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Abstract: This paper proposes a combined inspection method for thermally damaged concrete under
a hygrothermal environment. Experiments were conducted to verify the feasibility of the proposed
method. Concrete samples with different water–cement ratios (W/C = 0.3, 0.5, 0.7) and moisture
contents (dried, 50% saturated, fully saturated) were exposed to elevated temperatures of 200 ◦C,
400 ◦C, 600 ◦C, and 800 ◦C for 4 h. After cooling to room temperature, infrared thermal imaging
(IRT), ultrasonic pulse velocity (UPV) measurements, and mechanical tests were carried out for the
damaged concrete samples. The mechanical behavior of thermally damaged concrete with different
degrees of water saturation was examined based on mechanical testing. The results show that water
can affect the compressive strength and UPV of concrete under certain circumstances, and the residual
strength and the heating temperature of the thermally damaged concrete can be evaluated by IRT
and UPV measurements. When 50% saturated concrete specimens with a W/C ratio of 0.3, 0.5, and
0.7 are exposed to 200 ◦C, 12.6%, 27.4%, and 34.6% increases in normalized compressive strength
were observed before dropping to approximately 40% at 800 ◦C. With various moisture contents, the
normalized compressive strength variation can be up to 40% at 400 ◦C in cases with W/C = 0.5 and 0.7.
As for UPV, it generally decreases with the increase in moisture content when the peak temperature is
800 ◦C. On the contrary, whether concrete is saturated or not, there is little difference in temperature
change in IRT detection. To obtain a more precise evaluation of concrete structures, IRT can be used
to scan a large area to determine the damaged concrete area and areas suspected to be damaged,
while UPV could be used to detect concrete members in suspected areas after the completion of
IRT scanning.

Keywords: thermal damage; concrete; hygrothermal environment; ultrasonic pulse velocity (UPV);
infrared thermal imaging (IRT)

1. Introduction

Fire disasters are one of the most serious problems for reinforced concrete (RC) struc-
tures because of the decomposition of cementitious materials and cracking of concrete.
When concrete is exposed to elevated temperatures, the mechanical performance of con-
crete structures can be degraded due to damage [1,2]. To ensure the safety of concrete
structures suffering from fire, an evaluation of concrete structures is of great importance,
and countermeasures should be taken based on the results of nondestructive detection
and evaluation.

For fire-damaged RC structures, there are several conventional detection methods.
Before the nondestructive inspection is carried out, spot observation and destructive testing
methods are used to detect the fire-damaged RC structures. First, the inspectors enter the
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spot to observe the environment as well as the damaged RC structures and take some
samples from the damaged RC structures. According to the residues left in the environ-
ment, the scope of the peak temperatures can be assessed. After that, samples are used for
strength testing by the testing organization, and the evaluation of fire-damaged structures is
presented [3]. However, due to the complexity of the environment, it is difficult to evaluate
the performance of RC structures after fire disasters by spot observation and destructive
testing methods, which decreases efficiency and threatens inspectors’ safety. Therefore, to
improve inspection efficiency as well as the inspectors’ safety, nondestructive inspection
methods are carried out for concrete structure evaluation; yet, some of the nondestructive
inspection methods are difficult to use effectively in the fire-damaged area. In a previous
study, X-ray scans [4] and piezoelectric ceramics [5,6] were used to determine the internal
damage of concrete. However, because of the inconvenience of operation, few inspection
results for X-ray scans and piezoelectric ceramics have been presented. In contrast, ultra-
sonic pulse velocity (UPV), which has the advantage of high accuracy, is becoming one
of the most popular nondestructive inspection methods [7–12]. Many researchers have
studied this method. Yamada et al. [13] studied normal concrete by using UPV before
and after fire damage, and the relationship between frequency and concrete strength was
analyzed. Lin et al. [14] and Yang et al. [15] further analyzed the relationship between
normalized velocity and normalized concrete strength. More importantly, Hou et al. [16]
discovered that the relationship between the strength and velocity of ultrasonic waves is
clearer than that between the strength and frequency of ultrasonic waves in experiments for
thermally damaged reactive powder concrete. After that, the velocity becomes a key factor
for UPV analysis. In addition, a range of investigations on fire-damaged new concrete and
ordinary concrete have been carried out [17–22]. Hager et al. [23] concluded that the UPV
of thermally damaged high-performance concrete is higher than that of ordinary concrete,
although the trends are similar to those for temperature. In addition, fire-damaged concrete
samples with other supplementary materials have been used for UPV inspection, such
as crushed rock dust [24], silica fume [25–27], solid waste [28], recycled aggregates [29],
and thermally damaged self-consolidating concrete samples [30,31]. The results prove
that UPV-based inspection can be used to detect fire-damaged concrete and quantitatively
evaluate the degree of damage.

