Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (366)

Search Parameters:
Keywords = deposit weld

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 5353 KiB  
Article
Evaluation of Hardfacing Layers Applied by FCAW-S on S355MC Steel and Their Influence on Its Mechanical Properties
by Fineas Morariu, Timotei Morariu, Alexandru Bârsan, Sever-Gabriel Racz and Dan Dobrotă
Materials 2025, 18(15), 3664; https://doi.org/10.3390/ma18153664 - 4 Aug 2025
Viewed by 179
Abstract
Enhancing the wear resistance of structural steels used in demanding industrial applications is critical for extending components’ lifespan and ensuring mechanical reliability. In this study, we investigated the influence of flux-cored arc welding (FCAW) hardfacing on the tensile behavior of S355MC steel. Protective [...] Read more.
Enhancing the wear resistance of structural steels used in demanding industrial applications is critical for extending components’ lifespan and ensuring mechanical reliability. In this study, we investigated the influence of flux-cored arc welding (FCAW) hardfacing on the tensile behavior of S355MC steel. Protective Fe-Cr-C alloy layers were deposited in one and two successive passes using automated FCAW, followed by tensile testing of specimens oriented at varying angles relative to the weld bead direction. The methodology integrated 3D scanning and digital image correlation to accurately capture geometric and deformation parameters. The experimental results revealed a consistent reduction in tensile strength and ductility in all the welded configurations compared to the base material. The application of the second weld layer further intensified this effect, while specimen orientation influenced the degree of mechanical degradation. Microstructural analysis confirmed carbide refinement and good adhesion, but also identified welding-induced defects and residual stresses as factors that contributed to performance loss. The findings highlight a clear trade-off between improved surface wear resistance and compromised structural properties, underscoring the importance of process optimization. Strategic selection of welding parameters and bead orientation is essential to balance functional durability with mechanical integrity in industrial applications. Full article
(This article belongs to the Special Issue Advances in Welding of Alloy and Composites (2nd Edition))
Show Figures

Graphical abstract

16 pages, 3072 KiB  
Article
Process Development to Repair Aluminum Components, Using EHLA and Laser-Powder DED Techniques
by Adrienn Matis, Min-Uh Ko, Richard Kraft and Nicolae Balc
J. Manuf. Mater. Process. 2025, 9(8), 255; https://doi.org/10.3390/jmmp9080255 - 31 Jul 2025
Viewed by 246
Abstract
The article presents a new AM (Additive Manufacturing) process development, necessary to repair parts made from Aluminum 6061 material, with T6 treatment. The laser Directed Energy Deposition (DED) and Extreme High-Speed Directed Energy Deposition (EHLA) capabilities are evaluated for repairing Al large components. [...] Read more.
The article presents a new AM (Additive Manufacturing) process development, necessary to repair parts made from Aluminum 6061 material, with T6 treatment. The laser Directed Energy Deposition (DED) and Extreme High-Speed Directed Energy Deposition (EHLA) capabilities are evaluated for repairing Al large components. To optimize the process parameters, single-track depositions were analyzed for both laser-powder DED (feed rate of 2 m/min) and EHLA (feed rate 20 m/min) for AlSi10Mg and Al6061 powders. The cross-sections of single tracks revealed the bonding characteristics and provided laser-powder DED, a suitable parameter selection for the repair. Three damage types were identified on the Al component to define the specification of the repair process and to highlight the capabilities of laser-powder DED and EHLA in repairing intricate surface scratches and dents. Our research is based on variation of the powder mass flow and beam power, studying the influence of these parameters on the weld bead geometry and bonding quality. The evaluation criteria include bonding defects, crack formation, porosity, and dilution zone depth. The bidirectional path planning strategy was applied with a fly-in and fly-out path for the hatching adjustment and acceleration distance. Samples were etched for a qualitative microstructure analysis, and the HV hardness was tested. The novelty of the paper is the new process parameters for laser-powder DED and EHLA deposition strategies to repair large Al components (6061 T6), using AlSi10Mg and Al6061 powder. Our experimental research tested the defect-free deposition and the compatibility of AlSi10Mg on the Al6061 substrate. The readers could replicate the method presented in this article to repair by laser-powder DED/EHLA large Al parts and avoid the replacement of Al components with new ones. Full article
Show Figures

