Effect of Substituted Pyridine Co-Ligands and (Diacetoxyiodo)benzene Oxidants on the Fe(III)-OIPh-Mediated Triphenylmethane Hydroxylation Reaction
Abstract
:1. Introduction
2. Results and Discussion
2.1. Effect of Equatorial Ligands on the FeIIIOIPh-Mediated Oxidation of Triphenylmethane
2.2. Effect of Co-Oxidant (4R’-PhI(OAc)2) on the FeIIIOIPh-Mediated Oxidation of Triphenylmethane
2.3. Effect of Equatorial Ligands on the FeIIIOIPh-Mediated Stoichiometric Oxidation of Triphenylmethane
3. Materials and Methods
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Barry, S.M.; Challis, G.L. Mechanism and Catalytic Diversity of Rieske Non-Heme Iron-Dependent Oxygenases. ACS Catal. 2013, 3, 2362–2370. [Google Scholar] [CrossRef] [PubMed]
- Tinberg, C.E.; Lippard, S.J. Dioxygen activation in soluble methane monooxygenase. Acc. Chem. Res. 2011, 44, 280–288. [Google Scholar] [CrossRef] [PubMed]
- Meunier, B.; de Visser, S.P.; Shaik, S. Mechanism of oxidation reactions catalyzed by cytochrome p450 enzymes. Chem. Rev. 2004, 104, 3947–3980. [Google Scholar] [CrossRef] [PubMed]
- Costas, M. Selective C–H oxidation catalyzed by metalloporphyrins. Coord. Chem. Rev. 2011, 255, 2912–2932. [Google Scholar] [CrossRef]
- Liu, W.; Groves, J.T. Manganese Catalyzed C–H Halogenation. Acc. Chem. Res. 2015, 48, 1727–1735. [Google Scholar] [CrossRef] [PubMed]
- Tucci, F.J. Rosenzweig, Direct Methane Oxidation by Copper- and Iron-Dependent Methane Monooxygenases. Chem. Rev. 2024, 124, 1288–1320. [Google Scholar] [CrossRef] [PubMed]
- Xiao, X.; Xu, K.; Gao, Z.-H.; Zhu, Z.-H.; Ye, C.; Zhao, B.; Luo, S.; Ye, S.; Zhou, Y.-G.; Xu, S.; et al. Biomimetic asymmetric catalysis. Sci. China. Chem 2023, 66, 1553–1633. [Google Scholar]
- Masoudian, S.; Yahyaei, H. Oxidation of alcohols with hydrogen peroxide catalyzed by supported Fe(III) porphyrins. Indian J. Chem. 2011, 50A, 1002–1005. [Google Scholar]
- Nam, W.; Park, S.-E.; Lim, I.K.; Lim, M.H.; Hong, J.; Kim, J. First direct evidence for stereospecific olefin epoxidation and alkane hydroxylation by an oxoiron (IV) porphyrin complex. J. Am. Chem. Soc. 2003, 125, 14674–14675. [Google Scholar] [CrossRef]
- Ozaki, S.-I.; Roach, M.P.; Matsui, T.; Watanabe, Y. Investigations of the roles of the distal heme environment and the proximal heme iron ligand in peroxide activation by heme enzymes via molecular engineering of myoglobin. Acc. Chem. Res. 2001, 34, 818–825. [Google Scholar] [CrossRef]
- Pariyar, A.; Bose, S.; Biswas, A.N.; Barman, S.; Bandyopadhyay, B. A non-heme cationic Fe(iii)-complex intercalated in montmorillonite K-10: Synthesis, characterization and catalytic alkane hydroxylation with H2O2 at room temperature. Cat. Sci. Tech. 2014, 4, 3180–3185. [Google Scholar] [CrossRef]
