Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (22)

Search Parameters:
Keywords = determination of temperature decrease for cooling the room

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 1957 KiB  
Article
Study on Molybdenum–Rhenium Alloy Ultrasonic Resonance Temperature Sensor
by Haijian Liang, Gao Wang, Xiaomei Yang, Yanlong Wei and Hongxin Xue
Appl. Sci. 2025, 15(13), 6965; https://doi.org/10.3390/app15136965 - 20 Jun 2025
Viewed by 278
Abstract
Compared to traditional temperature measurement methods, ultrasonic temperature measurement technology based on the principle of resonance offers advantages such as shorter section lengths, higher signal amplitude, and reduced signal attenuation. First, the type of sensor-sensitive element was determined, with a resonant design chosen [...] Read more.
Compared to traditional temperature measurement methods, ultrasonic temperature measurement technology based on the principle of resonance offers advantages such as shorter section lengths, higher signal amplitude, and reduced signal attenuation. First, the type of sensor-sensitive element was determined, with a resonant design chosen to improve measurement performance; using magnetostrictive and resonant temperature measurement principles, the length, diameter, and resonator dimensions of the waveguide rod were designed, and a molybdenum–rhenium alloy (Mo-5%Re) material suitable for high-temperature environments was selected; COMSOL finite element simulation was used to simulate the propagation characteristics of acoustic signals in the waveguide rod, observing the distribution of sound pressure and energy attenuation, verifying the applicability of the model in high-temperature testing environments. Second, a resonant temperature sensor consistent with the simulation parameters was prepared using a molybdenum–rhenium alloy waveguide rod, and an ultrasonic resonant temperature-sensing system suitable for high-temperature environments up to 1800 °C was constructed using the molybdenum–rhenium alloy waveguide rod. The experiment used a tungsten–rhenium calibration furnace to perform static calibration of the sensor. The temperature range was set from room temperature to 1800 °C, with the temperature increased by 100 °C at a time, and it was maintained at each temperature point for 5 to 10 min to ensure thermal stability. This was conducted to verify the performance of the sensor and obtain the functional relationship between temperature and resonance frequency. Experimental results show that during the heating process, the average resonance frequency of the sensor decreased from 341.8 kHz to 310.37 kHz, with an average sensitivity of 17.66 Hz/°C. During the cooling process, the frequency increased from 309 kHz to 341.8 kHz, with an average sensitivity of 18.43 Hz/°C. After cooling to room temperature, the sensor’s resonant frequency returned to its initial value of 341.8 kHz, demonstrating excellent repeatability and thermal stability. This provides a reliable technical foundation for its application in actual high-temperature environments. Full article
Show Figures

Figure 1

16 pages, 5076 KiB  
Article
Study on the Cutter–Granite Interaction Mechanism in High-Temperature Geothermal Wells
by Yan Yang, Dongdong Song, Kuilin Huang, Haitao Ren, Yingxin Yang, Shunzuo Qiu and Zequan Huang
Energies 2025, 18(3), 719; https://doi.org/10.3390/en18030719 - 4 Feb 2025
Viewed by 698
Abstract
In high-temperature geothermal wells, the formation usually has extremely high abrasiveness, hardness, and temperature, which pose severe challenges to drilling tools. Among them, the interaction between the cutter of the drill bit and the rock is the key factor determining the rock-breaking efficiency [...] Read more.
In high-temperature geothermal wells, the formation usually has extremely high abrasiveness, hardness, and temperature, which pose severe challenges to drilling tools. Among them, the interaction between the cutter of the drill bit and the rock is the key factor determining the rock-breaking efficiency of PDC (Polycrystalline Diamond Composite) drill bits. To further explore the rock-breaking mechanism of cutters on granite, this study adopts a combination of experimental and simulation methods to conduct systematic research. The results indicate that the specific crushing work increases and then decreases with rising temperature, reaching a minimum of 0.388 J/mm3 at 200 °C. In the temperature range of 300 °C to 500 °C, the specific crushing work is 15% lower than at room temperature. The specific crushing work during instant cooling is 12–25% lower than that during self-cooling, with instant cooling showing higher rock-breaking efficiency. As the rake angle increases, the specific crushing work initially decreases and then increases. The smallest specific crushing work, 0.383 J/mm3, occurs at a rake angle of 10°, where the number of debris and particle size are maximized. With deeper cutting depths, the specific crushing work gradually decreases, resulting in more debris, larger particle sizes, and higher cutter surface temperatures. These findings clarify the variation laws of rock load, cutting tooth distribution, and rock fragmentation state when the PDC bit breaks rocks. A rake angle of 10° can be used as the selection of cutting tooth inclination angle for PDC bit design, providing a theoretical basis for the design and application of PDC bits in high-temperature geothermal drilling and holding significant guiding importance. Considering that increasing the depth of penetration can cause uneven wear of the cutter, the drilling parameters can be controlled under certain conditions to achieve a penetration depth of 2 mm, thereby improving the rock-breaking efficiency and working life of the PDC bit. Full article
(This article belongs to the Section J: Thermal Management)
Show Figures

