Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (24)

Search Parameters:
Keywords = delta-9 tetrahydrocannabinol (Δ9-THC)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 3280 KiB  
Article
Cellular and Transcriptional Responses of Human Bronchial Epithelial Cells to Delta-9-Tetrahydrocannabinol In Vitro
by Megan S. Doldron, Sourav Chakraborty, Santosh Anand, Mehwish Faheem, Beh Reh, Xuegeng Wang, Saurav Mallik, Zhenquan Jia and Ramji Kumar Bhandari
Int. J. Mol. Sci. 2025, 26(11), 5212; https://doi.org/10.3390/ijms26115212 - 29 May 2025
Viewed by 634
Abstract
Delta-9-tetrahydrocannabinol (Δ-9-THC or THC), the primary psychoactive constituent of cannabis, can lead to adverse health conditions, including mental health issues, brain impairment, and cardiac and respiratory problems. The amount of THC in cannabis has steadily climbed over the past few decades, with today’s [...] Read more.
Delta-9-tetrahydrocannabinol (Δ-9-THC or THC), the primary psychoactive constituent of cannabis, can lead to adverse health conditions, including mental health issues, brain impairment, and cardiac and respiratory problems. The amount of THC in cannabis has steadily climbed over the past few decades, with today’s cannabis having three times the concentration of THC compared to 25 years ago. Inhalation is a major route of exposure, allowing substances to enter the body via the respiratory tract. THC exposure causes cell death in the airway epithelium; however, the molecular underpinning of THC exposure-induced bronchial epithelial cell death is not clearly understood. To address the mechanisms involved in this process, the present study examined the cell viability, oxidative stress, lipid peroxidation, and transcriptional alterations caused by various concentrations of Δ-9-THC (0, 800, 1000, 1200, and 1500 ng/mL) in a human bronchial epithelial cell line (BEAS-2B) in vitro. Δ-9-THC exposure caused a significant dose-dependent decrease in cell viability after 24 h exposure. Transcriptome analysis showed a distinct dose-dependent response. HIF-1 signaling, ferroptosis, AMPK signaling, and immunogenic pathways were activated by Δ-9-THC-upregulated genes. Glutathione and fatty acid metabolic pathways were significantly altered by Δ-9-THC-dependent downregulated genes. Ingenuity Pathway Analysis (IPA) revealed several top canonical pathways altered by Δ-9-THC exposure, including ferroptosis, NRF-2-mediated oxidative stress response, caveolar-mediated endocytosis (loss of cell adhesion to the substrate), tumor microenvironment, HIF1alpha signaling, and the unfolded protein response pathway. Δ-9-THC-induced cell death was ameliorated by inhibiting the ferroptosis pathway, whereas treatments with ferroptosis agonist exacerbated the cell death process, suggesting that Δ-9-THC-induced bronchial epithelial cell death potentially involves the ferroptosis pathway. Full article
(This article belongs to the Special Issue Toxicology of Psychoactive Drugs)
Show Figures

Figure 1

11 pages, 1678 KiB  
Article
Utilization of Industrial Hemp Biomass Waste (I): Stability of Cannabidiol in Pre and Post- Encapsulation States
by Jerel Crew, Ying Wu, Richard Mu and Ankit Patras
Molecules 2025, 30(10), 2116; https://doi.org/10.3390/molecules30102116 - 10 May 2025
Viewed by 857
Abstract
After cannabidiol was extracted from the hemp biomass using supercritical CO2 extraction, the residual could be utilized as a source of other valuable ingredients. The stability of the extracted CBD in pre- and post- encapsulation states were evaluated. Dynamic macerations with ethanol [...] Read more.
After cannabidiol was extracted from the hemp biomass using supercritical CO2 extraction, the residual could be utilized as a source of other valuable ingredients. The stability of the extracted CBD in pre- and post- encapsulation states were evaluated. Dynamic macerations with ethanol and hexane were compared for CBD extraction. The ethanol extract yielded 0.11% ± 0.10 CBD and 1.83% ± 0.00 cannabidiolic acid (CBDA), while the hexane extraction yielded 0.08% ± 0.04 CBD, 1.06% ± 0.04 CBDA, and 0.30% ± 0.04 delta-9-tetrahydrocannabinol (Δ9-THC). Ethanol extraction was selected due to the low THC detection in the extract. The CBD extract was encapsulated using water soluble yellow mustard mucilage (WSM), maltodextrin (MD), gum Arabic (GA), and protein extracted from the hemp biomass waste (HBP) via freeze drying. The WSM-MD-GA 1:5 particle formulation exhibited superior thermal stability over 72 h, whereas the WSM-HBP-GA 1:5 formulation offered the most protection against UVa-induced degradation within the same duration. Incorporating hemp biomass protein as an encapsulation material enhanced protection against light exposure through UV absorption, although it did not grant thermal protection. These findings indicated that encapsulation significantly protects against CBD degradation when subjected to thermal and light conditions compared to non-encapsulated CBD. Full article
(This article belongs to the Special Issue Extraction and Analysis of Natural Products in Food—2nd Edition)
Show Figures

