Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (10)

Search Parameters:
Keywords = diacetoxyiodobenzene

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 794 KiB  
Article
Pharmacochemical Studies of Synthesized Coumarin–Isoxazole–Pyridine Hybrids
by Matina D. Douka, Ioanna M. Sigala, Catherine Gabriel, Eleni Nikolakaki, Dimitra J. Hadjipavlou-Litina and Konstantinos E. Litinas
Molecules 2025, 30(7), 1592; https://doi.org/10.3390/molecules30071592 - 2 Apr 2025
Cited by 1 | Viewed by 1128
Abstract
Several new coumarin–isoxazole–pyridine hybrids were synthesized through a 1,3-dipolar cycloaddition reaction of nitrile oxides, prepared in situ from pyridine aldehyde oximes, with propargyloxy- or propargylaminocoumarins in moderate-to-good yields. Synthetic modifications were applied using (diacetoxyiodo)benzene (PIDA) at room temperature, microwave irradiation, or tert-butyl nitrite [...] Read more.
Several new coumarin–isoxazole–pyridine hybrids were synthesized through a 1,3-dipolar cycloaddition reaction of nitrile oxides, prepared in situ from pyridine aldehyde oximes, with propargyloxy- or propargylaminocoumarins in moderate-to-good yields. Synthetic modifications were applied using (diacetoxyiodo)benzene (PIDA) at room temperature, microwave irradiation, or tert-butyl nitrite (TBN) under reflux. Coumarin, isoxazole, and pyridine groups were selected for hybridization in one molecule due to their biological impact to inhibit lipid peroxidation and an enzyme implicated in inflammation. Preliminary in vitro screening tests for lipoxygenase (LOX) inhibition and anti-lipid peroxidation for the new hybrids were performed. A discussion on the structure–activity relationship is presented. Compounds 12b and 13a were found to be potent LOX inhibitors with IC50 5 μΜ and 10 μΜ, respectively, while 12b presented high (90.4%) anti-lipid peroxidation. Furthermore, hybrids 12b and 13a exhibited moderate-to-low anticancer activities on HeLa, HT-29, and H1437 cancer cells. Full article
(This article belongs to the Section Organic Chemistry)
Show Figures

Scheme 1

12 pages, 1705 KiB  
Article
Efficient Synthesis of Novel Triazolo[5,1-b]purines by Diacetoxyiodobenzene-Mediated Oxidative Cyclization of Schiff Bases
by Artyom O. Neymash, Victor V. Fedotov, Evgeny N. Ulomsky, Daniil N. Lyapustin, Semen V. Aminov and Vladimir L. Rusinov
Reactions 2024, 5(4), 1089-1100; https://doi.org/10.3390/reactions5040058 - 18 Dec 2024
Viewed by 991
Abstract
In this work, we have developed a method for synthesizing new 8-substituted triazolo[5,1-b]purines using diacetoxyiodobenzene as an oxidizing agent with good yields (59–67%). The advantages of this approach include mild reaction conditions and removing the need to use transition metals. Based [...] Read more.
In this work, we have developed a method for synthesizing new 8-substituted triazolo[5,1-b]purines using diacetoxyiodobenzene as an oxidizing agent with good yields (59–67%). The advantages of this approach include mild reaction conditions and removing the need to use transition metals. Based on the results obtained, a plausible reaction pathway was proposed. The developed approach opens new possibilities for the preparation of previously inaccessible condensed purine derivatives, which are of interest for the development of biomolecules with a variety of pharmacological applications. The structures of the compounds were confirmed by the data of 1H, 13C NMR spectroscopy, IR spectroscopy, and an elemental analysis. Full article
Show Figures