Figure 1

28 pages, 3830 KiB  
Article
Control Parameters of a Wall Heating and Cooling Module with Heat Pipes—An Experimental Study
by Bernard Zawada, Karolina Durczak and Zenon Spik
Energies 2025, 18(3), 487; https://doi.org/10.3390/en18030487 - 22 Jan 2025
Cited by 1 | Viewed by 951
Abstract
Heat pipes filled with a thermodynamic medium are energy-saving and stable heat exchangers that have been used for years in various fields of science and technology, including building heating and cooling installations. This article presents the results of research on the energy efficiency [...] Read more.
Heat pipes filled with a thermodynamic medium are energy-saving and stable heat exchangers that have been used for years in various fields of science and technology, including building heating and cooling installations. This article presents the results of research on the energy efficiency of wall-mounted concrete heating and cooling modules with heat pipes, which can be a structural element of external and internal walls of buildings for various purposes. A series of measurement tests were performed, which allowed the determination of how the thermal power and control parameters of the module (amplification factor and time constants) change under operating conditions. A first- and second-order inertial model was used to describe the control properties of the module. The measurements were performed in heating and cooling mode for three different values of supply water flow, both when increasing the supply temperature and when decreasing it. Based on the results of the measurements, calculations and analysis, it was found that the thermal power and control parameters of the module change significantly; these changes result from both the design features of the module (the type of thermodynamic medium in the heat pipe and the technical aspects of the execution and assembly of the connections between the collector and the heat pipe) and the operating conditions (the value of the direction of temperature change and the flow of the supply water). It was shown that the supply temperature has a much greater impact on the values of the module’s control parameters than the flow rate of the supply water. The tested module is characterized by slow changes in temperature on its surface (high values of time constants). The time of stabilization of the temperature on the module’s surface, after step forcing, is 8–10 h. This can cause greater fluctuations in the indoor air temperature, lower thermal comfort in the room and lower energy efficiency of the process. These issues can be prevented by using complex algorithms for thermal comfort control, which in turn increase the cost of the control system. Full article
(This article belongs to the Collection Advances in Heat Transfer Enhancement)
Show Figures

Figure 1

13 pages, 3988 KiB  
Article
Testing Method for Non-Isothermal Radial Wall Jets from Ceiling Diffusers Used in Building Ventilation
by Maria Hurnik
Energies 2025, 18(2), 411; https://doi.org/10.3390/en18020411 - 18 Jan 2025
Cited by 1 | Viewed by 683
Abstract
Diffusers producing radial jets attached to the ceiling are most often used in ventilation and air conditioning systems. In building ventilation, the temperature of the jet supplying the air into the rooms is usually different to the surrounding air temperature. To save energy [...] Read more.
Diffusers producing radial jets attached to the ceiling are most often used in ventilation and air conditioning systems. In building ventilation, the temperature of the jet supplying the air into the rooms is usually different to the surrounding air temperature. To save energy for air transportation during periods of low heat gains, the air flow should be reduced as low as possible, to about 20% of its nominal value. A significant decrease in the air flow supply in cooling mode may cause cold air dumping and, consequently, increase the risk of local discomfort due to drafts in the occupied zone. In this study, a method for assessing the effect of non-isothermality on the speed distribution of radial wall jets has been developed. The measured terminal speed isolines, W = 0.2 m/s, were compared with the isolines determined for isothermal jets. The test results have shown that, for radial wall jets supplying air at an Archimedes number higher than approximately 50 × 10−4, the risk of jet dumping is significant. Full article
(This article belongs to the Special Issue Thermal Comfort, Environment Quality and Energy Consumption)
Show Figures

