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Abstract: With the legalization of marijuana smoking in several states of the United States and many
other countries for medicinal and recreational use, the possibility of its release into the environment
cannot be overruled. Currently, the environmental levels of marijuana metabolites are not monitored
on a regular basis, and their stability in the environment is not well understood. Laboratory studies
have linked delta 9-tetrahydrocannabinol (∆9-THC) exposure with behavioral abnormalities in some
fish species; however, their effects on endocrine organs are less understood. To understand the
effects of THC on the brain and gonads, we exposed adult medaka (Oryzias latipes, Hd-rR strain,
both male and female) to 50 ug/L THC for 21 days spanning their complete spermatogenic and
oogenic cycles. We examined transcriptional responses of the brain and gonads (testis and ovary) to
∆9-THC, particularly molecular pathways associated with behavioral and reproductive functions.
The ∆9-THC effects were more profound in males than females. The ∆9-THC-induced differential
expression pattern of genes in the brain of the male fish suggested pathways to neurodegenerative
diseases and pathways to reproductive impairment in the testis. The present results provide insights
into endocrine disruption in aquatic organisms due to environmental cannabinoid compounds.
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1. Introduction

Marijuana, a product of Cannabis sativa, has been used for centuries by various cultures
throughout the world and consumed by an estimated 83 million individuals [1]. Due to its
psychoactive properties, marijuana has been used extensively for the relief of nausea by
pregnant women [2], and for treating drug-resistant epilepsy in children [3] as young as
two months of age. The use of medical marijuana is legal in 33 states of the United States,
while ten of them have approved its recreational use [4]. According to the National Survey
on Drug Use and Health 2020, approximately 40% of Americans aged 12 and older have
used marijuana for recreational purposes without considering its harmful effects [5]. This
widespread use by young adults is raising significant health concerns. Marijuana, like other
endocrine disrupting chemicals (EDCs), interacts with the endocrine system [6] at various
levels to cause health hazards related to lifestyle.

The smoke of marijuana consists of around 400 chemicals, 150 of which are cannabi-
noid compounds. Cannabinoid receptors are present throughout the body, including the
hypothalamus, pituitary [7], thyroid glands [8], uterus [9], ovary, testes, and sperm, as
well as in the immune cells [10]. Therefore, it is crucial to understand the interaction of
cannabinoid compounds present in marijuana with the body’s innate endocannabinoid
system and study the impact on the physiological response. The primary bioactive con-
stituent of marijuana is delta 9-tetrahydrocannabinol (∆9-THC). It has an affinity to bind
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with specific G protein-coupled cannabinoid receptors; CB1 and CB2 [11]. It has been
reported that THC exposure disrupts brain development by altering the transcriptional
trajectory of prefrontal cortex (PFC) pyramidal neurons, changes hippocampal transcrip-
tome, and alters different genes at transcriptional levels in the frontal and parietal cortex
in adults [12,13] and promotes cognitive dysfunction [14]. Furthermore, THC impacts the
levels of miRNA precursors and long non-coding RNAs in both total lymph node cells and
CD4(+) T cells [15], promoting a compromised immunological state. Moreover, ∆9-THC
has been associated with the dysregulation of microsomal oxidative metabolism [16]. Ac-
cording to studies, the CB1 receptor regulates food intake by modulating the release of
corticotropin-releasing hormones and melanin-concentrating hormones [17,18]. Addition-
ally, ∆9-THC is also involved in the dysregulation of the hypothalamic–pituitary–gonadal
axis and the hypothalamic–pituitary–adrenal axis, promoting reproductive impairment
such as oligomenorrhoea, lower libido, orgasm disorders, lack of ovulation, and a shorten-
ing of the luteal phase [19,20] in females and reduced fertilization rate in male [21]. THC
exposure also promotes epigenetic modification in sperm [22], predicting transcriptional
dysregulation in offspring. However, how THC exposure exerts transcriptional alterations
in the reproductive tissues is currently unknown.