- Shilov, A.E.; Shul’pin, G.B. Activation and Catalytic Reactions of Saturated Hydrocarbons in the Presence of Metal Complexes; Kluwer: Boston, MA, USA, 2000. [Google Scholar]
- Shul’pin, G.B. Hydrocarbon Oxygenations with Peroxides Catalyzed by Metal Compounds. Mini-Rev. Org. Chem. 2009, 6, 95–104. [Google Scholar] [CrossRef]
- Shilov, A.E.; Shul’pin, G.B. Activation of C–H Bonds by Metal Complexes. Chem. Rev. 1997, 97, 2879–2932. [Google Scholar] [CrossRef] [PubMed]
- Labinger, J.A.; Bercaw, J.E. Understanding and exploiting C-H bond activation. Nature 2002, 417, 507–514. [Google Scholar] [CrossRef] [PubMed]
- Fokin, A.A.; Schreiner, P.R. Selective Alkane Transformations via Radicals and Radical Cations: Insights into the Activation Step from Experiment and Theory. Chem. Rev. 2002, 102, 1551–1593. [Google Scholar] [CrossRef] [PubMed]
- Sen, A. Catalytic Functionalization of Carbon−Hydrogen and Carbon−Carbon Bonds in Protic Media. Acc. Chem. Res. 1998, 31, 550–557. [Google Scholar] [CrossRef]
- Crabtree, R.H. Organometallic alkane CH activation. J. Organomet. Chem. 2004, 689, 4083–4091. [Google Scholar] [CrossRef]
- Crabtree, R.H. Alkane C–H activation and functionalization with homogeneous transition metal catalysts: A century of progress—A new millennium in prospect. J. Chem. Soc. Dalton Trans. 2001, 2437–2450. [Google Scholar] [CrossRef]
- Dolphin, D.; Traylor, T.G.; Xie, L.Y. Polyhaloporphyrins: Unusual Ligands for Metals and Metal-Catalyzed Oxidations. Acc. Chem. Res. 1997, 30, 251–259. [Google Scholar] [CrossRef]
- Montanari, F. Biomimetic oxygenations catalyzed by metalloporphyrins and metalloporphinoids bearing co-catalytic functions. Pure Appl. Chem. 1994, 66, 1519–1526. [Google Scholar] [CrossRef]
- Friedermann, G.R.; Halma, M.; Castro, K.A.D.F.; Benedito, F.L.; Doro, F.G.; Drechsel, S.M.; Mangrich, A.S.; Assis, M.D.; Nakagaki, S. Intermediate species generatedfrom halogenated manganese porphyrins electr ochemically and in homogeneous catalysis ofalkane oxidation. Appl. Catal. A Gen. 2006, 308, 172–181. [Google Scholar] [CrossRef]
- De Vos, D.E.; Jacobs, P.A. Heterogenization of Mn an Fe complex oxidation catalysts. Catal. Today 2000, 57, 105–114. [Google Scholar] [CrossRef]
- Lindsay Smith, J.R.; Shul’pin, G.B. Efficient stereoselective oxygenation of alkanes by peroxyacetic acid or hydrogen peroxide and acetic acid catalysed by a manganese(IV) 1,4,7-trimethyl-1,4,7-triazacyclononane complex. Tetrahedron Lett. 1998, 39, 4909–4912. [Google Scholar] [CrossRef]
- Gupta, K.C.; Sutar, A.K.; Lin, C.-C. Polymer-supported Schiff base complexes in oxidation reactions. Coord. Chem. Rev. 2009, 253, 1926–1946. [Google Scholar] [CrossRef]
