Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (228)

Search Parameters:
Keywords = desiccant system

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
42 pages, 4568 KiB  
Review
Comprehensive Review on Evaporative Cooling and Desiccant Dehumidification Technologies for Agricultural Greenhouses
by Fakhar Abbas, Muhammad Sultan, Muhammad Wakil Shahzad, Muhammad Farooq, Hafiz M. U. Raza, Muhammad Hamid Mahmood, Uzair Sajjad and Zhaoli Zhang
AgriEngineering 2025, 7(7), 222; https://doi.org/10.3390/agriengineering7070222 - 8 Jul 2025
Viewed by 1374
Abstract
Greenhouses are crucial for maintaining an ideal temperature and humidity level for plant growth; however, attaining ideal levels remains a challenge. Energy-efficient and sustainable alternatives are needed because traditional temperature/humidity control practices and vapor compression air conditioning systems depend on climate conditions and [...] Read more.
Greenhouses are crucial for maintaining an ideal temperature and humidity level for plant growth; however, attaining ideal levels remains a challenge. Energy-efficient and sustainable alternatives are needed because traditional temperature/humidity control practices and vapor compression air conditioning systems depend on climate conditions and harmful refrigerants. Advanced alternative technologies like evaporative cooling and desiccant dehumidification have emerged that maintain the ideal greenhouse temperature and humidity while using the least amount of energy. This study reviews direct evaporative cooling, indirect evaporative cooling, and Maisotsenko-cycle evaporative cooling (MEC) systems and solid and liquid desiccant dehumidification systems. In addition, integrated desiccant and evaporative cooling systems and hybrid systems are reviewed in this study. The results show that the MEC system effectively reduces the ambient temperature up to the ideal range while maintaining the humidity ratio, and both dehumidification systems effectively reduce the humidity level and improve evaporative cooling efficiency. The integrated systems and hybrid systems have the ability to increase energy efficiency and controlled climatic stability in greenhouses. Regular maintenance, initial system cost, economic feasibility, and system scalability are significant challenges to implement these advanced temperature and humidity control systems for greenhouses. These findings will assist agricultural practitioners, engineers, and researchers in seeking alternate efficient cooling methods for greenhouse applications. Future research directions are suggested to manufacture high-efficiency, low-energy consumption, and efficient greenhouse temperature control systems while considering the present challenges. Full article
Show Figures

Figure 1

41 pages, 1393 KiB  
Article
The Tropical Peatlands in Indonesia and Global Environmental Change: A Multi-Dimensional System-Based Analysis and Policy Implications
by Yee Keong Choy and Ayumi Onuma
Reg. Sci. Environ. Econ. 2025, 2(3), 17; https://doi.org/10.3390/rsee2030017 - 1 Jul 2025
Viewed by 640
Abstract
Tropical peatlands store approximately 105 gigatons of carbon (GtC), serving as vital long-term carbon sinks, yet remain critically underrepresented in climate policy. Indonesia peatlands contain 57GtC—the largest tropical peatland carbon stock in the Asia–Pacific. However, decades of drainage, fires, and lax enforcement practices [...] Read more.
Tropical peatlands store approximately 105 gigatons of carbon (GtC), serving as vital long-term carbon sinks, yet remain critically underrepresented in climate policy. Indonesia peatlands contain 57GtC—the largest tropical peatland carbon stock in the Asia–Pacific. However, decades of drainage, fires, and lax enforcement practices have degraded vast peatland areas, turning them from carbon sinks into emission sources—as evidenced by the 1997 and 2015 peatland fires which emitted 2.57 Gt CO2eq and 1.75 Gt CO2eq, respectively. Using system theory validated against historical data (1997–2023), we develop a causal loop model revealing three interconnected feedback loops driving irreversible collapse: (1) drainage–desiccation–oxidation, where water table below −40 cm triggers peat oxidation (2–5 cm subsistence) and fires; (2) fire–climate–permafrost, wherein emissions intensify radiative forcing, destabilizing monsoons and accelerating Arctic permafrost thaw (+15% since 2000); and (2) economy–governance failure, perpetuated by palm oil’s economic dominance and slack regulatory oversight. To break these vicious cycles, we propose a precautionary framework featuring IoT-enforced water table (≤40 cm), reducing emissions by 34%, legally protected “Global Climate Stabilization Zones” for peat domes (>3 m depth), safeguarding 57 GtC, and ASEAN transboundary enforcement funded by a 1–3% palm oil levy. Without intervention, annual emissions may reach 2.869 GtCO2e by 2030 (Nationally Determined Contribution’s business-as-usual scenario). Conversely, rewetting 590 km2/year aligns with Indonesia’s FOLU Net Sink 2030 target (−140 Mt CO2e) and mitigates 1.4–1.6 MtCO2 annually. We conclude that integrating peatlands as irreplaceable climate infrastructure into global policy is essential for achieving Paris Agreement goals and SDGs 13–15. Full article
Show Figures

