Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (17)

Search Parameters:
Keywords = diagonal stiffener

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 6621 KiB  
Article
The Buckling Behavior and Reliability Evaluation of a Cable-Stayed Bridge with Unique-Shaped Towers
by Yaoxiang Jia, Rujin Ma, Xiaoyu Zhou and Benjin Wang
Materials 2024, 17(24), 6124; https://doi.org/10.3390/ma17246124 - 14 Dec 2024
Viewed by 793
Abstract
Buckling is a significant concern for cable-stayed bridges that incorporate a large number of steel components, particularly those featuring unique-shaped towers that require further examination due to the intricate internal force and stress distribution. This paper investigates the buckling behavior of a cable-stayed [...] Read more.
Buckling is a significant concern for cable-stayed bridges that incorporate a large number of steel components, particularly those featuring unique-shaped towers that require further examination due to the intricate internal force and stress distribution. This paper investigates the buckling behavior of a cable-stayed bridge with inverted V-shaped towers. The cable tower is characterized by its unique design that consists of diagonal bracings and columns in a compression-bending state. A finite element model is established for the nonlinear buckling analysis of the bridge, revealing that the buckling failure mode of the bridge mainly concerns the tower columns that bear large bending moments and axial compressions. The buckling safety factors are analyzed under different loading conditions and design parameters, including the stiffening rib thickness, the width-to-thickness ratio, and the initial cable forces. It indicates that the design optimization can be achieved by using smaller and thinner ribs while maintaining the buckling safety factor above the required level in design specifications. Furthermore, the reliability evaluation of buckling safety is considered using Monte Carlo simulations, which incorporates the long-term effects of corrosion on steel components. Based on the identified buckling failure modes and safety factors, it suggests that the buckling resistance of the bridge is sufficient, though it can be further enhanced by using high-strength weathering steel on critical parts. Additionally, maintenance interventions are shown to be highly beneficial in improving the life-cycle performance of the structure. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

21 pages, 11253 KiB  
Article
Analysis of the Bearing Capacity of Concrete-Filled Thin-Walled Square Steel Tubes with Helical Stiffening Based on Local Buckling
by Penggang Tian, Zhenshan Wang, Kai Wang, Jianhui Niu, Zhixun Xie and Kangning Liu
Buildings 2024, 14(7), 2122; https://doi.org/10.3390/buildings14072122 - 11 Jul 2024
Viewed by 1073
Abstract
To address the issue of local buckling in thin-walled steel tube concrete columns, a form of helical stiffening ribs was proposed. Axial compression tests were conducted on five sections of square steel tube concrete column specimens. The research revealed that, compared to ordinary [...] Read more.
To address the issue of local buckling in thin-walled steel tube concrete columns, a form of helical stiffening ribs was proposed. Axial compression tests were conducted on five sections of square steel tube concrete column specimens. The research revealed that, compared to ordinary steel tube concrete columns, the axial compression bearing capacity and deformation capacity of steel tube concrete columns with helical rib constraints increased by 18.5% and 7.7%, respectively. The helical ribs effectively enhanced the buckling resistance of the thin-walled steel tube concrete components. The failure pattern of this new type of component was characterized by diagonal cracks in the encased concrete aligning with the direction of the helical ribs, and the buckling of the steel tube walls was concentrated between the helical stiffening ribs. Based on the experiments, an analysis of the buckling performance of thin-walled steel tubes with helical rib constraints was conducted, and this was incorporated into the bearing capacity calculation. The test, simulation, and theoretical calculations showed that the bearing capacity error of the composite columns for each specimen was within 10%. Ultimately, a formula for the critical buckling bearing capacity of the helical rib steel tubes was proposed. The research findings provide a foundation for the engineering application of this new type of component. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