Graphical abstract

9 pages, 1639 KiB  
Article
A Facile Synthesis of Some Bioactive Isoxazoline Dicarboxylic Acids via Microwave-Assisted 1,3-Dipolar Cycloaddition Reaction
by Jessica Master, Shekiel Sydney, Harsha Rajapaske, Malek Saffiddine, Vikiana Reyes and Richard W. Denton
Reactions 2024, 5(4), 1080-1088; https://doi.org/10.3390/reactions5040057 - 16 Dec 2024
Cited by 3 | Viewed by 1068
Abstract
The microwave-assisted 1,3-dipolar cycloaddition reaction of several aldoximes and dimethyl-2-methylene glutarate in the presence of diacetoxyiodobenzene as an oxidant produced four new isoxazoline-derived dimethyl carboxylates. Saponification followed by acidification of the latter yielded novel isoxazoline dicarboxylic acids in reasonable to high yields. The [...] Read more.
The microwave-assisted 1,3-dipolar cycloaddition reaction of several aldoximes and dimethyl-2-methylene glutarate in the presence of diacetoxyiodobenzene as an oxidant produced four new isoxazoline-derived dimethyl carboxylates. Saponification followed by acidification of the latter yielded novel isoxazoline dicarboxylic acids in reasonable to high yields. The structures of these novel compounds were characterized by IR, 1H-NMR, 13C-NMR, and HRMS spectroscopy. Their biological activities disclosed higher inhibition of the growth of E. coli organisms by the aromatic compounds than by the aliphatic derivatives, demonstrating their potential in antibiotics research. Full article
(This article belongs to the Special Issue Cycloaddition Reactions at the Beginning of the Third Millennium)
Show Figures

Graphical abstract

16 pages, 4159 KiB  
Article
Effect of Substituted Pyridine Co-Ligands and (Diacetoxyiodo)benzene Oxidants on the Fe(III)-OIPh-Mediated Triphenylmethane Hydroxylation Reaction
by Patrik Török and József Kaizer
Molecules 2024, 29(16), 3842; https://doi.org/10.3390/molecules29163842 - 13 Aug 2024
Viewed by 1220
Abstract
Iodosilarene derivatives (PhIO, PhI(OAc)2) constitute an important class of oxygen atom transfer reagents in organic synthesis and are often used together with iron-based catalysts. Since the factors controlling the ability of iron centers to catalyze alkane hydroxylation are not yet fully [...] Read more.
Iodosilarene derivatives (PhIO, PhI(OAc)2) constitute an important class of oxygen atom transfer reagents in organic synthesis and are often used together with iron-based catalysts. Since the factors controlling the ability of iron centers to catalyze alkane hydroxylation are not yet fully understood, the aim of this report is to develop bioinspired non-heme iron catalysts in combination with PhI(OAc)2, which are suitable for performing C-H activation. Overall, this study provides insight into the iron-based ([FeII(PBI)3(CF3SO3)2] (1), where PBI = 2-(2-pyridyl)benzimidazole) catalytic and stoichiometric hydroxylation of triphenylmethane using PhI(OAc)2, highlighting the importance of reaction conditions including the effect of the co-ligands (para-substituted pyridines) and oxidants (para-substituted iodosylbenzene diacetates) on product yields and reaction kinetics. A number of mechanistic studies have been carried out on the mechanism of triphenylmethane hydroxylation, including C-H activation, supporting the reactive intermediate, and investigating the effects of equatorial co-ligands and coordinated oxidants. Strong evidence for the electrophilic nature of the reaction was observed based on competitive experiments, which included a Hammett correlation between the relative reaction rate (logkrel) and the σp (4R-Py and 4R’-PhI(OAc)2) parameters in both stoichiometric (ρ = +0.87 and +0.92) and catalytic (ρ = +0.97 and +0.77) reactions. The presence of [(PBI)2(4R-Py)FeIIIOIPh-4R’]3+ intermediates, as well as the effect of co-ligands and coordinated oxidants, was supported by their spectral (UV–visible) and redox properties. It has been proven that the electrophilic nature of iron(III)-iodozilarene complexes is crucial in the oxidation reaction of triphenylmethane. The hydroxylation rates showed a linear correlation with the FeIII/FeII redox potentials (in the range of −350 mV and −524 mV), which suggests that the Lewis acidity and redox properties of the metal centers greatly influence the reactivity of the reactive intermediates. Full article
(This article belongs to the Special Issue Inorganic Chemistry in Europe)
Show Figures