However, when the damaged area is quite large, the UPV inspection method has
difficulty detecting all the damaged concrete members in a short period of time. Therefore,
to improve inspection efficiency, an additional inspection method should be combined with
UPV inspection. It is worth mentioning that infrared thermography (IRT) also has great
potential and has been widely used to scan concrete damage based on changes in thermal
conductivity [32,33]. At present, some investigations with IRT inspection of concrete
heat characteristics, such as lightweight concrete [34] and waste glass concrete [35], have
been presented. Sun et al. [36] applied IRT to detect the heat performance of 3D-printed
concrete. Based on these experimental results, Zhang et al. [37] set up an investigation on
IRT detection of fire-damaged concrete up to 900 ◦C and presented two linear relationships
between average temperature change, residual compressive strength, and fire temperatures.
In addition, Du et al. [38–40] carried out a series of studies with different types of concrete
by using IRT, and satisfactory results were obtained. It appears that IRT is effective in
evaluating damage caused to building materials [41].

In practice, a variety of testing methods have been chosen to evaluate damaged
concrete structures [3,4]. The UPV inspection method has been used frequently to detect
damaged concrete, having the advantages of high precision and nondestruction of concrete
structures [42]. Nevertheless, the area of a fire disaster is typically vast enough that it
is inefficient to only use UPV detection. As a result, adding a supplementary inspection
method is of great importance. The IRT inspection method is a good option because
it is highly efficient and can be used to scan a large area in a short time. To improve
the efficiency and accuracy of the evaluation, IRT inspection can be used for detection
first, followed by UPV inspection. On the other hand, the moisture content of concrete is
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changed frequently under hygrothermal environments. When concrete structures under
hygrothermal environments are exposed to fire, the moisture content in concrete will play
an important role in the fire damage due to the combined effects of vapor pressure and
thermal conductivity difference, and affect the accuracy of damage detection. Therefore,
to evaluate the thermally damaged concrete more precisely, moisture content should be a
significant factor in this investigation.

From the above discussions, this paper presents a combined inspection method based
on UPV and IRT for thermally damaged concrete. To determine the effect of the hy-
grothermal environment, concrete samples composed of ordinary concrete with varying
water-to-cement ratios and moisture contents were used. After experimental procedures of
elevated heating, nondestructive inspection, and compression tests, the results of UPV, IRT,
and strength evaluation of damaged concrete suffering from elevated temperatures were
analyzed and compared with those obtained for undamaged concrete samples. Finally, the
limitations of the combined inspection method with IRT and UPV are discussed.

2. Experimental Program

The overall experimental program is illustrated in Figure 1. Cubic concrete samples
with different water-to-cement (W/C) ratios were conditioned with different moisture
contents before being exposed to elevated temperatures. Then, both the IRT and UPV
methods were implemented to inspect the possible damage within the heated exposed
samples. After that, axial compression tests were conducted to evaluate the change in the
concrete compressive strength under different hygrothermal and thermal conditions. A
detailed experimental program is presented in the subsequent sections.
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Figure 1. Flowchart for this experimental study.

2.1. Specimen Preparation

In this study, a total of one hundred thirty-five cubic concrete specimens were prepared.
For comparison, another nine normal concrete specimens, nine mortar, and nine cement
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paste specimens were cured in the ambient environment. All the specimens have the same
dimensions of 100× 100 × 100 mm. When casting the specimens, ordinary Portland cement
that was provided by the Guangzhou Shijing Cement Plant (Guangzhou, China) was used.
The density of the cement was 3.07 g/cm3. The fine and coarse aggregates were composed
of siliceous river sand and natural granite crushed stone, respectively. The maximum
size and fineness modulus for the fine aggregate were 5 mm and 2.34, respectively. The
water absorption and moisture content were 1.10% and 0.01%, respectively. For the coarse
aggregate, the maximum size was 20 mm, and the water absorption and moisture content
were 0.07% and 0.008%, respectively. The densities of the fine and coarse aggregates were
2.62 g/cm3 and 2.66 g/cm3, respectively. Specimens with three W/C ratios were prepared.
The detailed mixture designs for the concrete, mortar, and cement-paste specimen are
summarized in Table 1. The average density of the concrete was 2360 kg/m3 [43].