Figure 1

33 pages, 27778 KiB  
Article
Integrated Adaptive Water Allocation Scenarios for Wetland Restoration: A Case Study of Lake Marmara Under Climate Change
by Mert Can Gunacti and Cem Polat Cetinkaya
Water 2025, 17(13), 1930; https://doi.org/10.3390/w17131930 - 27 Jun 2025
Viewed by 279
Abstract
Wetlands, as critical ecological systems, face increasing threats from anthropogenic pressures and climate change. This study investigates dynamic water allocation strategies for the restoration of Lake Marmara, a nationally important wetland within the Gediz River Basin of Türkiye, which has experienced complete desiccation [...] Read more.
Wetlands, as critical ecological systems, face increasing threats from anthropogenic pressures and climate change. This study investigates dynamic water allocation strategies for the restoration of Lake Marmara, a nationally important wetland within the Gediz River Basin of Türkiye, which has experienced complete desiccation in recent years. Within the scope of the PRIMA-funded “Mara-Mediterra” project, an integrated modeling approach was employed to evaluate multiple restoration scenarios using the WEAP (Water Evaluation and Planning) platform. Scenarios varied based on the initial storage capacity of Gördes Dam, irrigation demands, environmental flow priorities, and a potential water diversion investment from the Tabaklı reach. Results indicate that under current conditions, Lake Marmara’s ecological water needs can be sustained without the Tabaklı investment. However, under 2050 climate projections, scenarios lacking the Tabaklı investment or deprioritizing ecological needs consistently failed to meet the lake’s minimum water thresholds. Conversely, scenarios combining moderate dam storage levels, environmental prioritization, and Tabaklı inflow succeeded in restoring lake volumes by over 90%. These findings highlight the need for adaptive water planning that aligns with projected hydro-climatic shifts to ensure long-term wetland sustainability. Full article
(This article belongs to the Section Water and Climate Change)
Show Figures

Graphical abstract

18 pages, 1759 KiB  
Article
Spermidine Treatments Improve Germination of Long-Term Stored Seeds: A Case Study of Populus alba Clone ‘Villafranca’
by Shraddha Shridhar Gaonkar, Lorenzo Ciceri, Matteo Romelli, Andrea Pagano, Alessio Giovannelli, Pier Mario Chiarabaglio, Alma Balestrazzi and Anca Macovei
Seeds 2025, 4(2), 25; https://doi.org/10.3390/seeds4020025 - 20 May 2025
Viewed by 488
Abstract
Populus alba clone ‘Villafranca’ (white poplar), highly suitable for biomass production and ecosystem restoration, is a model system for molecular and physiological studies, but no reports are available concerning seed quality. Although clonal propagation is the preferred approach for commercial purposes, attention should [...] Read more.
Populus alba clone ‘Villafranca’ (white poplar), highly suitable for biomass production and ecosystem restoration, is a model system for molecular and physiological studies, but no reports are available concerning seed quality. Although clonal propagation is the preferred approach for commercial purposes, attention should be given to face genetic variability losses in the existing germplasm. To address this challenge, new populations should be developed starting from seeds, overcoming the issues of low germinability and viability during storage. This study proposes to develop tailored treatments to improve the germination of long-term stored white poplar seeds. Priming and soaking protocols, based on the use of water or spermidine (Spd, 50 and 100 μM), were tested. Treatment efficacy was assessed based on germination parameters, reactive oxygen species (ROS) profiles, and the expression patterns of genes with key roles in early seed germination. Soaking with 100 μM Spd for 4 h significantly enhanced germination percentage and speed. Low ROS levels were evidenced in the Spd-treated seeds, compared to water-soaked seeds. High expression of genes involved in desiccation tolerance acquisition, polyamine biosynthesis, and antioxidant defense was observed only in dry seeds. The results are discussed in view of the potential protective role of Spd. Full article
Show Figures