Figure 1

16 pages, 13205 KiB  
Article
The Effect of Heat Treatment on the Microstructure and Mechanical Properties of Powder Metallurgy Ti-48Al Alloy
by Mengjie Yan, Hongtao Zhang, Fang Yang, Yunwei Gui, Zhijie Han and Huadong Fu
Metals 2024, 14(6), 661; https://doi.org/10.3390/met14060661 - 1 Jun 2024
Cited by 1 | Viewed by 2130
Abstract
Heat treatment is the critical step in achieving a refined microstructure and enhanced mechanical properties of TiAl-based alloys. This study investigated the influence of heat treatment temperature, cooling method, and heat treatment time on the microstructure and mechanical properties of an extruded powder [...] Read more.
Heat treatment is the critical step in achieving a refined microstructure and enhanced mechanical properties of TiAl-based alloys. This study investigated the influence of heat treatment temperature, cooling method, and heat treatment time on the microstructure and mechanical properties of an extruded powder metallurgy Ti-48Al alloy, and achieved the control of fully lamellar fine microstructures and the enhancement of performance through a simple heat treatment, rather than the traditional approach of homogenization followed by heat treatment. The results indicate that the heat treatment temperature determines the type of microstructure, while the cooling rate dictates the lamellar width. As the heat treatment temperature was increased from the two-phase region to the α single-phase region, the microstructure transitioned from duplex to near lamellar, and the alloy strength initially increased and then decreased, influenced by both the lamellar colony ratio and grain size. A rapid cooling rate (water quenching) induces a non-diffusive massive phase transformation, whereas a slow cooling rate (air cooling) gradually forms α2/γ lamellar colonies. Therefore, a suitable heat treatment regime for the powder metallurgy Ti-48Al alloy was determined to be 1340 °C/5 min/air cooling. The microstructure of the alloy was near lamellar, consisting of lamellar colonies approximately 50 μm and a small number of γ equiaxed grains of about 10 μm. Subsequently, the alloy exhibited a room temperature tensile strength of 784 MPa and a yield strength of 763 MPa, representing improvements of 17.0% and 38.7% over the extruded alloy, respectively. This research provides a reference for establishing a heat treatment process for powder metallurgy TiAl alloys. Full article
(This article belongs to the Special Issue Advances in Powder Metallurgy of Light Alloys)
Show Figures

Figure 1

17 pages, 3406 KiB  
Article
Integration of Phase Change Materials in Service Areas of Building Envelopes for Improved Thermal Performance: An Experimental Study in Saudi Arabia
by Abdalla Alrashdan, Atef M. Ghaleb, Khalid Haj Ahmad and Abdel Naser Daoud
Buildings 2024, 14(4), 904; https://doi.org/10.3390/buildings14040904 - 27 Mar 2024
Cited by 5 | Viewed by 1678
Abstract
This experimental study explores the integration of Phase Change Materials (PCMs) within building envelopes. The research specifically centers on the utilization of two microencapsulated paraffin-based PCMs with melting points of 37 °C and 43 °C. The study assesses their performance within cement and [...] Read more.
This experimental study explores the integration of Phase Change Materials (PCMs) within building envelopes. The research specifically centers on the utilization of two microencapsulated paraffin-based PCMs with melting points of 37 °C and 43 °C. The study assesses their performance within cement and gypsum-based PCM composites, concentrating on service areas often overlooked in thermal analysis, including underground garages, staircases, and utility rooms. The experimental setup included constructing three chambers inside an underground garage during the hot months of June and July in Saudi Arabia. Two chambers were assigned to integrate the PCM, while the third chamber served as a control without PCM. The experiment unfolds in two phases. In the initial phase, the objective was to determine which PCM is more effective in reducing the heat load inside the chambers. This led to the adoption of the 43 °C PCM for the subsequent stage. The adoption of the 43 °C PCM resulted in a fourfold decrease in heat compared to the 37 °C PCM. The second phase investigates the integration of the selected PCM with cement and gypsum composites. The percentage of PCM incorporated into the concrete and gypsum composites was determined experimentally. For cement-based composites, the identified percentage that maintains material integrity is 20%, and for gypsum-based composites, it is 22%. The findings demonstrate a significant reduction in cooling load with PCM incorporation, with cement-based composites exhibiting superior thermal performance compared to gypsum-based alternatives and reducing the heat load by approximately 63%. Additionally, it was observed that concrete reduced the highest temperature during the day by 5.2 °C, which equates to about a 10% reduction, further enhancing comfort. Conducted over the course of two summer seasons, this study contributes valuable insights toward improving the quality of life for building occupants, considering various factors such as their living environment. Full article
(This article belongs to the Section Building Energy, Physics, Environment, and Systems)
Show Figures