Figure 1

17 pages, 4401 KiB  
Article
Friction Stir Welding Process Using a Manual Tool on Polylactic Acid Structures Manufactured by Additive Techniques
by Miguel Ángel Almazán, Marta Marín, Juan Antonio Almazán, Amabel García-Domínguez and Eva María Rubio
Appl. Sci. 2025, 15(15), 8155; https://doi.org/10.3390/app15158155 - 22 Jul 2025
Viewed by 252
Abstract
This study analyses the application of the Friction Stir Welding (FSW) process on polymeric materials manufactured by additive manufacturing (AM), specifically with polylactic acid (PLA). FSW is a solid-state welding process characterized by its low heat input and minimal distortion, which makes it [...] Read more.
This study analyses the application of the Friction Stir Welding (FSW) process on polymeric materials manufactured by additive manufacturing (AM), specifically with polylactic acid (PLA). FSW is a solid-state welding process characterized by its low heat input and minimal distortion, which makes it ideal for the assembly of complex or large components made by additive manufacturing. To evaluate its effectiveness, a portable FSW device was developed for the purpose of joining PLA specimens made by AM using different filler densities (15% and 100%). Two tool geometries (a cylindrical and truncated cone) were utilized by varying the parameters of rotational speed, tilt angle, and feed rate. The results revealed two different process stages, transient and steady-state, and showed differences in weld quality depending on the material density, tool type, and material addition. The study confirms the viability of FSW for joining PLA parts made by AM and suggests potential applications in industries that require robust and precise joints in plastic parts, thereby helping hybrid manufacturing to progress. Full article
(This article belongs to the Special Issue Recent Advances in Manufacturing and Machining Processes)
Show Figures

Figure 1

14 pages, 5792 KiB  
Article
Weld Formation and Characteristics of Hot-Wire Laser Welding in Aluminum Alloy Narrow-Gap Joints
by Jukkapun Greebmalai, Shun Sadasue, Keita Marumoto, Eakkachai Warinsiriruk and Motomichi Yamamoto
Metals 2025, 15(7), 809; https://doi.org/10.3390/met15070809 - 18 Jul 2025
Viewed by 236
Abstract
This study joins a 20 mm thick 5000-series aluminum alloy using hot-wire insertion combined with narrow-gap laser welding to evaluate the feasibility and welding characteristics of this technique. The findings indicate that weld formation is primarily influenced by the laser energy density and [...] Read more.
This study joins a 20 mm thick 5000-series aluminum alloy using hot-wire insertion combined with narrow-gap laser welding to evaluate the feasibility and welding characteristics of this technique. The findings indicate that weld formation is primarily influenced by the laser energy density and material deposition rate. A strategy for improving weld beads is introduced incorporating a reoriented laser spot during the final pass on narrow-gap joints. This approach improves penetration and produces defect-free joints. The optimal processing conditions result in complete joint formation with four welding passes. Microstructural analysis reveals that the aluminum matrix morphology evolves according to the local thermal history during welding. Measurements show that the weld region is slightly harder than the base metal, whereas slightly lower hardness is observed at the fusion line and inter-pass boundaries, which correlates with the microstructure result. Full article
(This article belongs to the Special Issue Advanced Laser Welding and Joining of Metallic Materials)
Show Figures