Figure 1

12 pages, 1839 KiB  
Article
Improving Drying Shrinkage Performance of Metakaolin-Based Geopolymers by Adding Cement
by Zhichao Li, Yiwei Yang, Teng Dong and Zhijun Chen
Buildings 2025, 15(10), 1650; https://doi.org/10.3390/buildings15101650 - 14 May 2025
Cited by 1 | Viewed by 445
Abstract
Geopolymers, as sustainable alternatives to conventional cement, face application limitations due to pronounced drying shrinkage. This study systematically investigates the effects of cement incorporation (0–40%) on the drying shrinkage mitigation and performance evolution of metakaolin-based geopolymers (MKBGs) through multi-scale characterization of mechanical properties, [...] Read more.
Geopolymers, as sustainable alternatives to conventional cement, face application limitations due to pronounced drying shrinkage. This study systematically investigates the effects of cement incorporation (0–40%) on the drying shrinkage mitigation and performance evolution of metakaolin-based geopolymers (MKBGs) through multi-scale characterization of mechanical properties, reaction kinetics, and pore structure refinement. Key findings reveal that 10% cement addition optimally reduces drying shrinkage through pore structure densification and elastic modulus enhancement. The cement–geopolymer hybrid system exhibited a distinctive dual-reaction mechanism: cement hydration produced C-S-H gels that refined the pore structure while simultaneously competing with and delaying the geopolymerization kinetics, as demonstrated by the extended duration of the reaction exotherm. However, cement contents exceeding 20% induce detrimental self-desiccation shrinkage, resulting in net shrinkage amplification. Microstructural analysis confirms that the optimal 10% cement dosage achieves synergistic phase evolution, with N-A-S-H and C-S-H gels co-operatively improving mechanical strength and dimensional stability. This work provides quantitative guidelines for designing shrinkage-resistant geopolymer composites through controlled cement hybridization. Full article
Show Figures

Figure 1

22 pages, 2824 KiB  
Article
Metabolic Responses of Pyropia haitanensis to Dehydration-Rehydration Cycles Revealed by Metabolomics
by Jian Wen, Jianzhi Shi, Muhan Meng, Kai Xu, Yan Xu, Dehua Ji, Wenlei Wang and Chaotian Xie
Mar. Drugs 2025, 23(5), 203; https://doi.org/10.3390/md23050203 - 8 May 2025
Cited by 1 | Viewed by 722
Abstract
Pyropia haitanensis (T.J. Chang and B.F. Zheng) undergoes periodic dehydration and rehydration cycles, necessitating robust adaptive mechanisms. Despite extensive research on its physiological responses to desiccation stress, the comprehensive metabolic pathways and recovery mechanisms post-rehydration remain poorly understood. This study investigated the metabolic [...] Read more.
Pyropia haitanensis (T.J. Chang and B.F. Zheng) undergoes periodic dehydration and rehydration cycles, necessitating robust adaptive mechanisms. Despite extensive research on its physiological responses to desiccation stress, the comprehensive metabolic pathways and recovery mechanisms post-rehydration remain poorly understood. This study investigated the metabolic responses of P. haitanensis to varying degrees of desiccation stress using LC-MS and UPLC-MS/MS. Under mild dehydration, the thallus primarily accumulated sugars and proline, while moderate and severe dehydration triggered the accumulation of additional osmoprotectants like alanine betaine and trehalose to maintain turgor pressure and water retention. Concurrently, the alga activated a potent antioxidant system, including enzymes and non-enzymatic antioxidants, to counteract the increased reactive oxygen species levels and prevent oxidative damage. Hormonal regulation also plays a crucial role in stress adaptation, with salicylic acid and jasmonic acid upregulating under mild dehydration and cytokinins and gibberellin GA15 accumulating under severe stress. Rehydration triggered the recovery process, with indole acetic acid, abscisic acid, and jasmonic acid promoting rapid cell recovery. Additionally, arachidonic acid, acting as a signaling molecule, induced general stress resistance, facilitating the adaptation of the thallus to the dynamic intertidal environment. These findings reveal P. haitanensis’ metabolic adaptation strategies in intertidal environments, with implications for enhancing cultivation and stress resistance in this economically important seaweed. Full article
(This article belongs to the Special Issue Molecular Metabolisms and Regulations of Marine Algae)
Show Figures

