represent one of the most effective technologies for addressing NOx emissions from diesel engines during cold-start periods. Conventional PNAs, which primarily consist of noble metals (such as Pt, Pd, and Ag) loaded on metal oxides [...] Read more.
At present, passive NOx adsorbers (PNAs) represent one of the most effective technologies for addressing NOx emissions from diesel engines during cold-start periods. Conventional PNAs, which primarily consist of noble metals (such as Pt, Pd, and Ag) loaded on metal oxides or zeolites, share the common drawback of high production costs. Consequently, developing low-cost PNAs with outstanding NOx storage performance remains a significant challenge. In this study, a series of CuxBa5Ce adsorbents were synthesized using the impregnation method, and a monolithic adsorbent was employed to evaluate NOx storage and release performance. Techniques such as XRD, UV-Vis DRs, H2-TPR, XPS, and in situ DRIFTs confirmed the crucial roles of Cu and Ba in NOx storage and release. Specifically, the incorporation of Cu into CeO2 enhanced NOx storage performance. Moreover, in the Cu3Ba5Ce adsorbent, the addition of Ba not only introduced new storage sites and altered the stability of NOx adsorption species but also helped prevent the aggregation of CuO, thereby prolonging the complete NOx storage duration and satisfying desorption temperature requirements. The Cu3Ba5Ce adsorbent exhibited the most favorable NOx storage performance, including a complete NOx storage time of 135 s and a NOx storage efficiency exceeding 50% at 80 °C over a 10 min period. While PNAs loaded with noble metals, such as Pd/CeO2 and Pt/CeO2, exhibited NOx storage efficiencies below 50% after adsorbing for 5 min at 80 °C. Therefore, this research offered a crucial strategy for developing non-noble-metal-loaded, Ce-based PNAs. Full article
Show Figures

Figure 1

17 pages, 2232 KiB  
Review
Diesel Engine Emission Aftertreatment Device Aging Mechanism and Durability Assessment Methods: A Review
by Tian Yu, Kai Li, Qian Wu, Peng Yao, Jia Ke, Bowen Wang and Yanjun Wang
Atmosphere 2023, 14(2), 314; https://doi.org/10.3390/atmos14020314 - 4 Feb 2023
Cited by 16 | Viewed by 4844
Abstract
To meet more and more stringent emission standards, the combined technologies must be used to purify the emission pollutants of vehicle exhaust. Among them, the aftertreatment devices, including DOC, SCR, DPF, and so on, are the most efficient methods. However, after long-term running, [...] Read more.
To meet more and more stringent emission standards, the combined technologies must be used to purify the emission pollutants of vehicle exhaust. Among them, the aftertreatment devices, including DOC, SCR, DPF, and so on, are the most efficient methods. However, after long-term running, the performance of the aftertreatment devices will inevitably degrade. There are several mechanisms that can be used to explain the aging phenomena. For the catalytic devices, such as DOC and SCR, thermal aging and poisoning aging are the most important reasons for their performance deterioration. As for DPF, ash clogging is a key problem for its stable working. To develop and test aftertreatment devices better and faster, the accelerated aging methods must be researched and applied. The small-sample aging method enables accelerated aging of catalyst samples at a very low cost, but its aging accuracy may not be good enough. Although the results of the whole-vehicle aging method and bench engine aging method are more in accord with the real using course, they take too much time and are too expensive to be used widely. Burner aging is a promising way to simulate the long-term running of the catalysts. Full article
(This article belongs to the Special Issue Recent Advances in Mobile Source Emissions)
Show Figures

Figure 1

Back to TopTop