Figure 1

23 pages, 7875 KiB  
Article
BIM and Computational Fluid Dynamics Analysis for Thermal Management Improvement in Data Centres
by Sergey Pogorelskiy and Imre Kocsis
Buildings 2023, 13(10), 2636; https://doi.org/10.3390/buildings13102636 - 19 Oct 2023
Cited by 4 | Viewed by 2188
Abstract
One of the most energy-intensive facilities requiring a comprehensive and well-optimised cooling system is the data centre. Air containment across the data centre is a key thermal management and energy-saving strategy that enhances the performance of data centres. The majority of modern energy-efficient [...] Read more.
One of the most energy-intensive facilities requiring a comprehensive and well-optimised cooling system is the data centre. Air containment across the data centre is a key thermal management and energy-saving strategy that enhances the performance of data centres. The majority of modern energy-efficient data centres use some type of air containment. The primary advantage of aisle separation and containment is the decrease in the air temperature at the server inlet by reducing the mixing of hot air with cold air. In order to ascertain the volume of literature relating to corridor insulation, we conducted a literature review. Currently, there have been numerous articles regarding the application of computational fluid dynamics (CFD) analysis, however, publications delineating the integration of building information modelling (BIM) principles for corridor separation are still limited. Research specifically targeting data centre corridor insulation is somewhat limited. As a result of this analysis, the most common methods used to isolate hot or cold aisles within a data centre were identified. To determine the most effective type of corridor insulation, the BIM family was created in Autodesk Revit. The model includes 15 telecom cabinets containing information technology (IT) equipment, eight inter-row air conditioners, and one UPS. The model was used for the CFD analysis of the air temperature in different zones of the room. Visualisation of the results using gradient temperature distributions at different levels provides a complete picture of the microclimate formation in the room and allowed the advantage of the hot aisle isolation scheme to be demonstrated. Full article
(This article belongs to the Special Issue Ventilation and Air Distribution Systems in Buildings)
Show Figures

Figure 1

15 pages, 4406 KiB  
Article
Laser Powder Bed Fusion of Inconel 718 Tools for Cold Deep Drawing Applications: Optimization of Printing and Post-Processing Parameters
by Cho-Pei Jiang, Andi Ard Maidhah, Shun-Hsien Wang, Yuh-Ru Wang, Tim Pasang and Maziar Ramezani
Materials 2023, 16(13), 4707; https://doi.org/10.3390/ma16134707 - 29 Jun 2023
Cited by 7 | Viewed by 2522
Abstract
Inconel 718 (IN 718) powder is used for a laser powder bed fusion (LPBF) printer, but the mechanical properties of the as-built object are not suited to cold deep drawing applications. This study uses the Taguchi method to design experimental groups to determine [...] Read more.
Inconel 718 (IN 718) powder is used for a laser powder bed fusion (LPBF) printer, but the mechanical properties of the as-built object are not suited to cold deep drawing applications. This study uses the Taguchi method to design experimental groups to determine the effect of various factors on the mechanical properties of as-built objects produced using an LPBF printer. The optimal printing parameters are defined using the result for the factor response to produce an as-built object with the greatest ultimate tensile strength (UTS), and this is used to produce a specimen for post-processing, including heat treatment (HT) and surface finishing. The HT parameter value that gives the maximum UTS is the optimal HT parameter. The optimal printing and HT parameter values are used to manufacture a die and a punch to verify the suitability of the manufactured tool for deep drawing applications. The experimental results show that the greatest UTS is 1091.33 MPa. The optimal printing parameters include a laser power of 190 W, a scanning speed of 600 mm/s, a hatch space of 0.105 mm and a layer thickness of 40 μm, which give a UTS of 1122.88 MPa. The UTS for the post-processed specimen increases to 1511.9 MPa. The optimal parameter values for HT are heating to 720 °C and maintaining this temperature for 8 h, decreasing the temperature to 620 °C and maintaining this temperature for 8 h, and cooling to room temperature in the furnace. Surface finishing increases the hardness to HRC 55. Tools, including a punch and a die, are manufactured using these optimized parameter values. The deep drawing experiment demonstrates that the manufactured tools that are produced using these values form a round cup of Aluminum alloy 6061. The parameter values that are defined can be used to manufacture IN 718 tools with a UTS of more than 1500 MPa and a hardness of more than 50 HRC, so these tools are suited to cold deep drawing specifications. Full article
(This article belongs to the Special Issue Additive Manufacturing of Alloys and Composites)
Show Figures