Table 1. Mixture designs for the concrete, mortar, and cement paste.

W/C Water
(kg/m3)

Cement
(kg/m3)

River Sand
(kg/m3)

Crushed Stones
(kg/m3) S/A(%)

Concrete
0.3 205 683 589 883 40
0.5 205 410 611 1134 35
0.7 205 293 745 1117 40

Mortar
0.3 205 683 589 - -
0.5 205 410 611 - -
0.7 205 293 745 - -

Cement
paste

0.3 205 683 - - -
0.5 205 410 - - -
0.7 205 293 - - -

After casting, the specimens were left in the mold for 24 h at ambient temperature. The
top of the specimens was covered with a plastic film to reduce the early cracking caused
by water vaporization [44]. Once demolded, all of the concrete specimens were cured in a
tank with calcium hydroxide solution to obtain full saturation. After 28 days of curing, the
samples were divided into three groups based on former experimental investigations [45].
One group was still kept in a tank named fully saturated, while the other two groups of
concrete samples were dried for another 7 days at 105 ◦C. The specimens were weighed to
ensure that they were fully dried. After drying, half of the dried samples were sealed to
avoid vapor absorption, namely, the dried specimens. The other half of the specimens were
immersed in water until the water absorption was 50% of that of fully saturated specimens,
namely, 50% saturated in this study [45].

2.2. Temperature History

In this study, 5 heating conditions, i.e., 200 ◦C, 400 ◦C, 600 ◦C, and 800 ◦C, were
considered [22]. The dried, 50% saturated, and fully saturated specimens were treated in
each heat exposure condition, and three samples were prepared for each case. In addition,
specimens treated at 20 ◦C were employed as a reference test. For the heating treatment, the
temperature change was controlled to be 5 ◦C/min. To avoid explosive concrete spalling
while heating, the temperature was kept unchanged for 20 min for every 200 ◦C step
increase in temperature so that a uniform temperature within the specimens could be
attained. After reaching the target temperature, the specimens were further conditioned
for 4 h at the same temperature [46]. After finishing heating, the concrete samples were
removed from the furnace and put in the ambient environment for natural cooling. Then,
the cooled specimens were sealed to avoid vapor absorption before nondestructive testing.

2.3. Nondestructive Testing

As shown in Figure 2, both IRT and UPV were implemented in this study to detect the
possible damage caused to the heat-conditioned concrete specimens. The IRT inspection
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was conducted using a Fluke Tix640, which has a working temperature range between
−40 ◦C and 1200 ◦C and a thermal sensitivity of 0.03 ◦C (Figure 2c). In the test, the distance
between the specimen and infrared camera was 500 mm, and the sampling frequency was
4 frames per minute. For each specimen, heating and cooling were applied for 2.5 min to
take sufficient photos for the subsequent analysis. Once the IRT inspection was completed,
the same specimen was tested by UPV at three locations (Figure 2a) with a nonmetallic
ultrasonic testing machine obtained from Wuhan Yanhai (Figure 2b). During the UPV
test, the receiver and transmitter transducers were attached onto the opposite side of the
concrete cube to detect the time and frequency of the ultrasonic waves passing through the
concrete cube. Based on these results, the average ultrasonic wave transmitting velocity
was calculated and compared to determine the possible damage within the concrete.
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2.4. Compression Test

To evaluate the mechanical properties of the concrete after heat exposure, an axial
compression test was conducted for the concrete specimens. A MATEST 4000 kN testing
machine produced by MATEST company (Treviolo, Italy) was employed to complete all the
axial compression tests. The compression for the test was controlled at 0.3 MPa per second.
After the axial compressive force dropped to 80% of the peak value, the test was terminated.