- Correa, R.J.; Salomao, G.C.; Olsen, M.H.N.; Filho, L.C.; Drago, V.; Fernandes, C.; Antunes, O.A.C. Catalytic activity of Mn-III(Salen) complexes encapsulated in and FeIII(Salen) zeolite Y. Appl. Catal. A Gen. 2008, 336, 35–39. [Google Scholar] [CrossRef]
- Mardani, H.R.; Golchoubian, H. Selective and efficient C-H oxidation of alkanes with hydrogen peroxide catalyzed by a manganese(III) Schiff base complex. J. Mol. Catal. A Chem. 2006, 259, 197–200. [Google Scholar] [CrossRef]
- Vinhado, F.S.; Gandini, M.E.F.; Iamamoto, Y.; Silva, A.M.G.; Simoes, M.M.Q.; Neves, M.G.P.M.S.; Tomé, A.C.; Rebelo, S.L.H.; Pereira, A.M.V.M.; Cavaleiro, J.A.S. Novel Mn (III) chlorins as versatile catalysts for oxyfunctionalisation of hydrocarbons under homogeneous conditions. J. Mol. Catal. A Chem. 2005, 239, 138–143. [Google Scholar] [CrossRef]
- Lennartson, A.; McKenzie, C.J. An Iron(III) Iodosylbenzene Complex: A Masked Non-Heme FeVO. Angew. Chem. Int. Ed. 2012, 51, 6767–6770. [Google Scholar] [CrossRef]
- Wang, C.; Kurahashi, T.; Fujii, H. Highly Reactive Nonheme Iron(III) Iodosylarene Complexes in Alkane Hydroxylation and Sulfoxidation Reactions. Angew. Chem. Int. Ed. 2014, 53, 6388–6392. [Google Scholar]
- Wang, B.; Lee, Y.M.; Seo, M.S.; Nam, W. Mononuclear Nonheme Iron(III)-Iodosylarene and High-Valent Iron-Oxo Complexes in Olefin Epoxidation Reactions. Angew. Chem. Int. Ed. 2015, 54, 11740–11744. [Google Scholar] [CrossRef]
- Kang, Y.; Li, X.-X.; Cho, K.-B.; Sun, W.; Xia, C.; Nam, W.; Wang, Y. Mutable Properties of Nonheme Iron(III)–Iodosylarene Complexes Result in the Elusive Multiple-Oxidant Mechanism. J. Am. Chem. Soc. 2017, 139, 7444–7447. [Google Scholar] [CrossRef] [PubMed]
- Kumar, R.; Pandey, B.; Rajaraman, G. Comparative oxidative ability of iron(III)-iodosylarene vs. high-valent iron(IV/V)-oxo species: Is lower oxidation state a key to enhance selectivity in organic transformations? J. Indian Chem. Soc. 2019, 96, 825–836. [Google Scholar]
- Wang, C.; Kurahashi, T.; Inomata, K.; Hada, M.; Fujii, H. Oxygen-Atom Transfer from Iodosylarene Adducts of a Manganese(IV) Salen Complex: Effect of Arenes and Anions on I(III) of the Coordinated Iodosylarene. Inorg. Chem. 2013, 52, 9557–9566. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Kurahashi, T.; Fujii, H. Structure and Reactivity of an Iodosylarene Adduct of a Manganese(IV)-Salen Complex. Angew. Chem. 2012, 124, 7929–7931. [Google Scholar] [CrossRef]
- Guo, M.; Dong, H.; Li, J.; Cheng, B.; Huang, Y.-Q.; Feng, Y.-Q.; Lei, A. Spectroscopic Observation of Iodosylarene Metalloporphyrin Adducts and Manganese(V)-Oxo Porphyrin Species in a Cytochrome P450 Analogue. Nat. Commun. 2012, 3, 1190. [Google Scholar] [CrossRef] [PubMed]