12 pages, 7175 KiB  
Article
Stability Analysis of “321” Prefabricated Highway Steel Truss Bridge
by Haifang He, Yulong Zhou, Shoushan Cheng, Ning An, Hongyi Liu and Zhixuan Fei
Buildings 2024, 14(6), 1626; https://doi.org/10.3390/buildings14061626 - 1 Jun 2024
Cited by 1 | Viewed by 1276
Abstract
The “321” prefabricated highway steel truss bridge is widely used for highway rescue, disaster relief, and emergency traffic. This paper uses a 33 m double-row monolayer “321” prefabricated highway steel truss bridge to analyze its mechanical properties and component stability. The actual traffic [...] Read more.
The “321” prefabricated highway steel truss bridge is widely used for highway rescue, disaster relief, and emergency traffic. This paper uses a 33 m double-row monolayer “321” prefabricated highway steel truss bridge to analyze its mechanical properties and component stability. The actual traffic flow capacity of a total weight of 53.32 tons is used in this study. The results show that the maximum internal force in the truss chord (including the stiffening chord) occurs in the middle span section when a centrally distributed load is applied. Meanwhile, the maximum internal force of truss diagonal members and truss vertical bars appears at the fulcrum section. Under the eccentrically distributed load, the maximum internal forces of truss chords (including stiffening chords) appear in the middle span section, which is closest to the vehicle load, while the maximum internal forces of truss diagonal members and truss vertical bars appear in the fulcrum section, which is closest to the vehicle load. While the maximum internal forces under the eccentrically distributed load are greater than the maximum internal forces under the centered-layout load, under the vehicle load, truss chords (including stiffening chords) are prone to buckling instability, and the buckling mode is mainly reverse out-of-plane buckling. The inclined members of the truss are prone to buckling instability, and the buckling mode is mainly the combination of out-of-plane bending and two-way out-of-plane bending. Truss vertical bars have good stability and are not easy to buckle. The main conclusions of this paper can provide references for the optimal design and operation safety of prefabricated highway steel truss bridges. Full article
(This article belongs to the Special Issue Mechanical Performance of Steel and Composite Beams)
Show Figures

Figure 1

18 pages, 9912 KiB  
Article
Force Performance Analysis and Numerical Simulation of Assembled Ribbed-Slab Abutments
by Qiaozhu He, Ying Sun, Yin Gu and Tong Wu
Appl. Sci. 2024, 14(8), 3224; https://doi.org/10.3390/app14083224 - 11 Apr 2024
Cited by 1 | Viewed by 1386
Abstract
This study investigates the structural performance of assembled rib-plate bridge abutments (ARBAs) with two different connection methods: bull leg bolt and flange connections. In addition, we explored the bending and shear performance of the connection parts and related areas to assess the damage [...] Read more.
This study investigates the structural performance of assembled rib-plate bridge abutments (ARBAs) with two different connection methods: bull leg bolt and flange connections. In addition, we explored the bending and shear performance of the connection parts and related areas to assess the damage characteristics and modes of these ARBAs. Utilizing model testing, a numerical analysis was conducted to define the force performance of the ARBA, with reference to a cast-in-place rib-plate abutment. The research results indicate that the bearing capacity and deformation capacity of the cap part of the assembled ribbed slab abutment model with cow leg connections are lower than those of the cast-in-place structure. When the structure fails, a 45° diagonal crack develops from the cross-section at the mid-span joint to the connection between the rib slab and the cap, until the concrete protective layer at the joint is crushed, exhibiting a shear failure mode. The bearing capacity of the assembly rib plate type abutment cap connected by the flange plate is basically the same as that of the cast-in-place structure, and the deformation capacity is weaker than that of the cast-in-place rib plate type abutment. The expansion of structural cracks is consistent with that of the rib plate type abutment connected by the cow leg. When the flange plate at the mid span is damaged, the contact surface between the flange plate and the concrete is pried off, resulting in the inability of the structure to continue bearing, exhibiting a shear failure mode. Through numerical simulation, taking the stress performance of the integral cast-in-place ribbed slab abutment as a reference, the assembled ribbed slab abutment connected by the flange plate is basically consistent with the integral cast-in-place ribbed slab abutment in terms of ultimate load, concrete damage, and steel reinforcement skeleton stress, and the connection device has not yet reached the yield state. The ultimate displacement is slightly weaker than that of the integral cast-in-place ribbed slab abutment. By comparison, it can be seen that the ultimate bearing capacity of the assembled ribbed slab abutment connected by the flange is basically the same as that of the cast-in-place ribbed slab abutment, and the stress performance can reach an “equivalent cast-in-place”, making it the preferred solution for the assembled abutment structure. The finite element parameter analysis of the flanged ARBA revealed that the thickness of the stiffening ribs, the number of bolts, and length of the flange plate anchoring steel plate were proportional to the ultimate load-bearing capacity of the prefabricated ARBA. In the case of no change in the structural damage mode, considering the economic benefits and load-bearing capacity of the structure, the following parameter combinations of the flanged ARBA are recommended: a thickness of 30 mm of the stiffening ribs, the number of bolts is 12, and a length of 50 cm of the length of flange plate anchoring steel plate. Full article
Show Figures