Figure 1

18 pages, 4066 KiB  
Article
Video Segmentation of Wire + Arc Additive Manufacturing (WAAM) Using Visual Large Model
by Shuo Feng, James Wainwright, Chong Wang, Jun Wang, Goncalo Rodrigues Pardal, Jian Qin, Yi Yin, Shakirudeen Lasisi, Jialuo Ding and Stewart Williams
Sensors 2025, 25(14), 4346; https://doi.org/10.3390/s25144346 - 11 Jul 2025
Viewed by 326
Abstract
Process control and quality assurance of wire + arc additive manufacturing (WAAM) and automated welding rely heavily on in-process monitoring videos to quantify variables such as melt pool geometry, location and size of droplet transfer, arc characteristics, etc. To enable feedback control based [...] Read more.
Process control and quality assurance of wire + arc additive manufacturing (WAAM) and automated welding rely heavily on in-process monitoring videos to quantify variables such as melt pool geometry, location and size of droplet transfer, arc characteristics, etc. To enable feedback control based upon this information, an automatic and robust segmentation method for monitoring of videos and images is required. However, video segmentation in WAAM and welding is challenging due to constantly fluctuating arc brightness, which varies with deposition and welding configurations. Additionally, conventional computer vision algorithms based on greyscale value and gradient lack flexibility and robustness in this scenario. Deep learning offers a promising approach to WAAM video segmentation; however, the prohibitive time and cost associated with creating a well-labelled, suitably sized dataset have hindered its widespread adoption. The emergence of large computer vision models, however, has provided new solutions. In this study a semi-automatic annotation tool for WAAM videos was developed based upon the computer vision foundation model SAM and the video object tracking model XMem. The tool can enable annotation of the video frames hundreds of times faster than traditional manual annotation methods, thus making it possible to achieve rapid quantitative analysis of WAAM and welding videos with minimal user intervention. To demonstrate the effectiveness of the tool, three cases are demonstrated: online wire position closed-loop control, droplet transfer behaviour analysis, and assembling a dataset for dedicated deep learning segmentation models. This work provides a broader perspective on how to exploit large models in WAAM and weld deposits. Full article
(This article belongs to the Special Issue Sensing and Imaging in Computer Vision)
Show Figures

Figure 1

12 pages, 3521 KiB  
Article
Effect of Alternating Magnetic Field Intensity on Microstructure and Corrosion Properties of Deposited Metal in 304 Stainless Steel TIG Welding
by Jinjie Wang, Jiayi Li, Haokai Wang, Zan Ju, Juan Fu, Yong Zhao and Qianhao Zang
Metals 2025, 15(7), 761; https://doi.org/10.3390/met15070761 - 6 Jul 2025
Viewed by 332
Abstract
Stainless steel, due to its exceptional comprehensive properties, has been widely adopted as the primary material for liquid cargo tank containment systems and pipelines in liquefied natural gas (LNG) carriers. However, challenges such as hot cracking, excessive deformation, and the deterioration of welded [...] Read more.
Stainless steel, due to its exceptional comprehensive properties, has been widely adopted as the primary material for liquid cargo tank containment systems and pipelines in liquefied natural gas (LNG) carriers. However, challenges such as hot cracking, excessive deformation, and the deterioration of welded joint performance during stainless steel welding significantly constrain the construction quality and safety of LNG carriers. While conventional tungsten inert gas (TIG) welding can produce high-integrity welds, it is inherently limited by shallow penetration depth and low efficiency. Magnetic field-assisted TIG welding technology addresses these limitations by introducing an external magnetic field, which effectively modifies arc morphology, refines grain structure, enhances penetration depth, and improves corrosion resistance. In this study, TIG bead-on-plate welding was performed on 304 stainless steel plates, with a systematic investigation into the dynamic arc behavior during welding, as well as the microstructure and anti-corrosion properties of the deposited metal. The experimental results demonstrate that, in the absence of a magnetic field, the welding arc remains stable without deflection. As the intensity of the alternating magnetic field intensity increases, the arc exhibits pronounced periodic oscillations. At an applied magnetic field intensity of 30 mT, the maximum arc deflection angle reaches 76°. With increasing alternating magnetic field intensity, the weld penetration depth gradually decreases, while the weld width progressively expands. Specifically, at 30 mT, the penetration depth reaches a minimum value of 1.8 mm, representing a 44% reduction compared to the non-magnetic condition, whereas the weld width peaks at 9.3 mm, corresponding to a 9.4% increase. Furthermore, the ferrite grains in the weld metal are significantly refined at higher alternating magnetic field intensities. The weld metal subjected to a 30 mT alternating magnetic field exhibits the highest breakdown potential, the lowest corrosion rate, and the most protective passive film, indicating superior corrosion resistance compared to other tested conditions. Full article
(This article belongs to the Special Issue Advanced Metal Welding and Joining Technologies—2nd Edition)
Show Figures