∆9-THC has been found in surface water and influent wastewater. The reported
concentrations in surface water range from 0.3–24 ng/L, while in influent wastewater,
it has been reported in a range of 11.3–136 ng/L [23,24]. Since this substance is highly
metabolized to THC-COOH, the parent THC compound is considerably low in the aquatic
system [25]. The cannabis metabolite can exert an impact on the ecological species. Based
on the activities of THC-COOH, which is a metabolite of THC, effects on aquatic fauna are
expected. Studies on cannabinoid toxicity have been conducted on animals since 1960s [26],
and studies were more concentrated on neuro and behavioral abnormalities [27,28] and
adverse outcome pathways. Several studies have been conducted on zebrafish to study
the developmental toxicity and teratogenic effects of THC in early neurogenesis [29], im-
paired memory function [30], psychosis [31], and embryo mortality [32]. The impact THC
exposure on the brain and gonads of reproductively young adults is currently unknown.
To understand this broader question, the present study, therefore, examined the transcrip-
tional alterations in the gonads and brain of adult reproductively active male and female
medaka after chronic exposure to ∆9-THC. Medaka, Oryzias latipes, was used as it processes
epigenetic information in a similar fashion to mammals (humans and mice) [33], suggesting
that the mechanistic molecular information obtained from the studies in medaka can be
valuable for understanding epigenetic effects of ∆9-THC in aquatic species and other higher
vertebrates, including humans.

2. Materials and Methods
2.1. Chemical Preparation

∆9-tetrahydrocannabinol solution (1 mg/mL in methanol) was obtained from Sigma-
Aldrich as a DEA Schedule II substance. Exposure solution of 50 µg/L was made by serially
diluting commercially available THC pre-dissolved in 100% methanol. The final concentra-
tion of methanol in the dosing solution was 0.05% which was used as solvent control.

2.2. Animal Care and Exposure

The Hd-rR strain of medaka (Oryzias latipes) obtained from National BioResource
Project, Japan, was used. The experiment was conducted using guidelines approved by
the Institutional Animal Care and Use Committee at the University of North Carolina at
Greensboro. The fish were maintained at the density of 3 males and 3 females per 4 L
polysulfone tank. Fish were fed Otohime C1 medaka food (Reed Mariculture, Campbell,
CA, USA). Since the environmental concentration of THC is currently unknown, a single
concentration of 50 µg/L was selected to expose medaka for the present study, which is
equivalent to the human plasma concentration of ∆9-THC (45 ng/mL) in chronic marijuana
smokers [34]. Only two exposure groups were used (methanol solvent control and 50 µg/L
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∆9-THC with three biological replicates per exposure group). The exposure was continued
for 21 days, and the solutions were changed every 3 days.

2.3. Sample Collection, RNA Extraction, and RNA-Seq Library

After 21 days of exposure, fish were anesthetized with 250 mg/L MS-222, and brain
and gonads were collected from male and female fish. Three biological replicates were
used for the group, and each biological replicate contained 3 fish as technical replicates.
In total, 36 brain samples, 18 testis samples, and 18 ovary samples were collected. RNA
was extracted from each tissue sample using the Zymo Miniprep Plus Kit (Zymo Research,
Irvine, CA, USA) with DNaseI digestion of RNA according to the manufacturer’s instruc-
tions. The quality control and RNA-seq library preparation were performed in-house using
Qubit and Bioanalyzer.

2.4. RNA Sequencing (RNA-Seq) Data Analysis

Illumina HiSeq X Ten platform was used for RNA sequencing with the paired-end
sequencing strategy of 150 bp. The sequencing output was 10–15 million reads per minute
per sample, with an alignment rate of 89%. The reads were analyzed using our in-house
RNA seq data analysis protocol, and differentially expressed genes were determined using
Cuffdiff. Fragments per kilobase of transcript per million mapped fragments (FPKM) were
normalized for the calculation of the expression value of genes. Genes were considered
differentially significant with the FDR-adjusted p-value < 0.05 (q-value). The differentially
expressed genes were presented as the control and ∆9-THC-exposed group. All the se-
quencing data have been deposited to NCBI Gene Expression Omnibus (GEO) with the
accession number GSE129727.

2.5. Gene Ontology Analyses

GO terms associated with ∆9-THC exposure were searched using the g:profiler tool [35].
Ensembl gene data were used to map medaka genes of interest to their human orthologs in
order to take full advantage of the many functional and non-inferred electronic annotations
based on the human genome [36]. Using the online g-profiler ortholog search tool, we
converted the Ensembl medaka genome ID into a human ID. Programs, mainly g:profiler
and Enrichr were used to analyze the transcriptome data, ontology, human phenotype,
Reactome, KEGG, and transcription factors based on gene lists. To ensure that only the
most relevant terms were selected, we applied Bonferroni FDR correction. A GO term with
a corrected p value of 0.05 or less was considered significantly enriched among differentially
expressed genes (DEGs).

2.6. qRT-PCR

RNA isolated in step 2.3 was used to make cDNA using M-MLV reverse transcriptase
enzyme system (ThermoFisher Scientific, Waltham, MA, USA) according to the manufac-
turer’s instructions as previously described [37]. A real-time qPCR analysis was conducted
using gene-specific primers. Primers were designed by using Primer3web from exon-exon
junctions to avoid genomic DNA amplification. After testing the expression pattern of
several housekeeping genes, 18s rRNA was selected as a stable housekeeping gene. The
fold change was analyzed with the 2−∆∆Ct method.