Figure 1

16 pages, 6032 KiB  
Article
Simplified Evaluation of Shear Stiffness Degradation of Diagonally Cracked Reinforced Concrete Beams
by Kaiqi Zheng, Siyuan Zhou, Yaohui Zhang, Yang Wei, Jiaqing Wang, Yuxi Wang and Xiaochuan Qin
Materials 2023, 16(13), 4752; https://doi.org/10.3390/ma16134752 - 30 Jun 2023
Cited by 6 | Viewed by 1529
Abstract
Shear cracking in concrete box-girder bridges, which could cause excessive deflection during the serviceability limit state, cannot be effectively avoided by code-guided design. While elastic shear deformation only accounts for a small proportion of total deformation for un-cracked reinforced concrete (RC) beams, the [...] Read more.
Shear cracking in concrete box-girder bridges, which could cause excessive deflection during the serviceability limit state, cannot be effectively avoided by code-guided design. While elastic shear deformation only accounts for a small proportion of total deformation for un-cracked reinforced concrete (RC) beams, the magnitude of after-cracking shear deformation becomes comparable to flexural deformation for RC beams. However, there is still a lack of practical models to predict the after-cracking shear deformation of RC beams. First, six thin-webbed I beams were tested to investigate the shear stiffness degradation mechanism and the decrease ratio. Then, a very simple truss strut angle formula, which is the crucial parameter for shear stiffness, was established. Furthermore, a stiffness degradation rule for partially cracked beams was proposed considering the influence of concrete tension stiffening, which is essential for predicting the development process of after-cracking shear deformation. Finally, directly measured shear strains were used to validate the proposed shear stiffness model. The results showed that the shear stiffness drops to about 30~40% of the original stiffness after the first diagonal crack, and the remaining shear stiffness is only about 10% of the original one when the stirrup yields. Increasing the stirrup ratio is a more effective method to control shear stiffness degradation for diagonally cracked RC beams. Also, the proposed shear stiffness model well captures the main features of the shear stiffness degradation, and it provides a relatively accurate prediction of the equivalent shear stiffness at the post-cracking stage. Full article
(This article belongs to the Special Issue Green and Sustainable Infrastructure Construction Materials)
Show Figures