Figure 1

40 pages, 16239 KiB  
Review
Phenyliodine(III)diacetate (PIDA): Applications in Organic Synthesis
by Ravi Varala, Vittal Seema and Narsimhaswamy Dubasi
Organics 2023, 4(1), 1-40; https://doi.org/10.3390/org4010001 - 23 Dec 2022
Cited by 24 | Viewed by 18336
Abstract
One of the hypervalent iodines most widely used as an oxidizing agent in organic chemistry is (diacetoxyiodo)benzene (PhI(OAc)2), also known as (DAIB), phenyliodine(III) diacetate (PIDA). In this septennial mini-review, the authors have concisely and systematically presented representative applications of PIDA in [...] Read more.
One of the hypervalent iodines most widely used as an oxidizing agent in organic chemistry is (diacetoxyiodo)benzene (PhI(OAc)2), also known as (DAIB), phenyliodine(III) diacetate (PIDA). In this septennial mini-review, the authors have concisely and systematically presented representative applications of PIDA in organic synthesis involving C-H functionalization, hetero-hetero bond formations, heterocyclic ring construction, rearrangements or migrations and miscellaneous reactions along with their interesting mechanistic aspects starting from the summer of 2015 to the present. Full article
(This article belongs to the Collection Advanced Research Papers in Organics)
Show Figures

Figure 1

4 pages, 639 KiB  
Short Note
(1R,2S,5R)-2-Isopropyl-5-methylcyclohexyl (R)-4-methylbenzenesulfonimidate
by Arianna Tota, Michael Andresini, Marco Colella, Roberta Savina Dibenedetto, Leonardo Degennaro and Renzo Luisi
Molbank 2022, 2022(4), M1518; https://doi.org/10.3390/M1518 - 5 Dec 2022
Cited by 1 | Viewed by 2311
Abstract
(1R,2S,5R)-2-isopropyl-5-methylcyclohexyl (R)-4-methylbenzenesulfonimidate was synthesized via the stereoselective NH-transfer to (1R,2S,5R)-2-isopropyl-5-methylcyclohexyl (S)-4-methylbenzenesulfinate. The reaction employed diacetoxyiodobenzene (DIB) and ammonium carbamate, and occurred in acetonitrile at room temperature. The [...] Read more.
(1R,2S,5R)-2-isopropyl-5-methylcyclohexyl (R)-4-methylbenzenesulfonimidate was synthesized via the stereoselective NH-transfer to (1R,2S,5R)-2-isopropyl-5-methylcyclohexyl (S)-4-methylbenzenesulfinate. The reaction employed diacetoxyiodobenzene (DIB) and ammonium carbamate, and occurred in acetonitrile at room temperature. The imidation of sulfur proceeded with complete stereocontrol, and the reaction afforded the desired product as a single diastereoisomer and with high enantiocontrol (e.r. = 97:3) in 70% yield. The product was characterized by 1H-NMR, 13C-NMR, COSY, HSQC, IR spectroscopy, HRMS, and the enantiomeric ratio was established by HPLC analysis at the chiral stationary phase. Full article
(This article belongs to the Section Organic Synthesis and Biosynthesis)
Show Figures

Graphical abstract

13 pages, 4129 KiB  
Article
Synthesis and Electrochemistry of New Furylpyrazolino[60]fullerene Derivatives by Efficient Microwave Radiation
by Hamad M. Al-Matar, Mohammad H. BinSabt and Mona A. Shalaby
Molecules 2019, 24(24), 4435; https://doi.org/10.3390/molecules24244435 - 4 Dec 2019
Cited by 6 | Viewed by 3380
Abstract
Efficient one-pot synthesis of new series of furylpyrazolino[60]fullerene derivatives was prepared by [3 + 2] cycloaddition reaction mediated with (diacetoxyiodo)benzene (PhI(OAc)2) as an oxidant in o-dichlorobenzene (ODCB) under microwave irradiation. Different techniques have been used to confirm the structural identity [...] Read more.
Efficient one-pot synthesis of new series of furylpyrazolino[60]fullerene derivatives was prepared by [3 + 2] cycloaddition reaction mediated with (diacetoxyiodo)benzene (PhI(OAc)2) as an oxidant in o-dichlorobenzene (ODCB) under microwave irradiation. Different techniques have been used to confirm the structural identity including FT-IR, fast atom bombardment (FAB)-mass, NMR, and single-crystal X-ray diffraction, in addition to investigating the photophysical properties and the electrochemical properties for the new compounds using UV-Vis spectra, fluorescence spectra, cyclic voltammetry, and square wave voltammetry. Three of these pyrazolino[60]fullerene compounds showed better electron affinity than the parent C60 in the ground state. Full article
(This article belongs to the Section Organic Chemistry)
Show Figures