3. Results and Discussions
3.1. Mechanical Properties of Concrete under Elevated Temperatures

The compressive strength of concrete specimens conditioned in a different environ-
ment is presented in Figure 3. As expected, the compressive strength without heating
decreases with the W/C ratio when the same moisture content is considered. After heat
exposure, a similar trend for the change in compressive strength was found, which is
described as follows: when the highest temperature experienced by the concrete specimen
is 200 ◦C, the compressive strength of the dried and fully saturated concrete specimens is
slightly decreased compared to the reference specimens. However, an obvious increase in
the compressive strength can be observed in the 50% saturated specimens, although its
initial strength is lower than that of the other two types of specimens. This trend can even be
observed for concrete specimens with W/C ratios of 0.5 and 0.7 at a temperature of 400 ◦C.
Such behavior can be attributed to the vaporization of water in the pores and crystallization
in the 50% saturated specimens. Water vaporization, on the one hand, reduces the inner
temperature of the concrete so that the chemical bond will not degrade significantly. On
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the other hand, vaporization and relatively high temperatures can facilitate the chemical
reaction of the cement to form more C-S-H products. As such, the overall compressive
strength can slightly increase. However, the postcuring effect is less significant in dried
specimens conditioned at temperatures higher than 200 ◦C. For the fully saturated concrete
specimens, the vaporized water can apply pressure on the surrounding concrete and thus
cause cracking. Therefore, the compressive strength is decreased for both specimens.
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Figure 3. Compressive strength of concrete with different saturation degrees under high temperatures:
(a) W/C = 0.3, (b) W/C = 0.5, and (c) W/C = 0.7.

When the temperature is higher than 400 ◦C, the compressive strength is generally
decreased with temperature regardless of the water-to-cement ratio and moisture content
(Figure 3). To better illustrate the change in the compressive strength, the compressive
strength is normalized with respect to the value obtained for the respective reference speci-
men for each respective W/C ratio and moisture content (Figure 4). When 50% saturated
concrete specimens with a W/C ratio of 0.3, 0.5, and 0.7 were exposed to 200 ◦C, 12.6%,
27.4%, and 34.6% increases in normalized compressive strength were observed. However,
when reaching 800 ◦C, less than 60% of normalized compressive strength was maintained
with respect to each case. The observed drop in compressive strength can be attributed
to the occurrence of microcracks and the decomposition of cementitious materials at such
high temperatures [47]. In addition, compared to the specimens with a W/C ratio of 0.3, the
compressive strength values for specimens with W/C ratios of 0.5 and 0.7 show significant
scatter. Nevertheless, the residual compressive strength of all the concrete specimens is
approximately 40% of that obtained without heat exposure.
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temperatures: (a) W/C = 0.3, (b) W/C = 0.5, and (c) W/C = 0.7.

With the above test results, it can be seen that the fire performance of concrete is
related to the moisture content within the concrete. As far as the cases investigated in this
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study, a 50% saturation can benefit the concrete compressive strength when the temperature
is below 200 ◦C. In such a scenario, the postcuring of concrete plays an important role.
However, as the heating temperature increases, the concrete compressive strength decreases
due to the decomposition of the hydration product [48,49]. There is a large difference for
cases with different saturation degrees, especially in cases with W/C = 0.5 and 0.7; the
gap reached greater than 40% of the normalized compressive strength at the temperature
of 400 ◦C. Although the strength of fire-damaged concrete under different circumstances
could be predicted more precisely with artificial intelligence, such as in a machine learning
approach [50,51], large data are necessary to train it, and the results in this study are helpful
for the cases under a hygrothermal environment.

3.2. Results of Infrared Thermal Imaging

Representative IRT images before and after heat exposure for concrete specimens
with W/C = 0.3 are presented in Figure 5. IRT images for specimens with W/C = 0.5 and
0.7 can be found in the Figures A1 and A2. When the maximum temperature applied is
lower than 400 ◦C, the temperature contour for the dried concrete surface after and before
heat exposure is relatively uniform, although the temperature is slightly increased. When
the concrete specimens with W/C = 0.3 are heated to 600 ◦C, a fraction of the concrete
surfaces show a significant temperature elevation. As the temperature is further increased
to 800 ◦C, the area with higher temperatures after IRT scanning expands. Especially in
the 50% saturated specimens, the temperature contour is more uniform than that in the
dried and fully saturated specimens. A similar trend can be found for specimens with
W/C = 0.5 (Figure A1). However, for specimens with W/C = 0.7, a significant residual
temperature after the IRT test occurs only when the maximum temperature reaches a value
of 600 ◦C (Figure A2).