Figure 1

26 pages, 10621 KiB  
Article
Machine Learning-Based Prediction of Elastic Buckling Coefficients on Diagonally Stiffened Plate Subjected to Shear, Bending, and Compression
by Yuqing Yang, Zaigen Mu and Xiao Ge
Sustainability 2023, 15(10), 7815; https://doi.org/10.3390/su15107815 - 10 May 2023
Cited by 4 | Viewed by 2339
Abstract
The buckling mechanism of diagonally stiffened plates under the combined action of shear, bending, and compression is a complex phenomenon that is difficult to describe with simple and clear explicit expressions. Predicting the elastic buckling coefficient accurately is crucial for calculating the buckling [...] Read more.
The buckling mechanism of diagonally stiffened plates under the combined action of shear, bending, and compression is a complex phenomenon that is difficult to describe with simple and clear explicit expressions. Predicting the elastic buckling coefficient accurately is crucial for calculating the buckling load of these plates. Several factors influence the buckling load of diagonally stiffened plates, including the plate’s aspect ratio, the stiffener’s flexural and torsional rigidity, and the in-plane load. Traditional analysis methods rely on fitting a large number of finite element numerical simulations to obtain an empirical formula for the buckling coefficient of stiffened plates under a single load. However, this cannot be applied to diagonally stiffened plates under combined loads. To address these limitations, several machine learning (ML) models were developed using the ML method and the SHAP to predict the buckling coefficient of diagonally stiffened plates. Eight ML models were trained, including decision tree (DT), k-nearest neighbor (K-NN), artificial neural network (ANN), random forest (RF), AdaBoost, LightGBM, XGBoost, and CatBoost. The performance of these models was evaluated and found to be highly accurate in predicting the buckling coefficient of diagonally stiffened plates under combined loading. Among the eight models, XGBoost was found to be the best. Further analysis using the SHAP method revealed that the aspect ratio of the plate is the most important feature influencing the elastic buckling coefficient. This was followed by the combined action ratio, as well as the flexure and torsional rigidity of the stiffener. Based on these findings, it is recommended that the stiffener-to-plate flexural stiffness ratio be greater than 20 and that the stiffener’s torsional-to-flexural stiffness ratio be greater than 0.4. This will improve the elastic buckling coefficient of diagonally stiffened plates and enable them to achieve higher load capacity. Full article
(This article belongs to the Special Issue Sustainable Structures and Construction in Civil Engineering)
Show Figures

Figure 1

24 pages, 8674 KiB  
Article
Composite Cold-Formed Steel Beams with Diagonal Rebars for Earthquake-Resistant Buildings
by James Samuel, Shalini Ramachandran Nair, Philip Saratha Joanna, Beulah Gnana Ananthi Gurupatham, Krishanu Roy and James Boon Piang Lim
Materials 2023, 16(8), 3002; https://doi.org/10.3390/ma16083002 - 10 Apr 2023
Cited by 13 | Viewed by 2390
Abstract
The construction industry is on the lookout for cost-effective structural members that are also environmentally friendly. Built-up cold-formed steel (CFS) sections with minimal thickness can be used to make beams at a lower cost. Plate buckling in CFS beams with thin webs can [...] Read more.
The construction industry is on the lookout for cost-effective structural members that are also environmentally friendly. Built-up cold-formed steel (CFS) sections with minimal thickness can be used to make beams at a lower cost. Plate buckling in CFS beams with thin webs can be avoided by using thick webs, adding stiffeners, or strengthening the web with diagonal rebars. When CFS beams are designed to carry heavy loads, their depth logically increases, resulting in an increase in building floor height. The experimental and numerical investigation of CFS composite beams reinforced with diagonal web rebars is presented in this paper. A total of twelve built-up CFS beams were used for testing, with the first six designed without web encasement and the remaining six designed with web encasement. The first six were constructed with diagonal rebars in the shear and flexure zones, while the other two with diagonal rebars in the shear zone, and the last two without diagonal rebars. The next set of six beams was constructed in the same manner, but with a concrete encasement of the web, and all the beams were then tested. Fly ash, a pozzolanic waste byproduct of thermal power plants, was used as a 40% replacement for cement in making the test specimens. CFS beam failure characteristics, load–deflection behavior, ductility, load–strain relationship, moment–curvature relationship, and lateral stiffness were all investigated. The results of the experimental tests and the nonlinear finite element analysis performed in ANSYS software were found to be in good agreement. It was discovered that CFS beams with fly ash concrete encased webs have twice the moment resisting capacity of plain CFS beams, resulting in a reduction in building floor height. The results also confirmed that the composite CFS beams have high ductility, making them a reliable choice for earthquake-resistant structures. Full article
Show Figures