Figure 1

26 pages, 3096 KiB  
Article
Utilizing ADMET Analysis and Molecular Docking to Elucidate the Neuroprotective Mechanisms of a Cannabis-Containing Herbal Remedy (Suk-Saiyasna) in Inhibiting Acetylcholinesterase
by Suwimon Sumontri, Wanna Eiamart, Sarin Tadtong and Weerasak Samee
Int. J. Mol. Sci. 2025, 26(7), 3189; https://doi.org/10.3390/ijms26073189 - 29 Mar 2025
Viewed by 1310
Abstract
Alzheimer’s disease is characterized by the degeneration of cholinergic neurons, which is primarily driven by the acetylcholinesterase (AChE) enzyme and oxidative stress. This study investigated the therapeutic potential of the cannabis-containing herbal remedy Suk-Saiyasna in alleviating amyloid β42 (Aβ42)-induced cytotoxicity in SH-SY5Y cells. [...] Read more.
Alzheimer’s disease is characterized by the degeneration of cholinergic neurons, which is primarily driven by the acetylcholinesterase (AChE) enzyme and oxidative stress. This study investigated the therapeutic potential of the cannabis-containing herbal remedy Suk-Saiyasna in alleviating amyloid β42 (Aβ42)-induced cytotoxicity in SH-SY5Y cells. The DPPH radical-scavenging activity and inhibitory effects on AChE were evaluated in vitro. The AChE inhibitory potential of 167 ligands, including cannabinoids, flavonoids, terpenoids, and alkaloids derived from Suk-Saiyasna, was assessed using ADMET analysis and molecular docking techniques. The results demonstrated that the Suk-Saiyasna extract exhibited a DPPH radical scavenging effect with an IC50 value of 27.40 ± 1.15 µg/mL and notable AChE inhibitory activity with an IC50 of 1.25 ± 0.35 mg/mL. Importantly, at a concentration of 1 µg/mL, the extract significantly protected cells from Aβ42-induced stress compared to controls. Docking studies revealed that delta-9-tetrahydrocannabinol (Δ9-THC), mesuaferrone B, piperine, β-sitosterol, and chlorogenic acid exhibited substantial binding affinities to AChE, surpassing reference drugs like galantamine and rivastigmine. Furthermore, in silico ADMET predictions indicated that Δ9-THC and piperine possessed favorable pharmacokinetic profiles, including solubility, absorption, and blood–brain barrier permeability, with no neurotoxicity or carcinogenicity associated with Δ9-THC. Full article
(This article belongs to the Special Issue Molecular Advances on Cannabinoid and Endocannabinoid Research 2.0)
Show Figures

Figure 1

16 pages, 17418 KiB  
Article
Incomplete Decarboxylation of Acidic Cannabinoids in GC-MS Leads to Underestimation of the Total Cannabinoid Content in Cannabis Oils Without Derivatization
by Martina Franzin, Rebecca Di Lenardo, Rachele Ruoso and Riccardo Addobbati
Pharmaceutics 2025, 17(3), 334; https://doi.org/10.3390/pharmaceutics17030334 - 5 Mar 2025
Viewed by 1033
Abstract
Background: Cannabis oil titration consists of quantification of the acidic precursors tetrahydrocannabinolic acid (THCA) and cannabidiolic acid (CBDA) and their decarboxylated products, the active neutral cannabinoids delta-9-tetrahydrocannabinol (Δ9-THC) and cannabidiol (CBD), and is recommended to ensure galenic preparation quality through gas and [...] Read more.
Background: Cannabis oil titration consists of quantification of the acidic precursors tetrahydrocannabinolic acid (THCA) and cannabidiolic acid (CBDA) and their decarboxylated products, the active neutral cannabinoids delta-9-tetrahydrocannabinol (Δ9-THC) and cannabidiol (CBD), and is recommended to ensure galenic preparation quality through gas and liquid chromatography coupled with mass spectrometry (GC-MS; LC-MS). Analyses by LC-MS and GC-MS involving derivatization allow for detection of acidic and neutral cannabinoids; on the contrary, GC-MS without derivatization determines only neutral cannabinoids due to high temperature-decarboxylation occurring in the injection system. However, it is not clear if decarboxylation is complete. Methods: Different GC-MS methods with (BSTFA: TMCS and pyridine; incubation at 60 °C for 25 min) or without derivatization and an LC-MS method were developed for cannabinoid quantification. The total Δ9-THC and CBD yield of recovery were compared between the methods by testing laboratory samples with known concentrations of THCA and CBDA (total Δ9-THC and CBD: 175–351–702 ng/mL) and real cannabis oil samples (n = 6). Results: The total Δ9-THC and CBD yield of recovery were determined using LC-MS and GC-MS with derivatization, but not using GC-MS without derivatization (decarboxylation conversion rate of about 50–60%). No high deviation (<10%) in the total neutral cannabinoid concentrations in real cannabis oil samples was noticed, probably due to the low content of acidic forms in the original galenic preparation. Conclusions: This study raised awareness about the potential underestimation of the total Δ9-THC and CBD content in cannabis oils when quantification is performed by GC-MS without derivatization. The advice for pharmacists is to perform complete decarboxylation to convert all acidic precursors in neutral cannabinoids. Full article
(This article belongs to the Special Issue Recent Advances in Oral Pharmaceutical Forms)
Show Figures