To quantitatively analyze the thermal damage based on the IRT inspection results, the
average temperature change (∆T) for the exposed concrete surface in the IRT test process
was calculated as follows [47]:

∆T = Ta − T0 (1)

where Ta is the average temperature of the concrete surface during the IRT inspection and
T0 is the initial concrete surface temperature.

The temperature change history for all the tested concrete specimens is presented
in Figures 6–8. When W/C = 0.3, the surface temperature for the dried specimens in-
creases at a temperature over 600 ◦C. Below this value, the temperature change curves
for the specimens are almost identical. A similar trend can also be found in the fully
saturated specimens. However, for the 50% saturated specimens, the temperature change
history is more distinguishable between specimens with different heat exposures. This
observation is consistent with the compressive strength change presented in the previ-
ous section. The decomposition of the cement hydration product in the dried specimens
exposed to temperatures higher than 400 ◦C and the microcracking caused by the vapor
pressure reduces the heat diffusion [48,49]. Consequently, the concrete surface temperature
increases significantly.
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Figure 5. Representative IRT images of the tested concrete specimens with W/C = 0.3.
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Figure 6. Average temperature change for damaged concrete (W/C = 0.3) determined from thermal
image analysis: (a) dried, (b) 50% saturated, and (c) fully saturated.
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Figure 7. Average temperature change for damaged concrete (W/C = 0.5) determined from thermal
image analysis: (a) dried, (b) 50% saturated, and (c) fully saturated.
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Figure 8. Average temperature change for damaged concrete (W/C = 0.7) determined from thermal
image analysis: (a) dried, (b) 50% saturated, and (c) fully saturated.

Combined with the aforementioned results of the IRT inspection and strength testing,
the correlation of average temperature change and strength for thermally damaged concrete
is presented in Figure 9. In the cases of dried and fully saturated concrete, there was the
least average temperature variation when the residual compressive strength of thermally
damaged concrete was over 60% of the original one. Afterwards, a drastic drop occurred
since concrete residual strength became less than 60%. Compared with the dried and fully
saturated cases, when concrete was in half saturation, the normalized compressive strength
was slightly higher, which can agree with the mechanical performance. Therefore, it can be
concluded that IRT inspection can be used to qualitatively determine the damage caused to
concrete subjected to elevated temperatures.
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Figure 9. Relationship between the normalized compressive strength and average temperature
change in all cases.

3.3. Results of UPV Testing

When concrete structures suffer fire damage, microcracks are formed at the bond-
ing interface between the aggregate and mortar as well as the concrete surface due to
thermal expansion and the decomposition of cementitious materials. As such, the veloc-
ity of the ultrasonic pulse is reduced [48]. The UPV and normalized UPV of concrete
samples with different W/C ratios exposed to different temperatures are presented in
Figures 10 and 11, respectively. Ultrasonic waves for concrete in different cases can be
found in the Figures A3–A5. Generally, UPV is increased with the moisture content. This
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might be attributed to the fact that UPV in water is greater than that in air. In addition,
the UPV refraction coefficient between water and concrete is greater than that between
air and concrete. As such, when a high level of moisture is presented, the resultant UPV
in the multiphase body of concrete can be achieved. Moreover, it can be observed that
when W/C = 0.3, the UPV of concrete samples with different moisture contents shows a
slight reduction for a temperature below 200 ◦C. Such a trend can also be observed in dried
and 50% saturated concrete specimens with W/C = 0.5 and 0.7. For the fully saturated
specimens, a significant reduction in UPV is recorded. Such behavior can be explained
as follows: when W/C = 0.3, the fully saturated specimens will experience a postcuring,
and that part of the moisture within the concrete will turn into hydration products; thus,
the concrete microstructure will become denser. Although part of the existing hydration
product may decompose, the resultant effect is that the elasticity of concrete will not change
significantly, and thus, the UPV will change. However, in the scenario that the W/C is
greater than 0.3 and the specimens are fully saturated, the excessive water within the
concrete will turn into vapor and leave voids in the concrete. As such, the transmission of
the ultrasonic pulse slows down.
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Figure 10. UPV change for damaged concrete after heat treatment with different saturation degrees:
(a) W/C = 0.3, (b) W/C = 0.5, and (c) W/C = 0.7.
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Figure 11. Normalized ultrasonic pulse velocity for concrete with different moisture contents:
(a) W/C = 0.3, (b) W/C = 0.5, and (c) W/C = 0.7.