Figure 1

20 pages, 8875 KiB  
Article
Numerical and Parametric Study on Open-Type Ceiling Radiant Cooling Panel with Curved and Segmented Structure
by Minzhi Ye, Ahmed A. Serageldin and Katsunori Nagano
Energies 2023, 16(6), 2705; https://doi.org/10.3390/en16062705 - 14 Mar 2023
Cited by 5 | Viewed by 1944
Abstract
A suspended open-type ceiling radiant cooling panel (CRCP) has been proposed recently. The main challenge is improving its cooling performance to overcome limitations for extensive use. Therefore, this study aims to optimize the design of CRCPs with curved and segmented structure to enhance [...] Read more.
A suspended open-type ceiling radiant cooling panel (CRCP) has been proposed recently. The main challenge is improving its cooling performance to overcome limitations for extensive use. Therefore, this study aims to optimize the design of CRCPs with curved and segmented structure to enhance heat transfer. A three-dimensional CFD model was developed to investigate the cooling capacity and heat transfer coefficient of the CRCPs installed inside a single enclosed room. Panel structure was determined based on four dependent parameters: the panel curvature width (L, m), the panel curvature radius (r, m), the void distance (d, m) between each panel or panel segment, and the panel coverage area (Ac, m2). The panel surface area (As, m2) and the ratio of panel curvature width to radius (L/r) were also examined. A total of 35 designs were compared under 7 different cooling load conditions, and 245 cases were carried out. The results show that the nominal cooling capacity and heat transfer coefficient rise with increasing curvature radius and decreasing curvature width. The void distance plays the most crucial role in influencing cooling performance. It is possible to simultaneously improve cooling performance, achieve uniform temperature distribution, and reduce the number of panels through structure optimization. Full article
(This article belongs to the Special Issue Smart Materials and Devices for Energy Saving and Harvesting)
Show Figures

Figure 1

19 pages, 12272 KiB  
Article
Experimental Study of Thermally Damaged Concrete under a Hygrothermal Environment by Using a Combined Infrared Thermal Imaging and Ultrasonic Pulse Velocity Method
by Yi Wang, Jiajie Cui, Jun Deng and Hao Zhou
Materials 2023, 16(3), 1040; https://doi.org/10.3390/ma16031040 - 24 Jan 2023
Cited by 4 | Viewed by 2005
Abstract
This paper proposes a combined inspection method for thermally damaged concrete under a hygrothermal environment. Experiments were conducted to verify the feasibility of the proposed method. Concrete samples with different water–cement ratios (W/C = 0.3, 0.5, 0.7) and moisture contents (dried, 50% saturated, [...] Read more.
This paper proposes a combined inspection method for thermally damaged concrete under a hygrothermal environment. Experiments were conducted to verify the feasibility of the proposed method. Concrete samples with different water–cement ratios (W/C = 0.3, 0.5, 0.7) and moisture contents (dried, 50% saturated, fully saturated) were exposed to elevated temperatures of 200 °C, 400 °C, 600 °C, and 800 °C for 4 h. After cooling to room temperature, infrared thermal imaging (IRT), ultrasonic pulse velocity (UPV) measurements, and mechanical tests were carried out for the damaged concrete samples. The mechanical behavior of thermally damaged concrete with different degrees of water saturation was examined based on mechanical testing. The results show that water can affect the compressive strength and UPV of concrete under certain circumstances, and the residual strength and the heating temperature of the thermally damaged concrete can be evaluated by IRT and UPV measurements. When 50% saturated concrete specimens with a W/C ratio of 0.3, 0.5, and 0.7 are exposed to 200 °C, 12.6%, 27.4%, and 34.6% increases in normalized compressive strength were observed before dropping to approximately 40% at 800 °C. With various moisture contents, the normalized compressive strength variation can be up to 40% at 400 °C in cases with W/C = 0.5 and 0.7. As for UPV, it generally decreases with the increase in moisture content when the peak temperature is 800 °C. On the contrary, whether concrete is saturated or not, there is little difference in temperature change in IRT detection. To obtain a more precise evaluation of concrete structures, IRT can be used to scan a large area to determine the damaged concrete area and areas suspected to be damaged, while UPV could be used to detect concrete members in suspected areas after the completion of IRT scanning. Full article
Show Figures