Graphical abstract

14 pages, 1096 KiB  
Article
Short-Term Outcomes of Cementless Total Hip Arthroplasty Using a 3D-Printed Acetabular Cup Manufactured by Directed Energy Deposition: A Prospective Observational Study
by Ji Hoon Bahk, Woo-Lam Jo, Kee-Haeng Lee, Joo-Hyoun Song, Seung-Chan Kim and Young Wook Lim
J. Clin. Med. 2025, 14(13), 4527; https://doi.org/10.3390/jcm14134527 - 26 Jun 2025
Viewed by 447
Abstract
Background/Objectives: Additive manufacturing (AM) enables the production of cementless acetabular cups with porous surfaces that facilitate early osseointegration. Directed energy deposition (DED), a form of AM, allows the direct welding of porous structures onto metal substrates without requiring a vacuum environment, offering [...] Read more.
Background/Objectives: Additive manufacturing (AM) enables the production of cementless acetabular cups with porous surfaces that facilitate early osseointegration. Directed energy deposition (DED), a form of AM, allows the direct welding of porous structures onto metal substrates without requiring a vacuum environment, offering advantages over conventional powder bed fusion methods. Despite growing interest in DED, no prospective clinical studies evaluating DED-based acetabular components have been published to date. This study assessed short-term outcomes of a DED-based 3D-printed acetabular cup in total hip arthroplasty (THA). Methods: A total of 120 patients who underwent primary cementless THA using the Corentec Mirabo Z® acetabular cup were prospectively enrolled. Among them, 124 hips from 100 patients who had completed a minimum of 24 months of follow-up were included in the analysis. Clinical outcomes were assessed using the Harris hip score (HHS), WOMAC, EQ-5D-5L, and pain NRS. Radiographic evaluation included measurements of cup position, osseointegration, and detection of interfacial or polar gaps on CT and plain radiographs. Implant-related complications were also recorded. Results: At a mean follow-up of 34.6 months, the implant survival rate was 99.3%, with one revision due to suspected osseointegration failure. The HHS improved from 56.6 to 91.4 at 24 months, and the NRS decreased from 6.2 to 1.1 (both p < 0.001). Interfacial gaps were observed in 58.1% of cases on CT, though most were <1 mm and not clinically significant. Common postoperative issues included greater trochanteric pain syndrome, squeaking, and iliotibial band tightness, all of which were resolved with conservative treatment. Conclusions: DED-based 3D-printed acetabular cups demonstrated favorable short-term clinical and radiographic outcomes, with high survivorship and reliable early osseointegration in cementless THA. Full article
(This article belongs to the Section Orthopedics)
Show Figures

