Next Article in Journal
Impedance Enhancement of Textile Grounded Loop Antenna Using High-Impedance Surface (HIS) for Healthcare Applications
Next Article in Special Issue
Shape Sensing with Rayleigh Backscattering Fibre Optic Sensor
Previous Article in Journal
Age-Related Differences in Fixation Pattern on a Companion Robot
Previous Article in Special Issue
Measurement of Shear Strain Field in a Soft Material Using a Sensor System Consisting of Distributed Piezoelectric Polymer Film
Article

A Comparative and Review Study on Shape and Stress Sensing of Flat/Curved Shell Geometries Using C0-Continuous Family of iFEM Elements

1
Faculty of Engineering and Natural Sciences, Sabanci University, Tuzla, 34956 Istanbul, Turkey
2
Integrated Manufacturing Technologies Research and Application Center, Sabanci University, Tuzla, 34956 Istanbul, Turkey
3
Composite Technologies Center of Excellence, Istanbul Technology Development Zone, Sabanci University-Kordsa, Pendik, 34906 Istanbul, Turkey
*
Author to whom correspondence should be addressed.
Sensors 2020, 20(14), 3808; https://doi.org/10.3390/s20143808
Received: 7 May 2020 / Revised: 17 June 2020 / Accepted: 1 July 2020 / Published: 8 July 2020
(This article belongs to the Special Issue Shape Sensing)
In this study, we methodologically compare and review the accuracy and performance of C0-continuous flat and curved inverse-shell elements (i.e., iMIN3, iQS4, and iCS8) for inverse finite element method (iFEM) in terms of shape, strain, and stress monitoring, and damage detection on various plane and curved geometries subjected to different loading and constraint conditions. For this purpose, four different benchmark problems are proposed, namely, a tapered plate, a quarter of a cylindrical shell, a stiffened curved plate, and a curved plate with a degraded material region in stiffness, representing a damage. The complexity of these test cases is increased systematically to reveal the advantages and shortcomings of the elements under different sensor density deployments. The reference displacement solutions and strain-sensor data used in the benchmark problems are established numerically, utilizing direct finite element analysis. After performing shape-, strain-, and stress-sensing analyses, the reference solutions are compared to the reconstructed solutions of iMIN3, iQS4, and iCS8 models. For plane geometries with sparse sensor configurations, these three elements provide rather close reconstructed-displacement fields with slightly more accurate stress sensing using iCS8 than when using iMIN3/iQS4. It is demonstrated on the curved geometry that the cross-diagonal meshing of a quadrilateral element pattern (e.g., leading to four iMIN3 elements) improves the accuracy of the displacement reconstruction as compared to a single-diagonal meshing strategy (e.g., two iMIN3 elements in a quad-shape element) utilizing iMIN3 element. Nevertheless, regardless of any geometry, sensor density, and meshing strategy, iQS4 has better shape and stress-sensing than iMIN3. As the complexity of the problem is elevated, the predictive capabilities of iCS8 element become obviously superior to that of flat inverse-shell elements (e.g., iMIN3 and iQS4) in terms of both shape sensing and damage detection. Comprehensively speaking, we envisage that the set of scrupulously selected test cases proposed herein can be reliable benchmarks for testing/validating/comparing for the features of newly developed inverse elements. View Full-Text
Keywords: structural health monitoring; shape sensing; stress sensing; inverse finite element method; shell elements; strain sensor; damage detection structural health monitoring; shape sensing; stress sensing; inverse finite element method; shell elements; strain sensor; damage detection
Show Figures

Figure 1

MDPI and ACS Style

Abdollahzadeh, M.A.; Kefal, A.; Yildiz, M. A Comparative and Review Study on Shape and Stress Sensing of Flat/Curved Shell Geometries Using C0-Continuous Family of iFEM Elements. Sensors 2020, 20, 3808. https://doi.org/10.3390/s20143808

AMA Style

Abdollahzadeh MA, Kefal A, Yildiz M. A Comparative and Review Study on Shape and Stress Sensing of Flat/Curved Shell Geometries Using C0-Continuous Family of iFEM Elements. Sensors. 2020; 20(14):3808. https://doi.org/10.3390/s20143808

Chicago/Turabian Style

Abdollahzadeh, Mohammad A., Adnan Kefal, and Mehmet Yildiz. 2020. "A Comparative and Review Study on Shape and Stress Sensing of Flat/Curved Shell Geometries Using C0-Continuous Family of iFEM Elements" Sensors 20, no. 14: 3808. https://doi.org/10.3390/s20143808

Find Other Styles
Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Article Access Map by Country/Region

1
Back to TopTop