Figure 1

16 pages, 7997 KiB  
Article
Composite Beams Made of Waste Wood-Particle Boards, Fastened to Solid Timber Frame by Dowel-Type Fasteners
by Meta Kržan, Tomaž Pazlar and Boštjan Ber
Materials 2023, 16(6), 2426; https://doi.org/10.3390/ma16062426 - 18 Mar 2023
Cited by 2 | Viewed by 2413
Abstract
To increase the sustainability of prefabricated timber buildings and constructions, composite timber beams with “box” cross-sections were developed in collaboration with an industry partner. They were constructed from a solid timber frame and from webs made of residual waste wood-particle boards from prefabricated [...] Read more.
To increase the sustainability of prefabricated timber buildings and constructions, composite timber beams with “box” cross-sections were developed in collaboration with an industry partner. They were constructed from a solid timber frame and from webs made of residual waste wood-particle boards from prefabricated timber buildings production. The developed beams’ design concepts presented in this paper were governed by architectural features of prefabricated timber buildings, geometrical limitations, available production technology, and structural demand related to various possible applications. The paper presents the results of experimental bending tests of six variations of the developed composite timber beams constructed by mechanical fasteners only. The developed design concept of composite timber beams without adhesives is beneficial compared to glued beams in terms of design for deconstruction and lower VOC emissions. The tests were conducted to study the influence of the following parameters on the beams’ mechanical behavior: (i) web material (oriented strand boards (OSBs) vs. cement-particle boards); (ii) the influence of beam timber frame design (flanges and web stiffeners vs. flanges, web stiffeners, and compressive diagonals), and (iii) the influence of stiffener–flange joint design. Besides the beams’ load-bearing capacities, their linear and non-linear stiffness characteristics were the main research interest. While adding compressive timber diagonals did not prove to significantly increase the stiffness of the beams in the case of cement-particle board webs, it increased their load-bearing capacity by enabling the failure of flanges instead of prior webs and stiffener–flange joints failure. For beams with OSB webs, failure of the bottom flange was achieved already with the “basic” timber frame design, but timber diagonals proved beneficial to increase the stiffness characteristics. Finally, mechanical characteristics of the developed beams needed in structural design for their application are provided together with further development guidelines. Full article
Show Figures

Figure 1

25 pages, 9935 KiB  
Article
Numerical Analysis of CFST Column with PBL Stiffeners under Axial Compression
by Yan Diao, Jiahao Guo and Shiyi He
Processes 2023, 11(3), 769; https://doi.org/10.3390/pr11030769 - 5 Mar 2023
Cited by 1 | Viewed by 1962
Abstract
PBL stiffeners, made of thin-walled steel plates with circular openings and welded to the steel tube of a square concrete-filled steel tubular (CFST) column, can improve the combined effect effectively by co-carrying axial compressive forces and confining the concrete core. A numerical simulation [...] Read more.
PBL stiffeners, made of thin-walled steel plates with circular openings and welded to the steel tube of a square concrete-filled steel tubular (CFST) column, can improve the combined effect effectively by co-carrying axial compressive forces and confining the concrete core. A numerical simulation study based on the previous test was conducted to study the ultimate strength of the CFST stub column with PBL stiffeners. Finite element models of CFST with different stiffeners were made and verified by the test results of typical failure modes and load–strain curves of specimens. The parameter study was conducted, including PBL stiffener detailing (i.e., material strength, stiffener thickness, opening diameter, and opening spacing). Finally, based on the study and analysis results, an ultimate bearing capacity prediction formula was proposed, which can reasonably predict the bearing capacity of a square CFST column with longitudinal or diagonal stiffeners, while the methods in ACI, BS5400, EC4, AIJ, and DBJ were more conservative. Full article
Show Figures