To further investigate the influence of the W/C ratio on the UPV in concrete subject
to elevated temperatures, the UPVs of specimens with all the saturation conditions are
summarized in Figure 12. At ambient temperature, UPV is decreased as the W/C ratio is
increased for the dried and 50% saturated concrete specimens (Figure 12a,b). However,
the W/C ratio is observed to have little influence on the UPV if the specimen is fully
saturated. This difference in UPV can be attributed to the microstructure difference for
concrete with varying W/C ratios. When the samples are not fully saturated, a lower W/C
ratio usually leads to a denser microstructure, which can lead to a higher UPV. For fully
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saturated specimens, the voids are filled with water, and the influence of the voids becomes
less significant.
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Figure 12. Ultrasonic pulse velocity for concrete with different moisture contents: (a) dried,
(b) 50% saturated, and (c) fully saturated.

When the concrete specimens are exposed to temperatures above 200 ◦C, the concrete
specimens with W/C = 0.3 show an almost linear decrease in UPV, and the decreasing
rate is much greater than that of the other two types of concrete. This can be attributed to
the fact that denser concrete is prone to cracking due to high internal pressure. Therefore,
more microcracks within concrete will occur under elevated temperatures, and the UPV
will decrease faster. In addition, the reduction rate for the UPV in concrete specimens with
W/C = 0.3 slows down when the exposed temperature reaches 600 ◦C, indicating that the
microcracks within the concrete become stable. Such a change in the UPV reduction rate is
absent in the other two types of concrete specimens. Moreover, for the dried specimens, the
difference in the UPV of concrete with different W/C ratios is much less significant than
that for the saturated specimens.

With the above discussion, it can be briefly concluded that the UPV of concrete drops
as temperature increases, regardless of the W/C ratio and moisture content. As UPV mainly
reflects the elastic property of the material that is exploited to transmit the ultrasonic pulse,
a decrease in the UPV indicates a degradation of the modulus of the concrete suffering from
exposure to high temperatures caused by fire. It should be noted that although the concrete
modulus deteriorates when exposed to elevated temperatures, the concrete strength can
increase in certain cases, as discussed in the previous section. This is justified by the fact that
the concrete modulus is related to the microcracks formed within the concrete, while the
concrete strength is more related to the macrocracks. A decrease in the concrete modulus
does not necessarily entail a drop in the concrete strength.

According to the UPV and compressive strength results, the relationship between the
strength and UPV can be discussed, which is illustrated in Figures 13 and 14, respectively.
When the moisture content and W/C ratio factors are separated (see Figure 13), it is
observed that the performance of the concrete can hardly be quantitatively determined
without normalization. As shown in Figure 13a, when the UPV is over 2 km/s, the
compressive strength values are scattered, which makes it difficult to analyze the data
accurately. Therefore, the UPV and compressive strength data shown in Figure 13a were
normalized based on prior research [15]; in this way, all the points for various cases can
be gathered in a certain area (see Figure 13b). On the other hand, 50% saturated concrete
shows higher performance than dried and fully saturated concrete in terms of normalized
UPV and compressive strength (see Figure 13c). When the moisture content and W/C ratio
factors are mixed (see Figure 14), it is observed that the performance of the concrete can
be quantitatively determined from the UPV. Consequently, UPV can be used to evaluate
concrete strength after fire damage.
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Figure 13. Relationship between compressive strength and ultrasonic pulse velocity: (a) average
value, (b) normalized value–W/C, and (c) normalized value–saturation degree.
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3.4. Discussion for a Combined Ultrasonic Pulse Velocity and Infrared Thermal Image
Detection Method

According to the results of IRT–normalized compressive strength (see Figure 9), when
the average temperature variation was around 3 ◦C, the normalized compressive strength
ranged from 0.6 to 1.4, which had an unpredictable influence on the structural safety.
To ensure the accuracy of structural safety via nondestructive inspection, a quantitative
detection method should be added to support IRT. In 1966, Whitehurst [52] set up criteria
for the evaluation of concrete quality by UPV, which are presented in Table 2. Combined
with the UPV detection results obtained from this experiment, when concrete is exposed
to 200 ◦C, its quality is affected by the moisture content. However, according to the
experimental results, all the concrete specimens become poor under a peak temperature
of over 400 ◦C. The concrete quality can be divided into three different parts based on the
UPV, with borderlines at 3.0 km/s and 3.5 km/s, respectively.
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Table 2. Classification of concrete quality according to ultrasonic pulse velocity [49].