- Guo, M.; Lee, Y.-M.; Fukuzumi, S.; Nam, W. Biomimetic metal-oxidant adducts as active oxidants in oxidation reactions. Coord. Chem. Rev. 2021, 435, 213807. [Google Scholar] [CrossRef]
- Guo, M.; Lee, Y.-M.; Seo, M.S.; Kwon, Y.-J.; Li, X.-X.; Ohta, T.; Kim, W.-S.; Sarangi, R.; Fukuzumi, S.; Nam, W. Mn(III)-Iodosylarene Porphyrins as an Active Oxidant in Oxidation Reactions: Synthesis, Characterization, and Reactivity Studies. Inorg. Chem. 2018, 57, 10232–10240. [Google Scholar] [CrossRef] [PubMed]
- Nam, W.; Choi, S.K.; Lim, M.H.; Rohde, J.-U.; Kim, I.; Kim, J.; Kim, C.; Que, L., Jr. Reversible formation of iodosylbenzene-iron porphyrin intermediates in the reaction of oxoiron(IV) porphyrin pi-cation radicals and iodobenzene. Angew. Chem. Int. Ed. 2003, 42, 109–111. [Google Scholar] [CrossRef]
- Hill, E.A.; Kelty, M.L.; Filatov, A.S.; Anderson, J.S. Isolable iodosylarene and iodoxyarene adducts of Co and their O-atom transfer and C–H activation reactivity. Chem. Sci. 2018, 9, 4493–4499. [Google Scholar] [CrossRef]
- Jeong, D.; Ohta, T.; Cho, J.J. Structure and Reactivity of a Mononuclear Nonheme Manganese(III)–Iodosylarene Complex. Am. Chem. Soc. 2018, 140, 16037–16041. [Google Scholar] [CrossRef]
- Török, P.; Lakk-Bogáth, D.; Kaizer, J. Stoichiometric Alkane and Aldehyde Hydrtoxylation Reactions Mediated by In Situ Generated Iron(III)-Iodosylbenzene Adduct. Molecules 2023, 28, 1855. [Google Scholar] [CrossRef] [PubMed]
- Lakk-Bogáth, D.; Szávuly, M.; Török, P.; Kaizer, J. Catalytic and Stoichiometric Baeyer-Villiger Oxidation Mediated by Nonheme Peroxi-Diiron(III), Acylperoxo, and Iodosylbenzene Iron(III) Intermediates. Molecules 2022, 27, 2814. [Google Scholar] [CrossRef]
- Török, P.; Lakk-Bogáth, D.; Kaizer, J. Mechanisms of Sulfoxidation and Epoxidation Mediated by Iron(III)-Iodosylbenzene Adduct: Electron-Transfer vs Oxygen-Transfer Mechanism. Molecules 2023, 28, 4745. [Google Scholar] [CrossRef]
- Kumar, R.; Pandey, B.; Sen, A.; Ansari, M.; Sharma, S.; Rajaraman, G. Role of oxidation state, ferryl-oxygen, and ligand architecture on the reactivity of popular high-valent FeIV=O species: A theoretical perspective. Coord. Chem. Rev. 2020, 419, 213397. [Google Scholar] [CrossRef]
- Guo, M.; Corona, T.; Ray, K.; Nam, W. Heme and Nonheme High-Valent Iron and Manganese Oxo Cores in Biological and Abiological Oxidation Reactions. ACS Cent Sci. 2018, 5, 13–28. [Google Scholar] [CrossRef]
- Roy, L. Theoretical Identification of the Factors Governing the Reactivity of C−H Bond Activation by Non-Heme Iron(IV)-Oxo Complexes. ChemPlusChem 2019, 84, 893–906. [Google Scholar] [CrossRef]
- Lee, J.L.; Ross, D.L.; Barman, S.K.; Ziller, J.W.; Borovik, A.S. C-H Bond Cleavage by Bioinspired Nonheme Metal Complexes. Inorg. Chem. 2021, 60, 13759–13783. [Google Scholar] [CrossRef] [PubMed]