Figure 1

17 pages, 2726 KiB  
Article
Performance Improvement of Innovative Shear Damper Using Diagonal Stiffeners for Concentrically Braced Frame Systems
by Chanachai Thongchom, Alireza Bahrami, Ali Ghamari and Omrane Benjeddou
Buildings 2022, 12(11), 1794; https://doi.org/10.3390/buildings12111794 - 26 Oct 2022
Cited by 10 | Viewed by 4072
Abstract
Although concentrically braced frame (CBF) systems enjoy high elastic stiffness and lateral strength, they show a low seismic energy absorption capacity. This dilemma is due to the buckling of CBFs’ diagonal members under compressive loading. To overcome the shortcoming, researchers have proposed the [...] Read more.
Although concentrically braced frame (CBF) systems enjoy high elastic stiffness and lateral strength, they show a low seismic energy absorption capacity. This dilemma is due to the buckling of CBFs’ diagonal members under compressive loading. To overcome the shortcoming, researchers have proposed the use of dampers to improve the behavior of CBF systems. Among the proposed dampers, the metallic shear damper is the most popular thanks to its suitable performance as well as its economic profit. The main shortcoming of the shear dampers is low stiffness. Therefore, in this article, an innovative approach is proposed to improve the behavior of the shear dampers. Subsequently, strengthening the shear damper with X-stiffeners is proposed, and its behavior is evaluated numerically and parametrically. Results indicate that by adding the X-stiffeners, the ultimate strength and elastic stiffness of the shear dampers are enhanced considerably. However, the properties of the stiffeners do not impact the stiffness in the nonlinear zone. Moreover, the behavior of the dampers is affected by parameters such as the ratio of the strength of the web plate to the flange plates, the ratio of the X-stiffeners to the flange plates, and the ρ factor. To consider the parameters to predict the behavior of the damper, required equations are proposed which demonstrate a good agreement with finite element results. Full article
(This article belongs to the Special Issue Research on Performance of Buildings Structures and Materials)
Show Figures

Figure 1

27 pages, 8887 KiB  
Article
Research on the Characteristics and Application of Two-Degree-of-Freedom Diagonal Beam Piezoelectric Vibration Energy Harvester
by Tianbing Ma, Kaiheng Sun, Shisheng Jia, Fei Du and Zhihao Zhang
Sensors 2022, 22(18), 6720; https://doi.org/10.3390/s22186720 - 6 Sep 2022
Cited by 1 | Viewed by 1841
Abstract
To overcome high periodic maintenance requirements, difficult replacement, and large application limitations of wireless sensor nodes powered by chemical batteries during the vibration control process of stiffened plates, a two-degree-of-freedom diagonal beam piezoelectric vibration energy harvester was proposed. Multidimensional energy harvesting and broadband [...] Read more.
To overcome high periodic maintenance requirements, difficult replacement, and large application limitations of wireless sensor nodes powered by chemical batteries during the vibration control process of stiffened plates, a two-degree-of-freedom diagonal beam piezoelectric vibration energy harvester was proposed. Multidimensional energy harvesting and broadband work are integrated into one structure through the combined action of oblique angle, mass blocks, and piezoelectric beam. The mechanical model of the beam is established for theoretical analysis; the output characteristics of the structure are analyzed by finite element simulation; a piezoelectric energy harvesting experimental bench is built. The results show that: The structure has a wider harvesting band, multi-order resonant frequency, multi-dimensional energy harvesting, and higher output voltage and power than the traditional cantilever structures. The output performance of the specimens with 45° oblique angle, 5 g:5 g mass ratio, and 0.2 mm thickness of piezoelectric substrate is good in the frequency band of 10~40 Hz. When the excitation frequency is 28 Hz, the output voltage of the sextuple array structure reaches 19.20 V and the output power reaches 7.37 mW. The field experiments show that the harvester array can meet the requirements of providing auxiliary energy for wireless sensor nodes in the process of active vibration control of stiffened plates. Full article
(This article belongs to the Section Electronic Sensors)
Show Figures