UPV (km/s) Concrete Quality

>4.5 Very good
3.5–4.5 Good
3.0–3.5 Doubtful
2.0–3.0 Poor

<2.0 Very poor

However, when the UPV ranges between 3.0 km/s and 3.5 km/s, the concrete quality
is doubtful and becomes difficult to evaluate. Consequently, it is of great importance to
evaluate the normalized UPV when concrete quality is doubtful. The normalized UPV was
calculated using Equation (2) [23]:

ωC =
vD
vC

(2)

where ωC, vD, and vC represent the normalized UPV, damaged normal concrete UPV, and
undamaged normal concrete UPV, respectively. Regarding vC, Lin et al. [12] proposed two
equations, Equations (3) and (4), for calculating the concrete UPV based on the volume
change in mixture proportions:

1
vC

=
Vpaste

vP
+

(
1 − Vpaste

)
× S

A
vFA

+

(
1 − Vpaste

)
×

(
1 − S

A

)
vCA

(3)

1
vC

=
Vpaste +

(
1 − Vpaste

)
× S

A
vM

+

(
1 − Vpaste

)
×

(
1 − S

A

)
vCA

(4)

where vP, vFA, and vCA represent the UPVs of cement paste, sand, and stones, respec-
tively; Vpaste and S

A represent the volume of cement paste and the sand–aggregate ratio,
respectively, which are based on the mixture proportions (see Equations (5)–(6)) [44].

mCE
ρCE

+
mFA
ρFA

+
mCA
ρCA

+
mW
ρW

= 1 (5)

S
A

=
mFA

mFA + mCA
(6)

where mCE, mFA, mCA, and mW represent the mass of cement, sand, stones, and water,
respectively; ρCE, ρFA, ρCA and ρW , and represent the density of cement, sand, stones, and
water, respectively. However, another equation can be used for calculating the mixture
proportions, which is shown in Equations (7)–(8) [44].

wC = wW + wCE + wFA + wCA (7)

S
A

=
wFA

wFA + wCA
(8)

where wC is the normal concrete weight in the ambient environment per cubic meter and
wW , wCE, wFA, and wCA represent the weights of water, cement, sand, and stones per
cubic meter, respectively. In engineering practice, concrete mixture proportions are usually
presented in mass per unit volume for each component material (see Equations (7)–(8))
rather than by the volumes of composite materials. Therefore, for convenience of appli-
cation and to increase accuracy, the density of each composite material was considered.
Equations (3)–(4) can be transformed into Equations (9)–(10).

wC
vC

=
wW + wCE

vP
+

(wC − wW − wCE)× S
A

vFA
+

(wC − wW − wCE)×
(

1 − S
A

)
vCA

(9)
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wC
vC

=
wW + wCE + (wC − wW − wCE)× S

A
vM

+
(wC − wW − wCE)×

(
1 − S

A

)
vCA

(10)

The results obtained from the application of these equations are presented in Figure 15.
It is observed that the calculation data are mostly similar to the experimental data. This
result indicates that both Equations (9) and (10) can be used to calculate the UPV under
different mixture proportions. However, the UPV of stones in the experiment is smaller
than that of sand because of the irregular shape of the stones. Therefore, further discussion
on UPV inspection should be considered.
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Based on the results shown in Figure 14, when the normalized UPV value is less than
0.8, the normalized compressive strength is usually less than 1.0. Therefore, it can be said
that when the normalized UPV value is less than 0.8, the quality of the concrete can be
considered to be poor. In contrast, when the normalized UPV value is more than 0.8, the
quality of the concrete can be considered to be good. Thus, when concrete structures are
exposed to fire, IRT can be used to scan the area to determine the damaged and doubtful
areas. After completing the scanning, UPV can be used to detect concrete members in the
doubtful area, which can be used to evaluate the concrete structures more precisely. From
the combined inspection method with UPV and IRT, the distraction effect due to moisture
content could be largely reduced.