- Warm, K.; Paskin, A.; Kuhlmann, U.; Bill, E.; Swart, M.; Haumann, M.; Dau, H.; Hildebrandt, P.; Ray, K. A Pseudotetrahedral Terminal Oxoiron(IV) Complex: Mechanistic Promiscuity in C-H Bond Oxidation Reactions. Angew. Chem. Int. Ed. 2021, 60, 6752–6756. [Google Scholar] [CrossRef]
- Kupper, C.; Mondal, B.; Serrano-Plana, J.; Klawitter, I.; Neese, F.; Costas, M.; Ye, S.; Meyer, F. Nonclassical Single-State Reactivity of an Oxo-Iron(IV) Complex Confined to Triplet Pathways. J. Am. Chem. Soc. 2017, 139, 8939–8949. [Google Scholar] [CrossRef]
- Deutscher, J.; Gerschel, P.; Warm, K.; Kuhlmann, U.; Mebs, S.; Haumann, M.; Dau, H.; Hildebrandt, P.; Apfel, U.P.; Ray, K. A Bioinspired Oxoiron(IV) Motif Supported on a N2S2 macrocyclic Ligand. Chem. Commun. 2021, 57, 2947–2950. [Google Scholar] [CrossRef]
- Mandal, D.; Mallick, D.; Shaik, S. Kinetic Isotope Effect Determination Probes the Spin of the Transition State, Its Stereochemistry, and Its Ligand Sphere in Hydrogen Abstraction Reactions of Oxoiron(IV) Complexes. Acc. Chem. Res. 2018, 51, 107–117. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Eguía, B.N.; Serrano-Plana, J.; Company, A.; Costas, M. Catalytic O2 activation with Synthetic Models of α-Ketoglutarate Dependent Oxygenases. Chem. Commun. 2020, 56, 14369–14372. [Google Scholar] [CrossRef] [PubMed]
- Mukherjee, G.; Alili, A.; Barman, P.; Kumar, D.; Sastri, C.V.; de Visser, S.P. Interplay Between Steric and Electronic Effects: A Joint Spectroscopy and Computational Study of Nonheme Iron(IV)-Oxo Complexes. Chem. Eur. J. 2019, 25, 5086–5098. [Google Scholar] [CrossRef] [PubMed]
- Rasheed, W.; Draksharapu, A.; Banerjee, S.; Young, V.G., Jr.; Fan, R.; Guo, Y.; Ozerov, M.; Nehrkorn, J.; Krzystek, J.; Telser, J.; et al. Crystallographic Evidence for a Sterically Induced Ferryl Tilt in a Non-Heme Oxoiron(IV) Complex that Makes it a Better Oxidant. Angew. Chem. Int. Ed. 2018, 57, 9387–9391. [Google Scholar] [CrossRef] [PubMed]
- Mukherjee, G.; Lee, C.W.Z.; Nag, S.S.; Alili, A.; Cantu Reinhard, F.G.; Kumar, D.; Sastri, C.V.; de Visser, S.P. Dramatic rate-Enhancement of oxygen atom transfer by an Iron(IV)-oxo species by equatorial ligand field perturbations. Dalton Trans. 2018, 47, 14945–14957. [Google Scholar] [CrossRef] [PubMed]
- Singh, R.; Ganguly, G.; Malinkin, S.O.; Demeshko, S.; Meyer, F.; Nordlander, E.; Paine, T.K. A Mononuclear Nonheme Iron(IV)- Oxo Complex of a Substituted N4Py Ligand: Effect of Ligand Field on Oxygen Atom Transfer and C-H Bond Cleavage Reactivity. Inorg. Chem. 2019, 58, 1862–1876. [Google Scholar] [CrossRef] [PubMed]