Figure 1

21 pages, 5567 KiB  
Article
Experimental Testing of a Heat Exchanger with Composite Material for Deep Dehumidification
by Valeria Palomba, Antonio Fotia, Fabio Costa, Davide La Rosa and Vincenza Brancato
Energies 2025, 18(10), 2418; https://doi.org/10.3390/en18102418 - 8 May 2025
Viewed by 556
Abstract
Deep dehumidification is crucial for industrial applications requiring ultra-low humidity levels. Traditional cooling-based dehumidification struggles to achieve low dew points efficiently due to excessive energy consumption and frost formation risks. As an alternative, desiccant-based methods, particularly solid desiccant systems, offer improved performance with [...] Read more.
Deep dehumidification is crucial for industrial applications requiring ultra-low humidity levels. Traditional cooling-based dehumidification struggles to achieve low dew points efficiently due to excessive energy consumption and frost formation risks. As an alternative, desiccant-based methods, particularly solid desiccant systems, offer improved performance with lower energy demands. This study experimentally investigates a fixed-bed dehumidification system utilizing a plate-fin heat exchanger filled with a silica gel/calcium chloride composite material. The performance evaluation focuses on the influence of ambient conditions and operating parameters, including air velocity and cooling fluid temperature. Among these, the most influential parameter was the velocity of air. For the tested heat exchanger, an optimum value in the range of 0.4–0.6 m/s was identified. Under optimal conditions, the tested HEX was able to reduce the dew point of air down to −2 °C, achieving a reduction in the humidity ratio up to 13 g/kg. The results indicate that air velocity significantly impacts also heat and mass transfer, with coefficients ranging from 80 to 140 W/(m2 K) and 0.015 to 0.060 kg/(m2 s), respectively. The findings highlight the potential of composite desiccant fixed-bed systems for efficient deep dehumidification, outperforming conventional lab-scale components in heat and mass transfer effectiveness. A comparison with other works in the literature indicated that up to 30% increased mass transfer coefficient was achieved and up to seven times higher heat transfer coefficient was measured. Full article
Show Figures