Figure 1

22 pages, 11735 KiB  
Article
Study on the Seismic Performance of Stiffened Corrugated Steel Plate Shear Walls with Atmospheric Corrosion
by Xiaoming Ma, Yi Hu, Liqiang Jiang, Lizhong Jiang, Guibo Nie and Hong Zheng
Materials 2022, 15(14), 4920; https://doi.org/10.3390/ma15144920 - 14 Jul 2022
Cited by 6 | Viewed by 2562
Abstract
Corrugated steel plate shear walls (CSPWs) with three different stiffening methods are proposed in this paper, including unstiffened CSPWs (USWs), cross stiffened CSPWs (CSWs) and asymmetric diagonal-stiffened CSPWs (ASWs). A numerical model was established by ABAQUS 6.13 based on the validation of an [...] Read more.
Corrugated steel plate shear walls (CSPWs) with three different stiffening methods are proposed in this paper, including unstiffened CSPWs (USWs), cross stiffened CSPWs (CSWs) and asymmetric diagonal-stiffened CSPWs (ASWs). A numerical model was established by ABAQUS 6.13 based on the validation of an existing cyclic test on a CSPW. This paper presents an investigation of the lateral performance under monotonic loading, seismic performance under cyclic loading and seismic performance under atmospheric corrosion of USW, CSW and ASW. The results show that (1) Stiffeners can improve the elastic critical buckling load, the initial stiffness and the ultimate shear resistance of CSPWs, and the effect of asymmetric diagonal stiffeners is more significant than that of cross stiffeners; (2) Stiffeners can improve the energy dissipation capacity and ductility, delay stiffness degradation and reduce the out-of-plane deformation of CSPWs, and the hysteretic performance of ASWs is obviously better than that of CSWs; and (3) Under atmospheric corrosion, stiffeners are conducive to inhibiting buckling and improving the seismic performance of CSPWs, while the seismic performance of CSWs is significantly affected by corrosion, so asymmetric diagonal stiffeners are better than cross stiffeners in improving the seismic performance of CSPWs. Meanwhile, the formula of ultimate shear resistance of corroded specimens is also fitted in this paper, which can provide design suggestions for practical engineering. Full article
Show Figures

Figure 1

16 pages, 8291 KiB  
Article
Numerical Study on Elastic Buckling Behavior of Diagonally Stiffened Steel Plate Walls under Combined Shear and Non-Uniform Compression
by Yuqing Yang, Zaigen Mu and Boli Zhu
Metals 2022, 12(4), 600; https://doi.org/10.3390/met12040600 - 31 Mar 2022
Cited by 5 | Viewed by 2709
Abstract
Unstiffened steel plate walls (SPWs) are prone to buckling in practical engineering and will invariably be subjected to vertical loads. The use of stiffeners can improve the buckling behavior of thin plates. Considering the effect of the torsional stiffness of C-shaped stiffeners, the [...] Read more.
Unstiffened steel plate walls (SPWs) are prone to buckling in practical engineering and will invariably be subjected to vertical loads. The use of stiffeners can improve the buckling behavior of thin plates. Considering the effect of the torsional stiffness of C-shaped stiffeners, the elastic buckling of the diagonally stiffened steel plate wall (DS-SPW) under combined shear and non-uniform compression is investigated. The interaction curves for the DS-SPW under combined action are presented, as well as a proposed equation for the elastic buckling coefficient. In addition, the effects of the stiffener’s flexural and torsional stiffness on the elastic buckling stress were investigated, and the threshold stiffness formulae were proposed. The results show that the interaction curve of the DS-SPW under combined shear and non-uniform compression is approximately parabolic. The critical buckling stress of the DS-SPW can be increased by increasing the stiffener’s torsional-to-flexure stiffness ratio and the non-uniform compression distribution factor, while the buckling stress can be decreased by increasing the non-uniform compression-to-shear ratio. Simultaneous action of shear and axial compression will increase the threshold stiffness by approximately 40% when compared to the plate under pure shear action. Therefore, the safety threshold stiffness formula is suggested, considering the combined action of shear and non-uniform compression. Full article
(This article belongs to the Special Issue Modelling, Test and Practice of Steel Structures)
Show Figures