- Pap, J.S.; Draksharapu, A.; Giorgi, M.; Browne, W.R.; Kaizer, J.; Speier, G. Stabilisation of μ-peroxido-bridged Fe(III) intermediates with non-symmetric bidentate N-donor ligands. Chem. Commun. 2014, 50, 1326–1329. [Google Scholar] [CrossRef] [PubMed]
- Török, P.; Lakk-Bogáth, D.; Unjaroen, D.; Browne, W.R.; Kaizer, J. Effect of monodentate heterocycle co-ligands on the m-1,2-peroxo-diiron(III) mediated aldehyde deformylation reactions. J. Inorg. Biochem. 2024, 258, 112620. [Google Scholar] [CrossRef] [PubMed]
- Török, P.; Unjaroen, D.; Csendes, F.V.; Giorgi, M.; Browne, W.R.; Kaizer, J. A nonheme peroxo-diiron(III) complex exhibiting both nucleophilic and electrophilic oxidation of organic substrares. Dalton Trans. 2021, 50, 7181–7185. [Google Scholar] [CrossRef]
- Kripli, B.; Csendes, V.F.; Török, P.; Speier, G.; Kaizer, J. Stoichiometric Aldehyde Mediated by Nucleophilic Peroxo-diiron(III) Complex as a Functional Model of Aldehyde Deformylating Oxygenase. Chem. Eur. J. 2019, 25, 14290–14294. [Google Scholar] [CrossRef]
- Lakk-Bogáth, D.; Pintarics, D.; Török, P.; Kaizer, J. Influence of Equatorial Co-Ligands on the Reactivity of LFeIIIOIPh. Molecules 2024, 29, 58. [Google Scholar] [CrossRef] [PubMed]
- Adam, W.; Hajra, S.; Herderich, M.; Saha-Moller, C.R. A highly chemoselective oxidation of alcohols to carbonyl products with iodosobenzene diacetate mediated by chromium(III)(salen) complexes: Synthetic and mechanistic aspects. Org. Lett. 2000, 2, 2773–2776. [Google Scholar] [CrossRef] [PubMed]
- In, J.H.; Park, S.E.; Song, R.; Nam, W. Iodobenzene diacetate as an efficient terminal oxidant in iron(III) porphyrin complex-catalyzed oxygenation reactions. Inorg. Chim. Acta 2003, 343, 373–376. [Google Scholar] [CrossRef]
- Khurshid, S.; Mohiuddin, S.; Maqsood, Z. Investigations of Ferrous Thiamine Complex by Cyclic Voltammetry. Int. Res. J. Pure Appl. Chem. 2014, 4, 718–726. [Google Scholar] [CrossRef]
- Gaillard, M.; Kanso, H.; Denat, F.; Calas-Blanchard, C.; Inguimbert, N.; Noguer, T. Fe(III)-DOTA/Fe(III)-NOTA Complexes: Attractive Alternative Markers for Future Electrochemical Biosensors. J. Electrochem. Soc. 2020, 167, 117502. [Google Scholar] [CrossRef]
- Santos, M.A.; Simoes Goncalves, M.L. Electrochemistry of iron(III) tris-hydroxamate complexes: Kinetic and thermodynamic studies. Electrochim. Acta 1992, 37, 205–209. [Google Scholar] [CrossRef]
Entry | Co-Ligand | Conversion (%) 2,3 | TOF (1/h) 4 | krel 5 |
---|---|---|---|---|
1 | - | 24.71 | 6.17 | - |
2 | 4-CH3-Py | 19.98 | 4.99 | 0.48 |
3 | Py | 37.12 | 9.28 | 1.00 |
4 | 4-C(O)C6H5-Py | 59.96 | 14.99 | 1.97 |
5 | 4-C(O)CH3-Py | 63.55 | 15.88 | 2.17 |
6 | 4-CN-Py | 83.00 | 20.75 | 3.82 |
Entry | Oxidant | kobs (s−1) 1 | krel | kdecay (10−4 s−1) | t1/2 (s) |
---|---|---|---|---|---|
1 | 4- CH3O-PhI(OAc)2 | 0.637 ± 0.03 | 1.55 | 1.22 | 9000 |