Figure 1

25 pages, 15207 KiB  
Article
Study of the Effects of Hardfacing Modes Carried out by FCAW-S with Exothermic Addition of MnO2-Al on Non-Metallic Inclusions, Grain Size, Microstructure and Mechanical Properties
by Bohdan Trembach, Illia Trembach, Aleksandr Grin, Nataliia Makarenko, Olha Babych, Sergey Knyazev, Yuliia Musairova, Michal Krbata, Oleksii Balenko, Oleh Vorobiov and Anatoliy Panchenko
Eng 2025, 6(6), 125; https://doi.org/10.3390/eng6060125 - 10 Jun 2025
Viewed by 1148
Abstract
This paper investigates self-shielded flux-cored wires with an exothermic MnO2-Al addition and the effect of hardfacing modes on the deposited alloy of the Fe-C-Mn system for the first time. Additionally, the paper proposes a new experimental research methodology using an orthogonal [...] Read more.
This paper investigates self-shielded flux-cored wires with an exothermic MnO2-Al addition and the effect of hardfacing modes on the deposited alloy of the Fe-C-Mn system for the first time. Additionally, the paper proposes a new experimental research methodology using an orthogonal experimental design with nine experiments and three levels. At the first stage, it is proposed to use the Taguchi plan (L9) method to find the most significant variables. At the second stage, for the development of a mathematical model and optimization, a factorial design is recommended. The studied parameters of the hardfacing mode were travel speed (TS), set voltage on the power source (Uset), contact tip to work distance (CTWD), and wire feed speed (WFS). The following parameters were studied: welding thermal cycle parameters, microstructure, grain size, non-metallic inclusions, and mechanical properties. The results of the analysis showed that the listed parameters of the hardfacing modes have a different effect on the characteristics of the hardfacing process with self-shielded flux-cored wires with an exothermic addition in the filler. It was determined that for flux-cored wires with an exothermic addition, the size of the deposited metal grain size is most affected by the contact tip to work distance (CTWD). The research results showed that the travel speed (TS) had the main influence on the thermal cycle parameters (heat input, cooling time) and hardness. The analysis of the deposited metal samples showed that an increase in the travel speed had a negative impact on the number of non-metallic inclusions (NMIs) in the deposited metal. While the size of NMIs was influenced by the wire feed speed and the set voltage on the power source. Full article
(This article belongs to the Section Materials Engineering)
Show Figures

Figure 1

12 pages, 5414 KiB  
Article
Effect of Heat Treatment on Tensile Properties of Deposited Metal from a New Nitrogen-Containing Nickel-Based Flux-Cored Welding Wire
by Yingdi Wang, Yunhai Su and Yingdong Wang
Crystals 2025, 15(6), 509; https://doi.org/10.3390/cryst15060509 - 26 May 2025
Viewed by 285
Abstract
This study uses a new type of nitrogen-containing nickel-based flux-cored welding wire to study the microstructure and tensile properties of the deposited metal at 600 –700 °C. The results indicate that the precipitation phases of deposited metal mainly include the M (C, N) [...] Read more.
This study uses a new type of nitrogen-containing nickel-based flux-cored welding wire to study the microstructure and tensile properties of the deposited metal at 600 –700 °C. The results indicate that the precipitation phases of deposited metal mainly include the M (C, N) phase, Laves phase, and γ′ phase. After solution and aging treatment, the Laves phase remelts into the substrate. Nano-sized M (C, N) phase particles precipitate inside the grains, while the M23C6 phase forms at the grain boundaries. When stretched at 600 °C, the main deformation mechanism of the as-welded specimen is the cutting of precipitated phases by a/2<110> unit dislocations. The ultimate tensile strength of the heat-treated sample is much higher than that of the as-welded sample, but the ductility is reduced. The deformation mechanism involves not only the a/2<110>matrix dislocation cutting precipitation phase, but also two a/6<121>incomplete dislocation cutting precipitation phases together to form stacked dislocations. When stretched at 700 °C, dislocation loops appeared in the SA sample, indicating that the dislocation bypass mechanism had been activated. The tensile deformation mechanism of the deposited metal achieved a transition from dislocation cutting precipitated phases to dislocation bypassing precipitated phases. Full article
(This article belongs to the Section Crystalline Metals and Alloys)
Show Figures