Figure 1

19 pages, 12021 KiB  
Article
Assessing the Impact of Groundwater Extraction and Climate Change on a Protected Playa-Lake System in the Southern Iberian Peninsula: La Ratosa Natural Reserve
by Miguel Rodríguez-Rodríguez, Laszlo Halmos, Alejandro Jiménez-Bonilla, Manuel Díaz-Azpiroz, Fernando Gázquez, Joaquín Delgado, Ana Fernández-Ayuso, Inmaculada Expósito, Sergio Martos-Rosillo and José Luis Yanes
Geographies 2025, 5(2), 21; https://doi.org/10.3390/geographies5020021 - 8 May 2025
Viewed by 899
Abstract
We modeled the water level variations in a protected playa-lake system (La Ratosa Natural Reserve, S Spain) comprising two adjacent playa-lakes: La Ratosa and Herriza de los Ladrones. For this purpose, daily water balances were applied to reconstruct the water level. Model results [...] Read more.
We modeled the water level variations in a protected playa-lake system (La Ratosa Natural Reserve, S Spain) comprising two adjacent playa-lakes: La Ratosa and Herriza de los Ladrones. For this purpose, daily water balances were applied to reconstruct the water level. Model results were validated using actual water level monitoring over the past 20 years. We surveyed post-Pliocene geological structures in the endorheic watershed to investigate lake nucleation and to improve the hydrogeological model. Additionally, we investigated the groundwater level evolution in nearby aquifers, which have been profusely affected by groundwater exploitation for domestic and agricultural use. Then, the RCP 4.5 and RCP 8.5 climate change scenarios were applied to forecast the future of this lake system. We found that the playa-lake hydroperiod will shorten, causing the system to shift from seasonal to ephemeral, which appears to be a general trend in this area. However, the impact on the La Ratosa-Herriza de los Ladrones system would be likely more severe due to local stressors, such as groundwater withdrawal for urban demand and agriculture, driving the system to complete desiccation for extended periods. These results highlight the sensitivity of these protected ecosystems to changes in the watershed’s water balance and underscore the urgent need to preserve watersheds from any form of water use, other than ecological purposes. This approach aims to support informed decision-making to mitigate adverse impacts on these fragile ecosystems, ensuring their ecological integrity in the context of climate change and increasing water demand for various uses. Full article
Show Figures

Graphical abstract

23 pages, 13093 KiB  
Article
Survival of Filamentous Cyanobacteria Through Martian ISRU: Combined Effects of Desiccation and UV-B Radiation
by Miguel Arribas Tiemblo, Inês P. E. Macário, Antonio Tornero, Ana Yáñez, Slavka Andrejkovičová and Felipe Gómez
Microorganisms 2025, 13(5), 1083; https://doi.org/10.3390/microorganisms13051083 - 7 May 2025
Viewed by 678
Abstract
Cyanobacteria are a widespread group of photosynthesizing prokaryotes potentially relevant for space exploration, as they can produce both oxygen and organic matter. These organisms have been repeatedly proposed as tools for colonizing planetary bodies in the solar system. We used several Martian regolith [...] Read more.
Cyanobacteria are a widespread group of photosynthesizing prokaryotes potentially relevant for space exploration, as they can produce both oxygen and organic matter. These organisms have been repeatedly proposed as tools for colonizing planetary bodies in the solar system. We used several Martian regolith simulants to support the growth of three widespread filamentous cyanobacteria (Desmonostoc muscorum UTAD N213, Anabaena cylindrica UTAD A212 and an uncharacterized Desmonostoc sp.). All cyanobacteria grew well on the surface of the commercial simulants MGS-1 and MMS-2 and in soluble extracts obtained from them, suggesting that these Martian regolith analogs contain everything necessary to sustain cyanobacterial growth, at least in the short term. We also evaluated the survival of the two Desmonostoc species under desiccation and UV-B radiation, using the same regolith simulants and two clays: Montmorillonite and nontronite. Desiccation hindered growth, but both cyanobacteria were able to recover in less than 30 days in all cases after desiccation. Short irradiation times (up to 1000 kJ/m2) did not consistently affect survival, but longer ones (24,000 kJ/m2) could fully sterilize some samples, although cyanobacteria within MGS-1, montmorillonite and nontronite showed signs of recovery in the long term (>70 days). Clays led to very fast recoveries, particularly montmorillonite. Full article
Show Figures