Figure 1

30 pages, 2704 KiB  
Systematic Review
Cannabinoids as Antibacterial Agents: A Systematic and Critical Review of In Vitro Efficacy Against Streptococcus and Staphylococcus
by Dhakshila Niyangoda, Myat Lin Aung, Mallique Qader, Wubshet Tesfaye, Mary Bushell, Fabian Chiong, Danny Tsai, Danish Ahmad, Indira Samarawickrema, Mahipal Sinnollareddy and Jackson Thomas
Antibiotics 2024, 13(11), 1023; https://doi.org/10.3390/antibiotics13111023 - 30 Oct 2024
Cited by 6 | Viewed by 3503
Abstract
Background: Two major bacterial pathogens, Staphylococcus aureus and Streptococcus pyogenes, are becoming increasingly antibiotic-resistant. Despite the urgency, only a few new antibiotics have been approved to address these infections. Although cannabinoids have been noted for their antibacterial properties, a comprehensive review of [...] Read more.
Background: Two major bacterial pathogens, Staphylococcus aureus and Streptococcus pyogenes, are becoming increasingly antibiotic-resistant. Despite the urgency, only a few new antibiotics have been approved to address these infections. Although cannabinoids have been noted for their antibacterial properties, a comprehensive review of their effects on these bacteria has been lacking. Objective: This systematic review examines the antibacterial activity of cannabinoids against S. aureus, including methicillin-resistant S. aureus (MRSA) and vancomycin-resistant S. aureus (VRSA) strains, and S. pyogenes. Methods: Databases, including CINAHL, Cochrane, Medline, Scopus, Web of Science, and LILACS, were searched. Of 3510 records, 24 studies met the inclusion criteria, reporting on the minimum inhibitory concentration (MIC) and minimum bactericidal concentration of cannabinoids. Results: Cannabidiol (CBD) emerged as the most effective cannabinoid, with MICs ranging from 0.65 to 32 mg/L against S. aureus, 0.5 to 4 mg/L for MRSA, and 1 to 2 mg/L for VRSA. Other cannabinoids, such as cannabichromene, cannabigerol (CBG), and delta-9-tetrahydrocannabinol (Δ9-THC), also exhibited significant antistaphylococcal activity. CBD, CBG, and Δ9-THC also showed efficacy against S. pyogenes, with MICs between 0.6 and 50 mg/L. Synergistic effects were observed when CBD and essential oils from Cannabis sativa when combined with other antibacterial agents. Conclusion: Cannabinoids’ antibacterial potency is closely linked to their structure–activity relationships, with features like the monoterpene region, aromatic alkyl side chain, and aromatic carboxylic groups enhancing efficacy, particularly in CBD and its cyclic forms. These results highlight the potential of cannabinoids in developing therapies for resistant strains, though further research is needed to confirm their clinical effectiveness. Full article
Show Figures

Figure 1

31 pages, 2126 KiB  
Review
Chemistry and Pharmacology of Delta-8-Tetrahydrocannabinol
by Maged S. Abdel-Kader, Mohamed M. Radwan, Ahmed M. Metwaly, Ibrahim H. Eissa, Arno Hazekamp and Mahmoud A. ElSohly
Molecules 2024, 29(6), 1249; https://doi.org/10.3390/molecules29061249 - 11 Mar 2024
Cited by 10 | Viewed by 8516
Abstract
Cannabis sativa is one of the oldest plants utilized by humans for both economic and medical purposes. Although the use of cannabis started millennia ago in the Eastern hemisphere, its use has moved and flourished in the Western nations in more recent centuries. [...] Read more.
Cannabis sativa is one of the oldest plants utilized by humans for both economic and medical purposes. Although the use of cannabis started millennia ago in the Eastern hemisphere, its use has moved and flourished in the Western nations in more recent centuries. C. sativa is the source of psychoactive cannabinoids that are consumed as recreational drugs worldwide. The C21 aromatic hydrocarbons are restricted in their natural occurrence to cannabis (with a few exceptions). Delta-9-tetrahydrocannabinol (Δ9-THC) is the main psychoactive component in cannabis, with many pharmacological effects and various approved medical applications. However, a wide range of side effects are associated with the use of Δ9-THC, limiting its medical use. In 1966, another psychoactive cannabinoid, Delta-8-tetrahydrocannabinol (Δ8-THC) was isolated from marijuana grown in Maryland but in very low yield. Δ8-THC is gaining increased popularity due to its better stability and easier synthetic manufacturing procedures compared to Δ9-THC. The passing of the U.S. Farm Bill in 2018 led to an increase in the sale of Δ8-THC in the United States. The marketed products contain Δ8-THC from synthetic sources. In this review, methods of extraction, purification, and structure elucidation of Δ8-THC will be presented. The issue of whether Δ8-THC is a natural compound or an artifact will be discussed, and the different strategies for its chemical synthesis will be presented. Δ8-THC of synthetic origin is expected to contain some impurities due to residual amounts of starting materials and reagents, as well as side products of the reactions. The various methods of analysis and detection of impurities present in the marketed products will be discussed. The pharmacological effects of Δ8-THC, including its interaction with CB1 and CB2 cannabinoid receptors in comparison with Δ9-THC, will be reviewed. Full article
Show Figures