4. Conclusions

This paper proposes an effective combined inspection method for the evaluation of
fire-damaged concrete based on UPV and IRT techniques. Experiments were carried out
to study thermally damaged concrete in a hygrothermal environment and to verify the
effectiveness of the proposed nondestructive detection method. From the results and
discussions, the following conclusions are reached:

a. Before the temperature reaches 400 ◦C, the moisture inside concrete can absorb a
certain quantity of heat during heating, which can reduce the change in the aver-
age surface temperature determined by IRT. For an elevated temperature of over
600 ◦C, chemical decomposition becomes the key factor affecting the average tem-
perature change determined from IRT inspection. The UPV is found to generally
increase with moisture content for exposure to temperatures above 600 ◦C but de-
creases with exposure to temperatures below 600 ◦C. In contrast, at 800 ◦C, the UPVs
for the fully saturated specimens are lower than those obtained for the dried and
50% saturated specimens.
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b. Suffering from thermal damage, the compressive strength of concrete is gradually
decreased with elevated temperatures but not in a monotonic manner. Instead, for
fully saturated concrete, the compressive strength remains almost unchanged until
400 ◦C. In particular, at 200 ◦C, the concrete strength in 50% saturated cases under
W/C ratios of 0.3, 0.5, and 0.7 is 12.6%, 27.4%, and 34.6% higher than that of the
control group due to the postcuring effect, which verifies the results obtained from
characterization by IRT and UPV.

c. IRT can be used to distinguish damaged concrete areas and suspected areas, while
UPV can be further used to evaluate the performance of concrete in suspected areas,
which can lead to more efficient inspection of fire-damaged concrete. However, the
quantitative relationship between UPV, IRT, and compressive strength still requires
further investigation.

Author Contributions: Conceptualization, Y.W. and J.D.; methodology, J.C.; validation, J.D. and H.Z.;
formal analysis, Y.W. and J.C.; investigation, Y.W., J.C. and J.D.; writing—original draft preparation,
Y.W., J.C. and J.D.; writing—review and editing, Y.W., H.Z. and J.D.; supervision, J.D.; funding acqui-
sition, Y.W. and. J.D. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the National Natural Science Foundation of China through
Grants (Project No. 51778151, 52178308), the Department of Education of Guangdong Province, China
(Project No. 2016KZDXM051), Guangzhou City Industry-university-research Cooperation (Project
No. 201604020056), and Science and Technology Research and Development Program Project of
China railway group limited (Major Special Project, No.: 2021-Special-04-2).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data will be made available on request.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

Materials 2023, 16, x FOR PEER REVIEW 16 of 22 
 

 

which can lead to more efficient inspection of fire-damaged concrete. However, the 
quantitative relationship between UPV, IRT, and compressive strength still requires 
further investigation. 

Author Contributions: Conceptualization, Y.W. and J.D.; methodology, J.C.; validation, J.D., and 
H.Z.; formal analysis, Y.W. and J.C.; investigation, Y.W., J.C. and J.D.; writing—original draft prep-
aration, Y.W., J.C. and J.D.; writing—review and editing, Y.W., H.Z. and J.D.; supervision, J.D.; 
funding acquisition, Y.W. and. J.D. All authors have read and agreed to the published version of the 
manuscript. 

Funding:  This research was funded by the National Natural Science Foundation of China through 
Grants (Project No. 51778151, 52178308), the Department of Education of Guangdong Province, 
China (Project No. 2016KZDXM051), Guangzhou City Industry-university-research Cooperation 
(Project No. 201604020056), and Science and Technology Research and Development Program Pro-
ject of China railway group limited (Major Special Project, No.: 2021-Special-04-2). 

Institutional Review Board Statement:  Not applicable. 

Informed Consent Statement:  Not applicable. 

Data Availability Statement:  Data will be made available on request. 

Conflicts of Interest:  The authors declare no conflict of interest. 

Appendix A 

T (°C) 
Dried 50% saturated Fully saturated 

Before heating After heating Before heating After heating Before heating After heating 

20 
      

200 
      

400 
      

600 
      

800 
      

Figure A1. Infrared thermal images of concrete sample, W/C = 0.5. Figure A1. Infrared thermal images of concrete sample, W/C = 0.5.
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Figure A2. Infrared thermal images of concrete sample, W/C = 0.7. 
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