Figure 1

19 pages, 2926 KiB  
Article
Effect of Pre-Heating on the Monomer Elution and Porosity of Conventional and Bulk-Fill Resin-Based Dental Composites
by Erika Dunavári, Gergely Berta, Tamás Kiss, József Szalma, Márk Fráter, Katalin Böddi and Edina Lempel
Int. J. Mol. Sci. 2022, 23(24), 16188; https://doi.org/10.3390/ijms232416188 - 19 Dec 2022
Cited by 5 | Viewed by 2504
Abstract
The pre-heating of dental resin-based composites (RBCs) improves adaptability to cavity walls, reducing microleakages. However, the rapid cooling of the pre-heated RBC may change the polymerization kinetics, and thus the final network configuration of the RBC. It is well known that unreacted monomers [...] Read more.
The pre-heating of dental resin-based composites (RBCs) improves adaptability to cavity walls, reducing microleakages. However, the rapid cooling of the pre-heated RBC may change the polymerization kinetics, and thus the final network configuration of the RBC. It is well known that unreacted monomers remaining in the set RBC can leach into the oral cavity. However, it is still not clear how the pre-heating and cooling of RBCs alter monomer elution (ME). Thus, the purpose was to determine the ME from room-temperature and pre-heated RBCs, in addition to determining the closed porosity (CP) volume. Bulk-filled RBCs and layered conventional RBC samples were prepared. The pre-polymerization temperature was set at 24 °C and 55/65 °C. The ME from RBC samples was assessed with high-performance liquid chromatography using standard monomers. CP was measured with micro-computed tomography. ME decreased significantly from bulk fills and increased from layered samples as a result of pre-heating. Pre-heating was unfavorable in terms of CP in most RBCs. Based on the effect size analysis, ME and CP were greatly influenced by both material composition, pre-polymerization temperature, and their interaction. While the pre-heating of high-viscosity bulk-fill RBCs is advantageous from a clinical aspect regarding biocompatibility, it increases CP, which is undesirable from a mechanical point of view. Full article
Show Figures

Figure 1

25 pages, 6831 KiB  
Article
Hyperthermia of Magnetically Soft-Soft Core-Shell Ferrite Nanoparticles
by Venkatesha Narayanaswamy, Jayalakshmi Jagal, Hafsa Khurshid, Imaddin A. Al-Omari, Mohamed Haider, Alexander S. Kamzin, Ihab M. Obaidat and Bashar Issa
Int. J. Mol. Sci. 2022, 23(23), 14825; https://doi.org/10.3390/ijms232314825 - 26 Nov 2022
Cited by 11 | Viewed by 3141
Abstract
Magnetically soft-soft MnFe2O4-Fe3O4 core-shell nanoparticles were synthesized through a seed-mediated method using the organometallic decomposition of metal acetyl acetonates. Two sets of core-shell nanoparticles (S1 and S2) of similar core sizes of 5.0 nm and different [...] Read more.
Magnetically soft-soft MnFe2O4-Fe3O4 core-shell nanoparticles were synthesized through a seed-mediated method using the organometallic decomposition of metal acetyl acetonates. Two sets of core-shell nanoparticles (S1 and S2) of similar core sizes of 5.0 nm and different shell thicknesses (4.1 nm for S1 and 5.7 nm for S2) were obtained by changing the number of nucleating sites. Magnetic measurements were conducted on the nanoparticles at low and room temperatures to study the shell thickness and temperature dependence of the magnetic properties. Interestingly, both core-shell nanoparticles showed similar saturation magnetization, revealing the ineffective role of the shell thickness. In addition, the coercivity in both samples displayed similar temperature dependencies and magnitudes. Signatures of spin glass (SG) like behavior were observed from the field-cooled temperature-dependent magnetization measurements. It was suggested to be due to interface spin freezing. We observed a slight and non-monotonic temperature-dependent exchange bias in both samples with slightly higher values for S2. The effective magnetic anisotropy constant was calculated to be slightly larger in S2 than that in S1. The magnetothermal efficiency of the chitosan-coated nanoparticles was determined by measuring the specific absorption rate (SAR) under an alternating magnetic field (AMF) at 200–350 G field strengths and frequencies (495.25–167.30 kHz). The S2 nanoparticles displayed larger SAR values than the S1 nanoparticles at all field parameters. A maximum SAR value of 356.5 W/g was obtained for S2 at 495.25 kHz and 350 G for the 1 mg/mL nanoparticle concentration of ferrogel. We attributed this behavior to the larger interface SG regions in S2, which mediated the interaction between the core and shell and thus provided indirect exchange coupling between the core and shell phases. The SAR values of the core-shell nanoparticles roughly agreed with the predictions of the linear response theory. The concentration of the nanoparticles was found to affect heat conversion to a great extent. The in vitro treatment of the MDA-MB-231 human breast cancer cell line and HT-29 human colorectal cancer cell was conducted at selected frequencies and field strengths to evaluate the efficiency of the nanoparticles in killing cancer cells. The cellular cytotoxicity was estimated using flow cytometry and an MTT assay at 0 and 24 h after treatment with the AMF. The cells subjected to a 45 min treatment of the AMF (384.50 kHz and 350 G) showed a remarkable decrease in cell viability. The enhanced SAR values of the core-shell nanoparticles compared to the seeds with the most enhancement in S2 is an indication of the potential for tailoring nanoparticle structures and hence their magnetic properties for effective heat generation. Full article
Show Figures