Graphical abstract

16 pages, 2881 KiB  
Article
Cannabidiol Exerts Anticonvulsant Effects Alone and in Combination with Δ9-THC through the 5-HT1A Receptor in the Neocortex of Mice
by Yasaman Javadzadeh, Alexandra Santos, Mark S. Aquilino, Shanthini Mylvaganam, Karolina Urban and Peter L. Carlen
Cells 2024, 13(6), 466; https://doi.org/10.3390/cells13060466 - 7 Mar 2024
Cited by 7 | Viewed by 4053
Abstract
Cannabinoids have shown potential in drug-resistant epilepsy treatment; however, we lack knowledge on which cannabinoid(s) to use, dosing, and their pharmacological targets. This study investigated (i) the anticonvulsant effect of Cannabidiol (CBD) alone and (ii) in combination with Delta-9 Tetrahydrocannabinol (Δ9-THC), [...] Read more.
Cannabinoids have shown potential in drug-resistant epilepsy treatment; however, we lack knowledge on which cannabinoid(s) to use, dosing, and their pharmacological targets. This study investigated (i) the anticonvulsant effect of Cannabidiol (CBD) alone and (ii) in combination with Delta-9 Tetrahydrocannabinol (Δ9-THC), as well as (iii) the serotonin (5-HT)1A receptor’s role in CBD’s mechanism of action. Seizure activity, induced by 4-aminopyridine, was measured by extracellular field recordings in cortex layer 2/3 of mouse brain slices. The anticonvulsant effect of 10, 30, and 100 µM CBD alone and combined with Δ9-THC was evaluated. To examine CBD’s mechanism of action, slices were pre-treated with a 5-HT1A receptor antagonist before CBD’s effect was evaluated. An amount of ≥30 µM CBD alone exerted significant anticonvulsant effects while 10 µM CBD did not. However, 10 µM CBD combined with low-dose Δ9-THC (20:3 ratio) displayed significantly greater anticonvulsant effects than either phytocannabinoid alone. Furthermore, blocking 5-HT1A receptors before CBD application significantly abolished CBD’s effects. Thus, our results demonstrate the efficacy of low-dose CBD and Δ9-THC combined and that CBD exerts its effects, at least in part, through 5-HT1A receptors. These results could address drug-resistance while providing insight into CBD’s mechanism of action, laying the groundwork for further testing of cannabinoids as anticonvulsants. Full article
(This article belongs to the Special Issue New Strategies in Therapeutic Targets of Epilepsy)
Show Figures

Figure 1

15 pages, 3098 KiB  
Article
Δ8-THC Induces Up-Regulation of Glutamatergic Pathway Genes in Differentiated SH-SY5Y: A Transcriptomic Study
by Ivan Anchesi, Giovanni Schepici, Luigi Chiricosta, Agnese Gugliandolo, Stefano Salamone, Diego Caprioglio, Federica Pollastro and Emanuela Mazzon
Int. J. Mol. Sci. 2023, 24(11), 9486; https://doi.org/10.3390/ijms24119486 - 30 May 2023
Cited by 5 | Viewed by 2091
Abstract
Cannabinoids, natural or synthetic, have antidepressant, anxiolytic, anticonvulsant, and anti-psychotic properties. Cannabidiol (CBD) and delta-9-tetrahydrocannabinol (Δ9-THC) are the most studied cannabinoids, but recently, attention has turned towards minor cannabinoids. Delta-8-tetrahydrocannabinol (Δ8-THC), an isomer of Δ9-THC, is a [...] Read more.
Cannabinoids, natural or synthetic, have antidepressant, anxiolytic, anticonvulsant, and anti-psychotic properties. Cannabidiol (CBD) and delta-9-tetrahydrocannabinol (Δ9-THC) are the most studied cannabinoids, but recently, attention has turned towards minor cannabinoids. Delta-8-tetrahydrocannabinol (Δ8-THC), an isomer of Δ9-THC, is a compound for which, to date, there is no evidence of its role in the modulation of synaptic pathways. The aim of our work was to evaluate the effects of Δ8-THC on differentiated SH-SY5Y human neuroblastoma cells. Using next generation sequencing (NGS), we investigated whether Δ8-THC could modify the transcriptomic profile of genes involved in synapse functions. Our results showed that Δ8-THC upregulates the expression of genes involved in the glutamatergic pathway and inhibits gene expression at cholinergic synapses. Conversely, Δ8-THC did not modify the transcriptomic profile of genes involved in the GABAergic and dopaminergic pathways. Full article
(This article belongs to the Special Issue New Insights into Synapse Structure and Function)
Show Figures