Figure 1

25 pages, 11601 KiB  
Article
Experimental Analysis of Energy Savings in a Combined Rotary Desiccant Dehumidifier with a Purge Section
by Jeongsu Yang and YoungIl Kim
Sustainability 2025, 17(9), 4126; https://doi.org/10.3390/su17094126 - 2 May 2025
Viewed by 736
Abstract
This study focuses on improving the performance of desiccant dehumidifiers using desiccant rotors, which are widely utilized in various industries, such as manufacturing, food, and construction, to enhance product quality and production efficiency. The combined desiccant dehumidifier can reduce energy consumption compared to [...] Read more.
This study focuses on improving the performance of desiccant dehumidifiers using desiccant rotors, which are widely utilized in various industries, such as manufacturing, food, and construction, to enhance product quality and production efficiency. The combined desiccant dehumidifier can reduce energy consumption compared to traditional standard or purge dehumidifiers. The system operates in normal mode during seasons with high outdoor humidity and in purge mode during seasons with low outdoor humidity. By utilizing dampers, the air passing through the dry desiccant rotor can either be directly discharged indoors or supplied to the regeneration section, allowing the system to operate in two modes within a single unit. The first part of the study involved comparing the performance of the equipment through experiments. The second part compared the results from the dehumidifier rotor performance simulation program to check for deviations and validate its effectiveness. In the first experiment, the energy consumption of the standard desiccant dehumidifier in normal mode was compared with that of the combined desiccant dehumidifier in normal mode. In the second experiment, the energy consumption of the standard desiccant dehumidifier in normal mode was compared with that of the combined desiccant dehumidifier in purge mode. The airflow, temperature, and humidity values used in each experiment were analyzed using a dehumidification performance simulation program, and the deviation was found to be within 10%. Therefore, the performance analysis via simulation was considered valid. The dehumidification performance of the combined desiccant dehumidifier was found to be 5% more efficient than the traditional standard desiccant dehumidifier and 9.5% more efficient than the purge dehumidifier. Furthermore, energy consumption simulations were conducted for representative regions in Korea. The results showed energy reductions of 65% in Seoul, 65% in Daejeon, and 67% in Busan. The findings of this study suggest that energy savings can be achieved by appropriately adjusting the operation mode between normal and purge modes based on outdoor conditions. Full article
(This article belongs to the Topic Sustainable Energy Systems)
Show Figures

Figure 1

23 pages, 4964 KiB  
Article
Artificial-Intelligence-Based Prediction of Crack and Shrinkage Intensity Factor in Clay Soils During Desiccation
by Abolfazl Baghbani, Tanveer Choudhury and Susanga Costa
Designs 2025, 9(3), 54; https://doi.org/10.3390/designs9030054 - 29 Apr 2025
Viewed by 1014
Abstract
Desiccation-induced cracking in clay soils significantly affects the structural performance and durability of geotechnical systems. This study presents a data-driven approach to predict the Crack and Shrinkage Intensity Factor (CSIF), a comprehensive index quantifying both crack formation and shrinkage behavior in drying soils. [...] Read more.
Desiccation-induced cracking in clay soils significantly affects the structural performance and durability of geotechnical systems. This study presents a data-driven approach to predict the Crack and Shrinkage Intensity Factor (CSIF), a comprehensive index quantifying both crack formation and shrinkage behavior in drying soils. A database of 100 controlled desiccation tests was developed using five clay mixtures with varying plasticity indices, which were subjected to a range of drying rates, soil thicknesses and initial conditions. Four predictive models—Multiple Linear Regression (MLR), Classification and Regression Random Forest (CRRF), Artificial Neural Network (ANN) and Genetic Programming (GP)—were evaluated. The ANN model using Bayesian Regularization demonstrated superior performance (R = 0.99, MAE = 5.44), followed by CRRF and symbolic GP equations. Sensitivity analysis identified drying rate and soil thickness as the most influential parameters, while initial moisture content and ambient conditions were found to be redundant when the drying rate was included. This study not only advances the predictive modeling of desiccation cracking but also introduces interpretable equations for practical engineering uses. The developed models offer valuable tools for crack risk assessment in clay liners, soil covers and expansive soil foundations. Full article
Show Figures