Figure 1

15 pages, 5429 KiB  
Article
Cooling Potential of Ship Engine Intake Air Cooling and Its Realization on the Route Line
by Zongming Yang, Roman Radchenko, Mykola Radchenko, Andrii Radchenko and Victoria Kornienko
Sustainability 2022, 14(22), 15058; https://doi.org/10.3390/su142215058 - 14 Nov 2022
Cited by 19 | Viewed by 2739
Abstract
A fuel efficiency of a ship engine increases with cooling inlet air. This might be performed by the chillers, which transform the heat of engine exhaust gas and scavenge air for refrigeration. The effect gained due to cooling depends on the intake air [...] Read more.
A fuel efficiency of a ship engine increases with cooling inlet air. This might be performed by the chillers, which transform the heat of engine exhaust gas and scavenge air for refrigeration. The effect gained due to cooling depends on the intake air temperature drop and the time of engine operation at decreased intake air temperature. Thus, the cooling degree hour (CDH) number, calculated as air temperature depression multiplied by the duration of engine operation at reduced intake air temperature, is used as a primary criterion to estimate the engine fuel efficiency enhancement due to intake air cooling over the ship routes. The engine intake air cooling potential is limited by its value, available according to engine exhaust heat and the efficiency of heat conversion to refrigeration in the chiller, evaluated by the coefficient of performance (COP). Therefore, it should be determined by comparing both the needed and available values of CDH. The ejector chiller (ECh) was chosen for engine exhaust gas heat recovery to refrigeration as the simplest and cheapest, although it has a relatively low COP of about 0.3 to 0.35. However, the ECh generally consists of heat exchanges which are mostly adapted to be placed in free spaces and can be mounted on the transverse and board side bulkheads in the ship engine room. The values of sucked air temperature depression and engine fuel consumption reduction at varying temperatures and humidity of ambient air on the route were evaluated. Full article
Show Figures