Figure 1

15 pages, 4562 KiB  
Article
Transcriptional Alterations Induced by Delta-9 Tetrahydrocannabinol in the Brain and Gonads of Adult Medaka
by Marlee Vassall, Sourav Chakraborty, Yashi Feng, Mehwish Faheem, Xuegeng Wang and Ramji Kumar Bhandari
J. Xenobiot. 2023, 13(2), 237-251; https://doi.org/10.3390/jox13020018 - 30 May 2023
Cited by 2 | Viewed by 2331
Abstract
With the legalization of marijuana smoking in several states of the United States and many other countries for medicinal and recreational use, the possibility of its release into the environment cannot be overruled. Currently, the environmental levels of marijuana metabolites are not monitored [...] Read more.
With the legalization of marijuana smoking in several states of the United States and many other countries for medicinal and recreational use, the possibility of its release into the environment cannot be overruled. Currently, the environmental levels of marijuana metabolites are not monitored on a regular basis, and their stability in the environment is not well understood. Laboratory studies have linked delta 9-tetrahydrocannabinol (Δ9-THC) exposure with behavioral abnormalities in some fish species; however, their effects on endocrine organs are less understood. To understand the effects of THC on the brain and gonads, we exposed adult medaka (Oryzias latipes, Hd-rR strain, both male and female) to 50 ug/L THC for 21 days spanning their complete spermatogenic and oogenic cycles. We examined transcriptional responses of the brain and gonads (testis and ovary) to Δ9-THC, particularly molecular pathways associated with behavioral and reproductive functions. The Δ9-THC effects were more profound in males than females. The Δ9-THC-induced differential expression pattern of genes in the brain of the male fish suggested pathways to neurodegenerative diseases and pathways to reproductive impairment in the testis. The present results provide insights into endocrine disruption in aquatic organisms due to environmental cannabinoid compounds. Full article
(This article belongs to the Special Issue Environmental Toxicology and Animal Health)
Show Figures

Figure 1

14 pages, 1192 KiB  
Review
Cannabis and Paternal Epigenetic Inheritance
by Filomena Mazzeo and Rosaria Meccariello
Int. J. Environ. Res. Public Health 2023, 20(9), 5663; https://doi.org/10.3390/ijerph20095663 - 27 Apr 2023
Cited by 6 | Viewed by 4574
Abstract
Cannabis is the most widely used illicit drug in Western counties and its abuse is particularly high in male adolescents and young adults. Its main psychotropic component, the cannabinoid delta-9-tetrahydrocannabinol (Δ9-THC), interferes in the endogenous endocannabinoid system. This signaling system is [...] Read more.
Cannabis is the most widely used illicit drug in Western counties and its abuse is particularly high in male adolescents and young adults. Its main psychotropic component, the cannabinoid delta-9-tetrahydrocannabinol (Δ9-THC), interferes in the endogenous endocannabinoid system. This signaling system is involved in the control of many biological activities, including the formation of high-quality male gametes. Direct adverse effects of Δ9-THC in male reproduction are well known in both animal models and humans. Nevertheless, the possibility of long-term effects due to epigenetic mechanisms has recently been reported. In this review, we summarize the main advances in the field suggesting the need to pay attention to the possible long-term epigenetic risks for the reproductive health of cannabis users and the health of their offspring. Full article
Show Figures