Graphical abstract

3 pages, 359 KiB  
Short Note
4,7-Dichloro[1,2,5]oxadiazolo[3,4-d]pyridazine 1-oxide
by Timofey Chmovzh, Ekaterina Knyazeva, Vadim Popov and Oleg Rakitin
Molbank 2018, 2018(1), M982; https://doi.org/10.3390/M982 - 18 Feb 2018
Cited by 5 | Viewed by 3938
Abstract
Dihalogenated derivatives of [1,2,5]chalcogenadiazolo[3,4-d]pyridazines are of interest as precursors for both photovoltaic materials and biologically active compounds. In this communication, 4,7-dichloro[1,2,5]oxadiazolo[3,4-d]pyridazine 1-oxide was prepared via the reaction of 3,6-dichloro-5-nitropyridazin-4-amine with oxidizing agents; the best yield of the target compound [...] Read more.
Dihalogenated derivatives of [1,2,5]chalcogenadiazolo[3,4-d]pyridazines are of interest as precursors for both photovoltaic materials and biologically active compounds. In this communication, 4,7-dichloro[1,2,5]oxadiazolo[3,4-d]pyridazine 1-oxide was prepared via the reaction of 3,6-dichloro-5-nitropyridazin-4-amine with oxidizing agents; the best yield of the target compound was achieved in the reaction with (diacetoxyiodo)benzene in benzene by heating at reflux for two hours. The structure of the newly synthesized compound was established by means of 13C-NMR and IR spectroscopy, mass-spectrometry and elemental analysis. Full article
(This article belongs to the Special Issue Heteroatom Rich Organic Heterocycles)
Show Figures

Scheme 1

9 pages, 2661 KiB  
Article
Hypervalent Iodine(III)-Induced Domino Oxidative Cyclization for the Synthesis of Cyclopenta[b]furans
by Mei-Huey Lin, Yu-Chun Chen, Shih-Hao Chiu, Yun-Fan Chen and Tsung-Hsun Chuang
Molecules 2016, 21(12), 1713; https://doi.org/10.3390/molecules21121713 - 21 Dec 2016
Cited by 2 | Viewed by 5343
Abstract
A new strategy for cyclopenta[b]furan synthesis mediated by hypervalent iodine(III) has been described. The approach employs diacetoxyiodobenzene-induced initial dehydrogenation to a putative trienone intermediate and triggered sequential cycloisomerization to form the cyclo-penta[b]furan targets. Full article
(This article belongs to the Special Issue Hypervalent Iodine Chemistry)
Show Figures

Graphical abstract

8 pages, 247 KiB  
Article
Reaction of Iodonium Ylides of 1,3-Dicarbonyl Compounds with HF Reagents
by Keisuke Gondo and Tsugio Kitamura
Molecules 2012, 17(6), 6625-6632; https://doi.org/10.3390/molecules17066625 - 31 May 2012
Cited by 19 | Viewed by 7450
Abstract
Reaction of dibenzoylmethane with (diacetoxyiodo)benzene in the presence of KOH in MeCN quantitatively gave the corresponding iodonium ylide, which was treated with a HF reagent to afford the corresponding 2-fluorinated dibenzoylmethane in 14–50% yields. The similar reaction of the iodonium ylides obtained from [...] Read more.
Reaction of dibenzoylmethane with (diacetoxyiodo)benzene in the presence of KOH in MeCN quantitatively gave the corresponding iodonium ylide, which was treated with a HF reagent to afford the corresponding 2-fluorinated dibenzoylmethane in 14–50% yields. The similar reaction of the iodonium ylides obtained from 1-phenylbutan-1,3-dione, ethyl benzoylacetate, and ethyl p-nitrobenzoylacetate with TEA·3HF gave the corresponding fluorinated products in 17–34% yields. It is suggested that the fluorinated products were formed through the C-protonation of the ylide, followed by displacement with fluoride ion. The same reaction of the iodonium ylide of dibenzoylmethane with concentrated HCl gave the corresponding chlorinated product in 45% yield. Full article
(This article belongs to the Special Issue Hypervalent Compounds)
Show Figures

Figure 1

Back to TopTop