Figure 1

14 pages, 2432 KiB  
Article
Characterization and Viability Prediction of Commercial Probiotic Supplements under Temperature and Concentration Conditioning Factors by NIR Spectroscopy
by Juan Pablo Aguinaga Bósquez, Esma Oǧuz, Aybike Cebeci, Mariem Majadi, Gabriella Kiskó, Zoltan Gillay and Zoltan Kovacs
Fermentation 2022, 8(2), 66; https://doi.org/10.3390/fermentation8020066 - 31 Jan 2022
Cited by 17 | Viewed by 8872
Abstract
The quality of probiotics has been associated with bacteria and yeast strains’ contents and their stability against conditioning factors. Near-infrared spectroscopy (NIRS), as a non-destructive, fast, real-time, and cost-effective analytical technique, can provide some advantages over more traditional food quality control methods in [...] Read more.
The quality of probiotics has been associated with bacteria and yeast strains’ contents and their stability against conditioning factors. Near-infrared spectroscopy (NIRS), as a non-destructive, fast, real-time, and cost-effective analytical technique, can provide some advantages over more traditional food quality control methods in quality evaluation. The aim of our study was to evaluate the applicability of NIRS to the characterization and viability prediction of three commercial probiotic food supplement powders containing lactic acid bacteria (LAB) subjected to concentration and temperature conditioning factors. For each probiotic, 3 different concentrations were considered, and besides normal preparation (25 °C, control), samples were subjected to heat treatment at 60 or 90 °C and left to cool down until reaching room temperature prior to further analysis. Overall, after applying chemometrics to the NIR spectra, the obtained principal component analysis-based linear discriminant analysis (PCA-LDA) classification models showed a high accuracy in both recognition and prediction. The temperature has an important impact on the discrimination of samples. According to the concentration, the best models were identified for the 90 °C temperature treatment, reaching 100% average correct classification for recognition and over 90% for prediction. However, the prediction accuracy decreased substantially at lower temperatures. For the 25 °C temperature treatment, the prediction accuracy decreased to nearly 60% for 2 of the 3 probiotics. Moreover, according to the temperature level, both the recognition and prediction accuracies were close to 100%. Additionally, the partial least square regression (PLSR) model achieved respectable values for the prediction of the colony-forming units (log CFU/g) of the probiotic samples, with a determination coefficient for prediction (R2Pr) of 0.82 and root mean square error for prediction (RMSEP) of 0.64. The results of our study show that NIRS is a fast, reliable, and promising alternative to the conventional microbiology technique for the characterization and prediction of the viability of probiotic supplement drink preparations. Full article
Show Figures

Graphical abstract

14 pages, 4551 KiB  
Article
Enhanced Strength and Plasticity of CoCrNiAl0.1Si0.1 Medium Entropy Alloy via Deformation Twinning and Microband at Cryogenic Temperature
by Xiao-Hua Gu, Yu-Quan Meng, Hui Chang, Tian-Xiang Bai, Sheng-Guo Ma, Yong-Qiang Zhang, Wei-Dong Song and Zhi-Qiang Li
Materials 2021, 14(24), 7574; https://doi.org/10.3390/ma14247574 - 9 Dec 2021
Cited by 2 | Viewed by 3341
Abstract
The synthesis of lightweight yet strong-ductile materials has been an imperative challenge in alloy design. In this study, the CoCrNi-based medium-entropy alloys (MEAs) with added Al and Si were manufactured by vacuum arc melting furnace subsequently followed by cool rolling and anneal process. [...] Read more.
The synthesis of lightweight yet strong-ductile materials has been an imperative challenge in alloy design. In this study, the CoCrNi-based medium-entropy alloys (MEAs) with added Al and Si were manufactured by vacuum arc melting furnace subsequently followed by cool rolling and anneal process. The mechanical responses of CoCrNiAl0.1Si0.1 MEAs under quasi-static (1 × 10−3 s−1) tensile strength showed that MEAs had an outstanding balance of yield strength, ultimate tensile strength, and elongation. The yield strength, ultimate tensile strength, and elongation were increased from 480 MPa, 900 MPa, and 58% at 298 K to 700 MPa, 1250 MPa, and 72% at 77 K, respectively. Temperature dependencies of the yield strength and strain hardening were investigated to understand the excellent mechanical performance, considering the contribution of lattice distortions, deformation twins, and microbands. Severe lattice distortions were determined to play a predominant role in the temperature-dependent yield stress. The Peierls barrier height increased with decreasing temperature, owing to thermal vibrations causing the effective width of a dislocation core to decrease. Through the thermodynamic formula, the stacking fault energies were calculated to be 14.12 mJ/m2 and 8.32 mJ/m2 at 298 K and 77 K, respectively. In conclusion, the enhanced strength and ductility at cryogenic temperature can be attributed to multiple deformation mechanisms including dislocations, extensive deformation twins, and microbands. The synergistic effect of multiple deformation mechanisms lead to the outstanding mechanical properties of the alloy at room and cryogenic temperature. Full article
(This article belongs to the Topic Multiple Application for Novel and Advanced Materials)
Show Figures

Figure 1

Back to TopTop