Figure 1

15 pages, 400 KiB  
Article
Associations between Prenatal and Postnatal Exposure to Cannabis with Cognition and Behavior at Age 5 Years: The Healthy Start Study
by Brianna F. Moore, Kaytlyn A. Salmons, Adrienne T. Hoyt, Karli S. Swenson, Emily A. Bates, Katherine A. Sauder, Allison L. B. Shapiro, Greta Wilkening, Gregory L. Kinney, Andreas M. Neophytou, Cristina Sempio, Jost Klawitter, Uwe Christians and Dana Dabelea
Int. J. Environ. Res. Public Health 2023, 20(6), 4880; https://doi.org/10.3390/ijerph20064880 - 10 Mar 2023
Cited by 17 | Viewed by 4337
Abstract
Background: Prenatal exposure to cannabis may influence childhood cognition and behavior, but the epidemiologic evidence is mixed. Even less is known about the potential impact of secondhand exposure to cannabis during early childhood. Objective: This study sought to assess whether prenatal and/or postnatal [...] Read more.
Background: Prenatal exposure to cannabis may influence childhood cognition and behavior, but the epidemiologic evidence is mixed. Even less is known about the potential impact of secondhand exposure to cannabis during early childhood. Objective: This study sought to assess whether prenatal and/or postnatal exposure to cannabis was associated with childhood cognition and behavior. Study design: This sub-study included a convenience sample of 81 mother–child pairs from a Colorado-based cohort. Seven common cannabinoids (including delta 9-tetrahydrocannabinol (Δ9-THC) and cannabidiol (CBD)) and their metabolites were measured in maternal urine collected mid-gestation and child urine collected at age 5 years. Prenatal and postnatal exposure to cannabis was dichotomized as exposed (detection of any cannabinoid) and not exposed. Generalized linear models examined the associations between prenatal or postnatal exposure to cannabis with the NIH Toolbox and Child Behavior Checklist T-scores at age 5 years. Results: In this study, 7% (n = 6) of the children had prenatal exposure to cannabis and 12% (n = 10) had postnatal exposure to cannabis, with two children experiencing this exposure at both time points. The most common cannabinoid detected in pregnancy was Δ9-THC, whereas the most common cannabinoid detected in childhood was CBD. Postnatal exposure to cannabis was associated with more aggressive behavior (β: 3.2; 95% CI: 0.5, 5.9), attention deficit/hyperactivity problems (β: 8.0; 95% CI: 2.2, 13.7), and oppositional/defiant behaviors (β: 3.2; 95% CI: 0.2, 6.3), as well as less cognitive flexibility (β: −15.6; 95% CI: −30.0, −1.2) and weaker receptive language (β: −9.7; 95% CI: −19.2, −0.3). By contrast, prenatal exposure to cannabis was associated with fewer internalizing behaviors (mean difference: −10.2; 95% CI: −20.3, −0.2) and fewer somatic complaints (mean difference: −5.2, 95% CI: −9.8, −0.6). Conclusions: Our study suggests that postnatal exposure to cannabis is associated with more behavioral and cognitive problems among 5-year-old children, independent of prenatal and postnatal exposure to tobacco. The potential risks of cannabis use (including smoking and vaping) during pregnancy and around young children should be more widely communicated to parents. Full article
(This article belongs to the Special Issue Health Effects of Cannabis Use)
32 pages, 5051 KiB  
Article
Alterations in Abundance and Compartmentalization of miRNAs in Blood Plasma Extracellular Vesicles and Extracellular Condensates during HIV/SIV Infection and Its Modulation by Antiretroviral Therapy (ART) and Delta-9-Tetrahydrocannabinol (Δ9-THC)
by Steven Kopcho, Marina McDew-White, Wasifa Naushad, Mahesh Mohan and Chioma M. Okeoma
Viruses 2023, 15(3), 623; https://doi.org/10.3390/v15030623 - 24 Feb 2023
Cited by 7 | Viewed by 4067
Abstract
In this follow-up study, we investigated the abundance and compartmentalization of blood plasma extracellular miRNA (exmiRNA) into lipid-based carriers—blood plasma extracellular vesicles (EVs) and non-lipid-based carriers—extracellular condensates (ECs) during SIV infection. We also assessed how combination antiretroviral therapy (cART), administered in conjunction with [...] Read more.
In this follow-up study, we investigated the abundance and compartmentalization of blood plasma extracellular miRNA (exmiRNA) into lipid-based carriers—blood plasma extracellular vesicles (EVs) and non-lipid-based carriers—extracellular condensates (ECs) during SIV infection. We also assessed how combination antiretroviral therapy (cART), administered in conjunction with phytocannabinoid delta-9-tetrahydrocannabinol (THC), altered the abundance and compartmentalization of exmiRNAs in the EVs and ECs of SIV-infected rhesus macaques (RMs). Unlike cellular miRNAs, exmiRNAs in blood plasma may serve as minimally invasive disease indicators because they are readily detected in stable forms. The stability of exmiRNAs in cell culture fluids and body fluids (urine, saliva, tears, cerebrospinal fluid (CSF), semen, blood) is based on their association with different carriers (lipoproteins, EVs, and ECs) that protect them from the activities of endogenous RNases. Here, we showed that in the blood plasma of uninfected control RMs, significantly less exmiRNAs were associated with EVs compared to the level (30% higher) associated with ECs, and that SIV infection altered the profile of EVs and ECs miRNAome (Manuscript 1). In people living with HIV (PLWH), host-encoded miRNAs regulate both host and viral gene expression, which may serve as indicators of disease or treatment biomarkers. The profile of miRNAs in blood plasma of PLWH (elite controllers versus viremic patients) are different, indicating that HIV may alter host miRNAome. However, there are no studies assessing the effect of cART or other substances used by PLWH, such as THC, on the abundance of exmiRNA and their association with EVs and ECs. Moreover, longitudinal exmiRNA profiles following SIV infection, treatment with THC, cART, or THC+cART remains unclear. Here, we serially analyzed miRNAs associated with blood plasma derived EVs and ECs. Methods: Paired EVs and ECs were separated from EDTA blood plasma of male Indian rhesus macaques (RMs) in five treatment groups, including VEH/SIV, VEH/SIV/cART, THC/SIV, THC/SIV/cART, or THC alone. Separation of EVs and ECs was achieved with the unparalleled nano-particle purification tool ─PPLC, a state-of-the-art, innovative technology equipped with gradient agarose bead sizes and a fast fraction collector that allows high resolution separation and retrieval of preparative quantities of sub-populations of extracellular structures. Global miRNA profiles of the paired EVs and ECs were determined with RealSeq Biosciences (Santa Cruz, CA) custom sequencing platform by conducting small RNA (sRNA)-seq. The sRNA-seq data were analyzed using various bioinformatic tools. Validation of key exmiRNA was performed using specific TaqMan microRNA stem-loop RT-qPCR assays. Results: We investigated the effect of cART, THC, or both cART and THC together on the abundance and compartmentalization of blood plasma exmiRNA in EVs and ECs in SIV-infected RMs. As shown in Manuscript 1 of this series, were in uninfected RMs, ~30% of exmiRNAs were associated with ECs, we confirmed in this follow up manuscript that exmiRNAs were present in both lipid-based carriers—EVs and non-lipid-based carriers—ECs, with 29.5 to 35.6% and 64.2 to 70.5 % being associated with EVs and ECs, respectively. Remarkably, the different treatments (cART, THC) have distinct effects on the enrichment and compartmentalization pattern of exmiRNAs. In the VEH/SIV/cART group, 12 EV-associated and 15 EC-associated miRNAs were significantly downregulated. EV-associated miR-206, a muscle-specific miRNA that is present in blood, was higher in the VEH/SIV/ART compared to the VEH/SIV group. ExmiR-139-5p that was implicated in endocrine resistance, focal adhesion, lipid and atherosclerosis, apoptosis, and breast cancer by miRNA-target enrichment analysis was significantly lower in VEH/SIV/cART compared to VEH/SIV, irrespective of the compartment. With respect to THC treatment, 5 EV-associated and 21 EC-associated miRNAs were significantly lower in the VEH/THC/SIV. EV-associated miR-99a-5p was higher in VEH/THC/SIV compared to VEH/SIV, while miR-335-5p counts were significantly lower in both EVs and ECs of THC/SIV compared to VEH/SIV. EVs from SIV/cART/THC combined treatment group have significant increases in the count of eight (miR-186-5p, miR-382-5p, miR-139-5p and miR-652, miR-10a-5p, miR-657, miR-140-5p, miR-29c-3p) miRNAs, all of which were lower in VEH/SIV/cART group. Analysis of miRNA-target enrichment showed that this set of eight miRNAs were implicated in endocrine resistance, focal adhesions, lipid and atherosclerosis, apoptosis, and breast cancer as well as cocaine and amphetamine addiction. In ECs and EVs, combined THC and cART treatment significantly increased miR-139-5p counts compared to VEH/SIV group. Significant alterations in these host miRNAs in both EVs and ECs in the untreated and treated (cART, THC, or both) RMs indicate the persistence of host responses to infection or treatments, and this is despite cART suppression of viral load and THC suppression of inflammation. To gain further insight into the pattern of miRNA alterations in EVs and ECs and to assess potential cause-and-effect relationships, we performed longitudinal miRNA profile analysis, measured in terms of months (1 and 5) post-infection (MPI). We uncovered miRNA signatures associated with THC or cART treatment of SIV-infected macaques in both EVs and ECs. While the number of miRNAs was significantly higher in ECs relative to EVs for all groups (VEH/SIV, SIV/cART, THC/SIV, THC/SIV/cART, and THC) longitudinally from 1 MPI to 5 MPI, treatment with cART and THC have longitudinal effects on the abundance and compartmentalization pattern of exmiRNAs in the two carriers. As shown in Manuscript 1 where SIV infection led to longitudinal suppression of EV-associated miRNA-128-3p, administration of cART to SIV-infected RMs did not increase miR-128-3p but resulted in longitudinal increases in six EV-associated miRNAs (miR-484, miR-107, miR-206, miR-184, miR-1260b, miR-6132). Furthermore, administration of cART to THC treated SIV-infected RMs resulted in a longitudinal decrease in three EV-associated miRNAs (miR-342-3p, miR-100-5p, miR181b-5p) and a longitudinal increase in three EC-associated miRNAs (miR-676-3p, miR-574-3p, miR-505-5p). The longitudinally altered miRNAs in SIV-infected RMs may indicate disease progression, while in the cART Group and the THC Group, the longitudinally altered miRNAs may serve as biomarkers of response to treatment. Conclusions: This paired EVs and ECs miRNAome analyses provided a comprehensive cross-sectional and longitudinal summary of the host exmiRNA responses to SIV infection and the impact of THC, cART, or THC and cART together on the miRNAome during SIV infection. Overall, our data point to previously unrecognized alterations in the exmiRNA profile in blood plasma following SIV infection. Our data also indicate that cART and THC treatment independently and in combination may alter both the abundance and the compartmentalization of several exmiRNA related to various disease and biological processes. Full article
(This article belongs to the Special Issue Viruses and Extracellular Vesicles 2023)
Show Figures