3. Results

To detect gene expression differences between exposed and control fish after a 21-day
exposure to THC (50 µg/L), we performed RNA sequencing of brain and gonad samples
of both adult THC-exposed and control fish. The raw data were analyzed based on the
previous tool [38]. Only statistically significant genes (q < 0.05) were considered for further
analysis. The human ortholog of medaka genes was determined (Supplementary Figure S1)
and used for enrichment analysis. Differential expression of genes was found to be enriched
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in the male brain and testis. In females, only the brain showed differential gene expression
patterns but not the ovaries.

3.1. Transcriptomic Changes in the Male Brain

Sequencing of the male brain RNA revealed 57 significant DEGs (Figure 1). Addition-
ally, highly upregulated DEGs were identified as biomarkers (Figure 2) from total DEGs.
A total of 50 human orthologs of medaka were examined for their biological relationship
using enrichment analysis based on DEGs. In the male brain, 12 molecular functions (MF),
34 biological processes (BP), and 20 cellular functional (CF) enrichments were identified
(Figure 3). The top 12 enrichments from each category were chosen to illustrate the bio-
logical function of the DEGs. Structural constituent of muscle (GO:0008307 q = 3.24E−07),
redox-driven active transport muscle (GO:0015453 q = 3.07E−04), cytochrome-c oxidase
activity (GO:0004129 q = 4.34E−03) are mostly enriched in molecular function (Supplemen-
tary Figure S2A). ATP metabolic process (GO:0046034 q = 5.97E−07), muscle contraction
(GO:0006936 q = 2.33E−07), oxidative phosphorylation (GO:0006119 q = 1.102E−03), and
actin-myosin filament sliding (GO:0033275 q = 1.63E−04) are the highest enrichments in
biological processes (Supplementary Figure S2B). Respiratory chain complex III and IV,
cytochrome complex, and respirasome are the highest enrichments in cellular components
(Supplementary Figure S2C). In pathways enrichment analysis, unclassified pathways are
altered greater than the other enriched pathways. Most genes associated with mitochon-
drial dysregulation, such as cox1, cox2, cox3, nd4, atp6, and cytb, are involved in various
common diseases (Figure 4).
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In the testis, the expression of 22 genes was significantly altered. Many DEGs were up-
regulated (Figure 5). Human orthologues of genes showed the genes that regulate hormones,
embryonic development, and energy uptake. Gene Ontology annotation was performed
on the 22 genes to obtain their biological roles, and MF (12), BP (12), and CF (10) were
found (Figure 6). Molecular function of the top 12 enriched genes are presented, namely,
oxidoreduction-driven active transmembrane transporter (GO:0004129 q = 2.60E−05), respi-
ratory electron transport chain (GO:0015453 q = 1.36E−05), cytochrome-c oxidase activity
(GO:0004129 q = 2.60E−05), electron transfer activity (GO:0015453 q = 1.36E−05), ATP syn-
thesis coupled electron transport, female gamete generation, and fertilization are the highest
enrichments (Supplementary Figure S3A). In molecular functions, oxidoreduction-driven
active transmembrane transporter heme-copper terminal oxidase activity, cytochrome-c
oxidase activity, oxidoreductase activity, and electron transfer activity were the highly
enriched functions to be affected by THC exposure (Supplementary Figure S3B).
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males. A total of 12 genes were enriched in molecular function, 12 in biological processes, and 10 in
cellular components, with additional pathways enrichment found in the brain of the ∆9-THC-exposed
female medaka.