Graphical abstract

13 pages, 961 KiB  
Article
Compost with High Soil Conditioning Potential Obtained by Composting Using a Portable and Low-Cost System
by Tamara Márcia Martins de Sá, Bianca Magalhães Benevides, Leila Moreira Bittencourt Rigueira, Patrícia Xavier Baliza, Elem Patrícia Alves Rocha, Patrícia Nirlane da Costa Souza, Fernanda Menezes Maia, Rosilene Gonçalves Costa Rodrigues, Isac Pereira Soares Martins, Luís Felipe Rodrigues Costa, Samy Pimenta, Nelson de Abreu Delvaux Júnior and Luciano Pereira Rodrigues
Sustainability 2025, 17(8), 3356; https://doi.org/10.3390/su17083356 - 9 Apr 2025
Viewed by 683
Abstract
A simple and functional home composting process was investigated. This study consisted of three experiments altering the proportion of manure and sawdust, the former used as a nutrient and the latter as a desiccant. The mass proportions of manure–sawdust added weekly to the [...] Read more.
A simple and functional home composting process was investigated. This study consisted of three experiments altering the proportion of manure and sawdust, the former used as a nutrient and the latter as a desiccant. The mass proportions of manure–sawdust added weekly to the composting process were 1:1, 1:3, and 3:1 in the compost bins. The food waste used was provided daily by the IECT/UFVJM restaurant and added in equal parts, approximately 32 kg, to each of the three compost bins for a period of approximately 120 days. The bacterium Bacillus subtilis from the soil’s natural microbiota was added every fortnight to the three compost bins in a fixed volume solution equivalent to 150 mL. In the composting process carried out in compost bin 2, the compost with the highest final yield on a wet basis was obtained, at 39.89%. However, the compost produced in compost bin 3 had the highest compostable organic matter content at 24.66%, only 4.86% of the organic matter resisted composting, and it also had the best organic carbon/nitrogen ratio, at 32/1. Furthermore, this most promising compost, produced in compost bin 3, showed fulvic acid, humic acid, and total humic extract contents of 5.21%, 5.21%, and 10.42%, respectively, with these values being three to four times greater than that required by national legislation. The micro- and macronutrient content is also adequate, and only the NPK value needs to be maximized in this compost product for immediate commercialization. In this sense, we encourage the sustainable production of compost via home composting in the system investigated here for use as a soil conditioner capable of significantly improving its properties for safe development in regenerative agriculture. Full article
(This article belongs to the Section Soil Conservation and Sustainability)
Show Figures

Graphical abstract

20 pages, 4018 KiB  
Article
Assessment of Beaded, Powdered and Coated Desiccants for Atmospheric Water Harvesting in Arid Environments
by Mona Rafat, Gokul Chandrasekaran, Shubham Shrivastava, Alireza Farsad, Jirapat Ananpattarachai, Abigail Qiu, Shahnawaz Sinha, Paul Westerhoff and Patrick Phelan
Environments 2025, 12(4), 110; https://doi.org/10.3390/environments12040110 - 5 Apr 2025
Viewed by 762
Abstract
Atmospheric water harvesting (AWH) is a promising alternative to address immediate water needs. Desiccant-based AWH could compete effectively with other commercially available AWH technologies. One of the primary challenges facing desiccant-based AWH is the energy required to desorb the captured water vapor from [...] Read more.
Atmospheric water harvesting (AWH) is a promising alternative to address immediate water needs. Desiccant-based AWH could compete effectively with other commercially available AWH technologies. One of the primary challenges facing desiccant-based AWH is the energy required to desorb the captured water vapor from the desiccant. This work presents a multi-faceted approach targeted explicitly at low-humidity and arid regions, aiming to overcome the limitations of the refrigerant-based AWH system. It includes assessing common desiccants (zeolite, activated alumina, and silica gel) and their forms (beads, powdered, or coated on a substrate). A bench-scale test rig was designed to evaluate different types and forms of desiccants for adsorption and desorption cycles and overall adsorption capacity (g/g), kinetic profiles, and rates. Experimental results indicate that beaded desiccants possess the highest adsorption capacity compared to powdered or coated forms. Furthermore, coated desiccants double the water uptake (1.12 vs. 0.56 g water/g desiccant) and improve adsorption/desorption cycling by 52% compared to beaded forms under the same conditions. Additionally, Brunauer–Emmett–Teller (BET), X-ray diffraction (XRD), and dynamic vapor sorption (DVS) analysis show the pore geometry, morphology, and sorption capacity. The goal is to integrate these performance improvements and propose a more effective, energy-efficient desiccant-based AWH system. Full article
Show Figures