Figure 1

21 pages, 3118 KiB  
Article
Path Planning for Rapid DEDAM Processing Subject to Interpass Temperature Constraints
by Glenn W. Hatala, Edward W. Reutzel and Qian Wang
Metals 2025, 15(6), 570; https://doi.org/10.3390/met15060570 - 22 May 2025
Viewed by 486
Abstract
Directed energy deposition (DED) additive manufacturing (AM) enables the production of components at a high deposition rate. For certain alloys, interpass temperature requirements are imposed to control heat accumulation and microstructure transformation, as well as to minimize distortion under varying thermal conditions. A [...] Read more.
Directed energy deposition (DED) additive manufacturing (AM) enables the production of components at a high deposition rate. For certain alloys, interpass temperature requirements are imposed to control heat accumulation and microstructure transformation, as well as to minimize distortion under varying thermal conditions. A typical strategy to comply with interpass temperature constraints is to increase the interpass dwell time, which can lead to an increase in the total deposition time. This study aims to develop an optimized tool path that ensures interpass temperature compliance and reduces overall deposition time relative to the conventional sequential deposition path during the DED process. To evaluate this, a compact analytic thermal model is used to predict the thermal history during laser-based directed energy deposition (DED-LB/M) hot wire (lateral feeding) of ER100S-G, a welding wire equivalent to high yield steel. A greedy algorithm, integrated with the thermal model, identifies a tool path order that ensures compliance with the interpass requirement of the material while minimizing interpass dwell time and, thus, the total deposition time. The proposed path planning algorithm is validated experimentally with in situ temperature measurements comparing parts fabricated with the baseline (sequential) deposition path to the modified path (resulting from the greedy algorithm). The experimental results of this study demonstrate that the proposed path planning algorithm can reduce the deposition time by 9.2% for parts of dimensions 66 mm × 73 mm × 16.5 mm, comprising 15 layers and a total of 300 beads. Predictions based on the proposed path planning algorithm indicate that additional reductions in deposition time can be achieved for larger parts. Specifically, increasing the (experimentally validated) part dimension perpendicular to the deposition direction by five-times is expected to result in a 40% reduction in deposition time. Full article
(This article belongs to the Special Issue Laser Processing Technology for Metals)
Show Figures

Graphical abstract

8 pages, 1768 KiB  
Proceeding Paper
Real-Time Detection and Counting of Melted Spatter Particles During Deposition of Biomedical-Grade Co-Cr-Mo-4Ti Powder Using the Micro-Plasma Transferred Arc Additive Manufacturing Process
by Sagar Nikam, Sonya Coleman, Dermot Kerr, Neelesh Kumar Jain, Yash Panchal and Deepika Nikam
Eng. Proc. 2025, 92(1), 78; https://doi.org/10.3390/engproc2025092078 - 21 May 2025
Viewed by 289
Abstract
Spatters in the powder-based metal additive manufacturing processes influence deposition quality, part surface quality, and internal defects. We developed a novel video analysis method to monitor and count the melted spatter particles of biomedical-grade Co-Cr-Mo-4Ti powder particles in depositing layers using a micro-plasma [...] Read more.
Spatters in the powder-based metal additive manufacturing processes influence deposition quality, part surface quality, and internal defects. We developed a novel video analysis method to monitor and count the melted spatter particles of biomedical-grade Co-Cr-Mo-4Ti powder particles in depositing layers using a micro-plasma transferred arc additive manufacturing (M-PTAAM) process. We captured the spatters using a weld-monitoring camera and building datasets of videos and monitored different combinations of M-PTAAM process parameters. We captured videos of the melted spatter particles and counted the melted spatter particles in real time using a Kalman filter. The weld-monitoring camera captured the melted spatter particles and the fumes generated by the evaporated spatter particles. The video processing algorithm was developed in this study to accurately capture melted spatter particles. In images without fumes, nearly all melted spatter particles were successfully detected. Even in images with the presence of fumes, the algorithm maintained a detection accuracy of 90%. The real-time melted spatter count particle exhibited a powder feed rate changing from 30 to 35 g/min and then to 50 g/min. The melted spatter particle count was lowest at a powder feed rate of 30 g/min and increased with the increasing powder feed rate. Full article
(This article belongs to the Proceedings of 2024 IEEE 6th Eurasia Conference on IoT, Communication and Engineering)
Show Figures