Figure 1

15 pages, 1778 KiB  
Review
A Review on the Impact of Cannabis in Society and the Analytical Methodologies for Cannabinoids
by Matthew J. Vergne, Lindsey Reynolds, Alexus Brown, Grayson Pullias and Anna Froemming
Psychoactives 2023, 2(1), 37-51; https://doi.org/10.3390/psychoactives2010003 - 20 Feb 2023
Cited by 3 | Viewed by 4582
Abstract
The use of plant-based medicine dates back centuries, and cannabis (Cannabis sativa) is one such plant that has been used medicinally and illicitly. Although cannabis contains hundreds of cannabinoids and other natural products, its potential medicinal use was largely ignored by modern researchers [...] Read more.
The use of plant-based medicine dates back centuries, and cannabis (Cannabis sativa) is one such plant that has been used medicinally and illicitly. Although cannabis contains hundreds of cannabinoids and other natural products, its potential medicinal use was largely ignored by modern researchers due to the legal restrictions and heavy regulations introduced in the 1930s. As restrictions on cannabis access have eased since the 1990s there is renewed interest in the research of cannabinoids and the other components in the cannabis plant. The focus of this review article is an overview of cannabis and the analytical challenges in the quality control and biological analysis. The pharmacological effects of psychoactive cannabinoids, delta-9-tetrahydrocannabinol (Δ9-THC) and delta-8-trans- tetrahydrocannabinol (Δ8-THC) is discussed, along with an abundant non-intoxicating cannabinoid, cannabidiol (CBD). The analytical methods for the quality control assays of cannabis products include gas chromatography and liquid chromatography coupled to different detectors, including mass spectrometry. This review will highlight various analytical methods for the quality control of cannabis products and the quantitation of cannabinoids in biological matrices for forensics and toxicology. Full article
Show Figures