Figure 1

16 pages, 1427 KiB  
Article
InvMOE: MOEs Based Invariant Representation Learning for Fault Detection in Converter Stations
by Hao Sun, Shaosen Li, Hao Li, Jianxiang Huang, Zhuqiao Qiao, Jialei Wang and Xincui Tian
Energies 2025, 18(7), 1783; https://doi.org/10.3390/en18071783 - 2 Apr 2025
Viewed by 489
Abstract
Converter stations are pivotal in high-voltage direct current (HVDC) systems, enabling power conversion between an alternating current (AC) and a direct current (DC) while ensuring efficient and stable energy transmission. Fault detection in converter stations is crucial for maintaining their reliability and operational [...] Read more.
Converter stations are pivotal in high-voltage direct current (HVDC) systems, enabling power conversion between an alternating current (AC) and a direct current (DC) while ensuring efficient and stable energy transmission. Fault detection in converter stations is crucial for maintaining their reliability and operational safety. This paper focuses on image-based detection of five common faults: metal corrosion, discoloration of desiccant in breathers, insulator breakage, hanging foreign objects, and valve cooling water leakage. Despite advancements in deep learning, existing detection methods face two major challenges: limited model generalization due to diverse and complex backgrounds in converter station environments and sparse supervision signals caused by the high cost of collecting labeled images for certain faults. To overcome these issues, we propose InvMOE, a novel fault detection algorithm with two core components: (1) invariant representation learning, which captures task-relevant features and mitigates background noise interference, and (2) multi-task training using a mixture of experts (MOE) framework to adaptively optimize feature learning across tasks and address label sparsity. Experimental results on real-world datasets demonstrate that InvMOE achieves superior generalization performance and significantly improves detection accuracy for tasks with limited samples, such as valve cooling water leakage. This work provides a robust and scalable approach for enhancing fault detection in converter stations. Full article
(This article belongs to the Topic Advances in Power Science and Technology, 2nd Edition)
Show Figures

Figure 1

35 pages, 5370 KiB  
Review
Review Analysis for the Energy Performance of Integrated Air-Conditioning Systems
by Faisal Alghamdi and Moncef Krarti
Energies 2025, 18(7), 1611; https://doi.org/10.3390/en18071611 - 24 Mar 2025
Cited by 1 | Viewed by 1792
Abstract
In response to the significant increase in cooling needs for the built environment due to climate change, hybrid air conditioning units can provide energy efficient alternatives to vapor compression systems. This paper reviews the reported energy performance of integrated air conditioning systems consisting [...] Read more.
In response to the significant increase in cooling needs for the built environment due to climate change, hybrid air conditioning units can provide energy efficient alternatives to vapor compression systems. This paper reviews the reported energy performance of integrated air conditioning systems consisting of three types of hybrid options: direct expansion (DX) combined with evaporative cooling, DX with desiccant, and evaporative cooling combined with desiccant. In addition, the reported analyses of integrating these hybrid systems with phase change materials (PCMs) and/or photovoltaic (PV) systems are considered. The evaluated analyses generally confirm that integrated air conditioning systems offer substantial energy saving potential compared to traditional vapor compression cooling units, resulting in substantial economic and environmental benefits. Specifically, hybrid systems can reduce the annual energy consumption for space cooling by 87% compared to traditional air conditioning units. This review analysis indicates that hybrid systems can have a coefficient of performance (COP) ranging from 6 to 16 compared to merely 3 to 5 for conventional systems. Additionally, liquid desiccant cooling systems have reported notable improvements in dehumidification efficiency and energy savings, with payback periods as low as three years. Future work should focus more on real-building applications and on conducting more comprehensive cost–benefit analyses, especially when integrating more than two technologies together. Full article
(This article belongs to the Special Issue Energy Efficiency and Energy Performance in Buildings)
Show Figures

Figure 1

Back to TopTop