Figure 1

21 pages, 20352 KiB  
Article
Handheld 3D Scanning-Based Robotic Trajectory Planning for Multi-Layer Multi-Pass Welding of a Large Intersecting Line Workpiece with Asymmetric Profiles
by Xinlei Li, Shida Yao, Jiawei Ma, Guanxin Chi and Guangjun Zhang
Symmetry 2025, 17(5), 738; https://doi.org/10.3390/sym17050738 - 11 May 2025
Cited by 1 | Viewed by 614
Abstract
Traditional offline programming has limitations for large parts with significant machining or assembly deviations. This study proposes a 3D scanning-assisted method that generates accurate STereoLithography (STL) models and enables multi-layer multi-bead welding trajectory planning for large intersecting line workpieces. The proposed framework implements [...] Read more.
Traditional offline programming has limitations for large parts with significant machining or assembly deviations. This study proposes a 3D scanning-assisted method that generates accurate STereoLithography (STL) models and enables multi-layer multi-bead welding trajectory planning for large intersecting line workpieces. The proposed framework implements a robust STL model processing pipeline incorporating Random Sample Consensus (RANSAC)-based cylindrical approximation, cross-sectional slicing, and automated feature detection to achieve high-precision groove feature recognition. For asymmetric variable-section grooves, a multi-layer and multi-pass path-planning algorithm based on template affine projection transformation is developed to ensure accurate deposition of welds along complex geometric contours. Experimental validation demonstrates sub-millimeter trajectory accuracy (positional errors < 1.0 mm), meeting stringent arc welding specifications and substantially expanding the applicability of offline programming systems. Full article
(This article belongs to the Special Issue Symmetry Application in Metals and Alloys)
Show Figures

Figure 1

16 pages, 3392 KiB  
Article
DED Powder Modification for Single-Layer Coatings on High-Strength Steels
by Unai Garate, Enara Mardaras, Jon Arruabarrena, Garikoitz Artola, Aitzol Lamikiz and Luis Norberto López de Lacalle
J. Manuf. Mater. Process. 2025, 9(5), 152; https://doi.org/10.3390/jmmp9050152 - 6 May 2025
Cited by 1 | Viewed by 586
Abstract
In the design of L-DED (laser-directed energy deposition) cladding processes, the chemical composition of the metallic powders is typically assumed to match that of the intended coating. However, during the deposition of the first layer, dilution with the substrate alters the weld metal [...] Read more.
In the design of L-DED (laser-directed energy deposition) cladding processes, the chemical composition of the metallic powders is typically assumed to match that of the intended coating. However, during the deposition of the first layer, dilution with the substrate alters the weld metal composition, deviating from the nominal powder chemistry. Although the application of multiple layers can gradually reduce this dilution effect, it introduces additional complexity and processing time. This study proposes an alternative strategy to counteract substrate dilution from the very first deposited layer, eliminating the need for multilayer coatings. Specifically, to achieve a corrosion-resistant monolayer of AISI 316L stainless steel on a high-strength, quenched-and-tempered AISI 4140 steel substrate, a dilution-compensating alloy powder is added to the standard AISI 316L feedstock. Single-layer coatings, both with and without compensation, were evaluated in terms of chemical composition, microstructure, and corrosion resistance. The results show that unmodified coatings suffered a chromium depletion of approximately 2 wt.%, leading to a reduced pitting potential of Ep = 725 ± 6 mV in synthetic seawater. In contrast, the use of the compensation alloy preserved chromium content and significantly improved corrosion resistance, achieving a pitting potential of Ep = 890 ± 9 mV. Full article
(This article belongs to the Special Issue Advances in Directed Energy Deposition Additive Manufacturing)
Show Figures