Figure 1

10 pages, 3531 KiB  
Article
Delta-8 Tetrahydrocannabinol Product Impurities
by Colleen L. Ray, Madison P. Bylo, Jonny Pescaglia, James A. Gawenis and C. Michael Greenlief
Molecules 2022, 27(20), 6924; https://doi.org/10.3390/molecules27206924 - 15 Oct 2022
Cited by 17 | Viewed by 5909
Abstract
Due to increased concerns regarding unidentified impurities in delta-8 tetrahydrocannabinol (Δ-8 THC) consumer products, a study using Nuclear Magnetic Resonance (NMR), high performance liquid chromatography (HPLC), and mass spectrometry (MS) was conducted to further investigate these products. Ten Δ-8 THC products, including distillates [...] Read more.
Due to increased concerns regarding unidentified impurities in delta-8 tetrahydrocannabinol (Δ-8 THC) consumer products, a study using Nuclear Magnetic Resonance (NMR), high performance liquid chromatography (HPLC), and mass spectrometry (MS) was conducted to further investigate these products. Ten Δ-8 THC products, including distillates and ready to use vaporizer cartridges, were analyzed. The results yield findings that the tested products contain several impurities in concentrations far beyond what is declared on certificates of analysis for these products. As Δ-8 THC is a synthetic product synthesized from cannabidiol (CBD), there are valid concerns regarding the presence of impurities in these products with unknown effects on the human body. Compounding this problem is apparent inadequate testing of these products by producers and independent laboratories. Full article
(This article belongs to the Special Issue Molecules in 2022)
Show Figures

Graphical abstract

32 pages, 1571 KiB  
Systematic Review
Neurological Benefits, Clinical Challenges, and Neuropathologic Promise of Medical Marijuana: A Systematic Review of Cannabinoid Effects in Multiple Sclerosis and Experimental Models of Demyelination
by Victor Longoria, Hannah Parcel, Bameelia Toma, Annu Minhas and Rana Zeine
Biomedicines 2022, 10(3), 539; https://doi.org/10.3390/biomedicines10030539 - 24 Feb 2022
Cited by 24 | Viewed by 19033
Abstract
Despite current therapeutic strategies for immunomodulation and relief of symptoms in multiple sclerosis (MS), remyelination falls short due to dynamic neuropathologic deterioration and relapses, leading to accrual of disability and associated patient dissatisfaction. The potential of cannabinoids includes add-on immunosuppressive, analgesic, neuroprotective, and [...] Read more.
Despite current therapeutic strategies for immunomodulation and relief of symptoms in multiple sclerosis (MS), remyelination falls short due to dynamic neuropathologic deterioration and relapses, leading to accrual of disability and associated patient dissatisfaction. The potential of cannabinoids includes add-on immunosuppressive, analgesic, neuroprotective, and remyelinative effects. This study evaluates the efficacy of medical marijuana in MS and its experimental animal models. A systematic review was conducted by a literature search through PubMed, ProQuest, and EBSCO electronic databases for studies reported since 2007 on the use of cannabidiol (CBD) and delta-9-tetrahydrocannabinol (THC) in MS and in experimental autoimmune encephalomyelitis (EAE), Theiler’s murine encephalomyelitis virus-induced demyelinating disease (TMEV-IDD), and toxin-induced demyelination models. Study selection and data extraction were performed by 3 reviewers, and 28 studies were selected for inclusion. The certainty of evidence was appraised using the Cochrane GRADE approach. In clinical studies, there was low- and moderate-quality evidence that treatment with ~1:1 CBD/THC mixtures as a nabiximols (Sativex®) oromucosal spray reduced numerical rating scale (NRS) scores for spasticity, pain, and sleep disturbance, diminished bladder overactivity, and decreased proinflammatory cytokine and transcription factor expression levels. Preclinical studies demonstrated decreases in disease severity, hindlimb stiffness, motor function, neuroinflammation, and demyelination. Other experimental systems showed the capacity of cannabinoids to promote remyelination in vitro and by electron microscopy. Modest short-term benefits were realized in MS responders to adjunctive therapy with CBD/THC mixtures. Future studies are recommended to investigate the cellular and molecular mechanisms of cannabinoid effects on MS lesions and to evaluate whether medical marijuana can accelerate remyelination and retard the accrual of disability over the long term. Full article
Show Figures

Graphical abstract

Back to TopTop