Figure 1

14 pages, 2883 KiB  
Article
Shear Response of Glass Fibre Reinforced Polymer (GFRP) Built-Up Hollow and Lightweight Concrete Filled Beams: An Experimental and Numerical Study
by Sih Ying Kong, Leong Sing Wong, Suvash Chandra Paul and Md Jihad Miah
Polymers 2020, 12(10), 2270; https://doi.org/10.3390/polym12102270 - 2 Oct 2020
Cited by 10 | Viewed by 2974
Abstract
This paper investigated the static behaviour of glass fibre reinforced polymer (GFRP) built-up hollow and concrete filled built-up beams tested under four-point bending with a span-to-depth ratio of 1.67, therefore focusing their shear performance. Two parameters considered for hollow sections were longitudinal web [...] Read more.
This paper investigated the static behaviour of glass fibre reinforced polymer (GFRP) built-up hollow and concrete filled built-up beams tested under four-point bending with a span-to-depth ratio of 1.67, therefore focusing their shear performance. Two parameters considered for hollow sections were longitudinal web stiffener and strengthening at the web–flange junction. The experimental results indicated that the GFRP hollow beams failed by web crushing at supports; therefore, the longitudinal web stiffener has an insignificant effect on improving the maximum load. Strengthening web–flange junctions using rectangular hollow sections increased the maximum load by 47%. Concrete infill could effectively prevent the web crushing, and it demonstrated the highest load increment of 162%. The concrete filled GFRP composite beam failed by diagonal tension in the lightweight concrete core. The finite element models adopting Hashin damage criteria yielded are in good agreement with the experimental results in terms of maximum load and failure mode. Based on the numerical study, the longitudinal web stiffener could prevent the web buckling of the slender GFRP beam and improved the maximum load by 136%. The maximum load may be further improved by increasing the thickness of the GFRP section and the size of rectangular hollow sections used for strengthening. It was found that the bond–slip at the concrete–GFRP interface affected the shear resistance of concrete–GFRP composite beam. Full article
Show Figures

Graphical abstract

22 pages, 12108 KiB  
Article
A Comparative and Review Study on Shape and Stress Sensing of Flat/Curved Shell Geometries Using C0-Continuous Family of iFEM Elements
by Mohammad Amin Abdollahzadeh, Adnan Kefal and Mehmet Yildiz
Sensors 2020, 20(14), 3808; https://doi.org/10.3390/s20143808 - 8 Jul 2020
Cited by 45 | Viewed by 4618
Abstract
In this study, we methodologically compare and review the accuracy and performance of C0-continuous flat and curved inverse-shell elements (i.e., iMIN3, iQS4, and iCS8) for inverse finite element method (iFEM) in terms of shape, strain, and stress monitoring, and damage detection [...] Read more.
In this study, we methodologically compare and review the accuracy and performance of C0-continuous flat and curved inverse-shell elements (i.e., iMIN3, iQS4, and iCS8) for inverse finite element method (iFEM) in terms of shape, strain, and stress monitoring, and damage detection on various plane and curved geometries subjected to different loading and constraint conditions. For this purpose, four different benchmark problems are proposed, namely, a tapered plate, a quarter of a cylindrical shell, a stiffened curved plate, and a curved plate with a degraded material region in stiffness, representing a damage. The complexity of these test cases is increased systematically to reveal the advantages and shortcomings of the elements under different sensor density deployments. The reference displacement solutions and strain-sensor data used in the benchmark problems are established numerically, utilizing direct finite element analysis. After performing shape-, strain-, and stress-sensing analyses, the reference solutions are compared to the reconstructed solutions of iMIN3, iQS4, and iCS8 models. For plane geometries with sparse sensor configurations, these three elements provide rather close reconstructed-displacement fields with slightly more accurate stress sensing using iCS8 than when using iMIN3/iQS4. It is demonstrated on the curved geometry that the cross-diagonal meshing of a quadrilateral element pattern (e.g., leading to four iMIN3 elements) improves the accuracy of the displacement reconstruction as compared to a single-diagonal meshing strategy (e.g., two iMIN3 elements in a quad-shape element) utilizing iMIN3 element. Nevertheless, regardless of any geometry, sensor density, and meshing strategy, iQS4 has better shape and stress-sensing than iMIN3. As the complexity of the problem is elevated, the predictive capabilities of iCS8 element become obviously superior to that of flat inverse-shell elements (e.g., iMIN3 and iQS4) in terms of both shape sensing and damage detection. Comprehensively speaking, we envisage that the set of scrupulously selected test cases proposed herein can be reliable benchmarks for testing/validating/comparing for the features of newly developed inverse elements. Full article
(This article belongs to the Special Issue Shape Sensing)
Show Figures

Figure 1

Back to TopTop