Figure 1

24 pages, 20493 KiB  
Article
Enhancing High-Temperature Durability of Aluminum/Steel Joints: The Role of Ni and Cr in Substitutional Diffusion Within Intermetallic Compounds
by Masih Bolhasani Hesari, Reza Beygi, Tiago O. G. Teixeira, Eduardo A. S. Marques, Ricardo J. C. Carbas and Lucas F. M. da Silva
Metals 2025, 15(4), 465; https://doi.org/10.3390/met15040465 - 20 Apr 2025
Viewed by 415
Abstract
The automotive and aerospace industries increasingly rely on lightweight, high-strength materials to improve fuel efficiency, making the joining of dissimilar metals such as aluminum and steel both beneficial and essential. However, a major challenge in these joints is the formation of brittle intermetallic [...] Read more.
The automotive and aerospace industries increasingly rely on lightweight, high-strength materials to improve fuel efficiency, making the joining of dissimilar metals such as aluminum and steel both beneficial and essential. However, a major challenge in these joints is the formation of brittle intermetallic compounds (IMCs) at the interface, even when using low heat-input solid-state welding methods like friction stir welding (FSW). Furthermore, IMC growth at elevated temperatures significantly limits the service life of these joints. In this study, an intermediate layer of stainless steel was deposited on the steel surface prior to FSW with aluminum. The resulting Al–Steel joints were subjected to heat treatment at 400 °C and 550 °C to investigate IMC growth and its impact on mechanical strength, with results compared to conventional joints without the intermediate layer. The intermediate layer significantly suppressed IMC formation, leading to a smaller reduction in mechanical strength after heat treatment. Joints with the intermediate layer achieved their highest strength (350 MPa) after heat treatment at 400 °C, while conventional joints exhibited their highest strength (225 MPa) in the as-welded condition. At 550 °C, both joint types experienced a decline in strength; however, the joint with the intermediate layer retained a strength of 100 MPa, whereas the conventional joint lost its strength entirely. This study provides an in-depth analysis of the role of IMC growth in joint strength and demonstrates how the intermediate layer enhances the thermal durability and mechanical performance of Al–Steel joints, offering valuable insights for their application in high-temperature environments. Full article
(This article belongs to the Special Issue Welding and Joining Technology of Dissimilar Metal Materials)
Show Figures

Figure 1

16 pages, 5342 KiB  
Article
Enhancing the Reliability of Shearing Tools: A Modular Approach with Weld Deposition Technology
by Daniela Maria Iovanas and Adela-Eliza Dumitrascu
Materials 2025, 18(7), 1527; https://doi.org/10.3390/ma18071527 - 28 Mar 2025
Viewed by 297
Abstract
The increasing demand for sustainable and cost-effective manufacturing solutions has led to the development of innovative approaches to enhance the durability and reliability of cutting tools. This study presents a novel method for manufacturing shearing tools utilizing interchangeable modular elements loaded by deposition [...] Read more.
The increasing demand for sustainable and cost-effective manufacturing solutions has led to the development of innovative approaches to enhance the durability and reliability of cutting tools. This study presents a novel method for manufacturing shearing tools utilizing interchangeable modular elements loaded by deposition welding with covered electrodes. Using Weibull distribution modeling, a comparative reliability analysis between conventionally manufactured shear tools and the proposed modular design demonstrates a significant increase in the mean time to failure (MTTF). The least squares method (LSM) estimation was used in order to determine the shearing tools’ lifetime, expressed by reliability indices. Experimental results confirm that the modular tools achieve more than double the lifetime of traditional counterparts, with improved resistance to wear and mechanical stress. These findings highlight the potential for widespread industrial application, optimizing tool performance and sustainability in manufacturing processes. Full article
(This article belongs to the Special Issue Advanced Additive Manufacturing and Application)
Show Figures

Figure 1

Back to TopTop