2 | 4- CH3-PhI(OAc)2 | 0.436 ± 0.02 | 1.06 | 4.27 | 8300 |
3 | 4-H-PhI(OAc)2 | 0.410 ± 0.02 | 1.00 | 6.41 | 6850 |
4 | 4-Cl-PhI(OAc)2 | 0.297 ± 0.01 | 0.72 | - 2 | - |
5 | 4-C(O)CH3-PhI(OAc)2 | 0.187 ± 0.01 | 0.46 | - 2 | - |
Entry | Oxidant | Conversion (%) 2,3 | TOF (1/h) 4 | krel 5 |
---|---|---|---|---|
1 | 4-MeO-PhI(OAc) 2 | 13.87 | 3.47 | 0.53 |
2 | 4-Me-PhI(OAc) 2 | 17.26 | 4.32 | 0.67 |
3 | 4-H-PhI(OAc) 2 | 24.71 | 6.17 | 1.00 |
4 | 4-Cl-PhI(OAc) 2 | 30.33 | 7.58 | 1.27 |
5 | 4-C(O)Me-PhI(OAc) 2 | 45.75 | 11.44 | 2.15 |
Entry | [(PBI)2(4R-Py)FeIlIOIPh]3+ R= | λ (nm) | ν (cm−1) | σ | kobs (10−4 s−1) 2 | krel |
---|---|---|---|---|---|---|
1 | 4-Me-Py | 700 | 14,286 | −0.17 | 8.95 ± 0.41 | 0.67 |
2 | Py | 723 | 13,831 | 0 | 13.31 ± 0.46 | 1.00 |
3 | 4-C(O)C6H5-Py | 753 | 13,280 | 0.42 | 33.77 ± 1.67 | 2.54 |
4 | 4-C(O)CH3-Py | 748 | 13,369 | 0.5 | 36.96 ± 1.48 | 2.78 |
5 | 4-CN-Py | 754 | 13,263 | 0.66 | 41.60 ± 1.25 | 3.13 |
6 | PyO | 750 | 13,333 | - | 31.40 ± 0.97 | - |
Entry | [(PBI)2(4R-Py)FeIlIOIPh]3+ R= | Epc vs. Fc/Fc+ (mV) | Epa vs. Fc/Fc+ (mV) | E1/2 vs. Fc/Fc+ (mV) |
---|---|---|---|---|
1 | 4-Me-Py | −396.4 | −303.8 | −350.0 |
2 | Py | −482.8 | −398.0 | −440.4 |
3 | 4-C(O)C6H5-Py | −531.2 | −470.1 | −500.6 |
4 | 4-C(O)CH3-Py | −549.4 | −497.1 | −523.2 |
5 | 4-CN-Py | −550.1 | −497.8 | −524.0 |
6 | -2 | −560.0 | −495.0 | −527.5 |
Entry | [(PBI)2(CH3CN)FeIlIOIPh-R]3+ R= | kobs (10−3 s−1) | krel |
---|---|---|---|
1 | 4-MeO-PhI(OAc)2 | 1.78 ± 0.05 | 0.38 |
2 | 4-Me-PhI(OAc)2 | 2.87 ± 0.13 | 0.61 |
3 | 4-H-PhI(OAc)2 | 4.70 ± 0.19 | 1.00 |
4 | 4-Cl-PhI(OAc)2 | 7.99 ± 0.33 | 1.70 |
5 | 4-C(O) Me-PhI(OAc)2 | 9.22 ± 0.52 | 1.96 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Török, P.; Kaizer, J. Effect of Substituted Pyridine Co-Ligands and (Diacetoxyiodo)benzene Oxidants on the Fe(III)-OIPh-Mediated Triphenylmethane Hydroxylation Reaction. Molecules 2024, 29, 3842. https://doi.org/10.3390/molecules29163842
Török P, Kaizer J. Effect of Substituted Pyridine Co-Ligands and (Diacetoxyiodo)benzene Oxidants on the Fe(III)-OIPh-Mediated Triphenylmethane Hydroxylation Reaction. Molecules. 2024; 29(16):3842. https://doi.org/10.3390/molecules29163842
Chicago/Turabian StyleTörök, Patrik, and József Kaizer. 2024. "Effect of Substituted Pyridine Co-Ligands and (Diacetoxyiodo)benzene Oxidants on the Fe(III)-OIPh-Mediated Triphenylmethane Hydroxylation Reaction" Molecules 29, no. 16: 3842. https://doi.org/10.3390/molecules29163842
APA StyleTörök, P., & Kaizer, J. (2024). Effect of Substituted Pyridine Co-Ligands and (Diacetoxyiodo)benzene Oxidants on the Fe(III)-OIPh-Mediated Triphenylmethane Hydroxylation Reaction. Molecules, 29(16), 3842. https://doi.org/10.3390/molecules29163842