3.2. Transcriptomic Changes in Females

The RNA sequencing of the female brain revealed 22 significantly differentially ex-
pressed genes, of which 06 were unidentified genes and 16 were annotated. Most DEGs
were downregulated except gh2 and zgc:114181 (Figure 7). Among the 16 genes, eloal
and pou5f3 are specific to fish, and the rest were conserved with humans. The 22 human
orthologs of medaka genes from female brains were used to perform Gene Ontology annota-
tion. The biological roles and significant enrichment were determined (Figure 8). Regulation
of cyclin-dependent protein serine/threonine kinase activity (GO:0016538, q = 2.58E−04),
regulation of cyclin-dependent protein kinase activity (GO:0019887, q = 2.09E−02) were
most significant under molecular function (Supplementary Figure S4A). Regulation of
protein phosphorylation (GO:1904029, q = 1.39E−02), mitotic cell cycle phase transition,
and cell cycle phase transition (GO:0044772, q = 4.18E−02) were the highest enrich-
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ment in biological processes (Supplementary Figure S4B). Protein kinase complex, ser-
ine/threonine protein kinase complex (GO:1902554, q = 1.09E−03), cyclin A2-CDK2 com-
plex (GO:0097124, q = 2.36E−04), and cyclin-dependent protein kinase holoenzyme com-
plex (GO:0000307, q = 1.20E−04) were the highest enrichments of cellular components
(Supplementary Figure S4C). It was also identified that DEGs in male and female brains
were mostly unique (Supplementary Figure S5). Interestingly, no DEGs were found in the
RNA collected from ovaries.
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Figure 8. Differentially expressed genes in Gene Ontology from ∆9-THC-exposed adult female
medaka brain. In total, 3 in molecular function, 3 biological processes, and 5 cellular components
with additional pathways enrichment were found in THC-exposed brain from medaka.

3.3. qRT-PCR Results

The expression of DNA methyltransferase genes in the ∆9-THC-exposed female brain,
ovary, and testis were examined using qRT-PCR. In the ∆9-THC-exposed female brain and
ovary, the dnmt1 gene was expressed significantly higher than the control group (p < 0.05,
Figures 9 and 10), while dnmt3aa was significantly decreased in ovaries (Figure 10). In
the testis, only dnmt3aa, dmrt1, and star genes showed a significant decrease in expression
compared to the control (Figure 11). In the ovary, esr1 and lhr were significantly decreased,
while cyp19a1a was significantly increased in the THC group in comparison to the control
(Figure 10). In the brain, kiss1, kiss2, dnmt1, lh, and gnrh1 genes were significantly upreg-
ulated compared to the control brains (Figure 9). The lh mRNAs were measured as the
pituitary was mixed with brain samples to avoid loss of RNA from pituitary gland because
of their size.
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4. Discussion

Multiple pathways of toxicity can be enhanced by environmental chemicals leading to
adverse health outcomes either immediately or later in life [39]. Mammalian endogenous
cannabinoid receptors are known to be affected by the frequent use of cannabinoids [40,41],
while the effects of ∆9-THC on aquatic organisms remain ambiguous. Thus, the goal of the
present study was to investigate whether ∆9-THC can affect the brain and reproductive
tissues of adult fish taking a transcriptomics approach. RNAseq technology is a powerful
tool to determine the expression levels of thousands of genes simultaneously in various
tissues. Transcriptomic studies of the brain and gonads of both sexes of medaka fish
reflected the neurotoxic and reproductive effects of ∆9-THC exposure, suggesting the
effects of THC on reproductive and behavioral manifestations in aquatic organisms.

In the present study, RNA sequencing data showed that the expression of cox1, cox2,
cox3, nd4, atp6, and cytb genes are significantly downregulated in the male brain, indicating
adult exposure to THC may induce neurodegenerative disorder in males. Additionally,
tmod4, tpm1, tpm2, col1, acta1, hsp70, aldoa, and fkbp5 are significantly upregulated in
the male brain after ∆9-THC exposure. Most information related to ∆9-THC effects on
the brain has been centered on mammalian studies and cell cultures. No information is
available regarding chronic exposure effects on adult male brains and other reproductive
tissues in aquatic species. The male mice chronically exposed to ∆9-THC developed
long-term cognitive and behavioral disorders [42]. In various animal models, it has been
found that ∆9-THC is involved in regulating oxidative stress/mitochondrial functioning
and cytoarchitecture [43] in the brain. As the brain is a highly glucose-consuming vital
organ, the rate of oxidative phosphorylation and the rate of ATP production is higher
compared to other organs. Downregulation of genes encoding various proteins for glucose
metabolism and oxidative phosphorylation is correlated with various diseases such as
Alzheimer [44]. In the literature, it is suggested that decreased mitochondrial cytochrome C
oxidase (cox) mRNA levels may indicate the intensity of synaptic activity, Parkinson’s [45],
and Huntington’s diseases [46]. In contrast, the downregulation of NADH dehydrogenase
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subunit genes such as nd4 can be associated with neurodegenerative disease [47]. A
previous study with zebrafish reported downregulation of the cox gene to be correlated
with epilepsy [48]. Upregulation of aldoa leads to impaired glucose metabolism in the brain,
which may result in Alzheimer’s disease [49]. Studies with mice and zebrafish reported that
∆9-THC exposure could cause oxidative stress with an increased expression of fkbp5 and
hsp70 genes in the brain [50]. Taken together, the present transcriptomic results suggested
the overall neurotoxicity of ∆9-THC exposure in fish.

Based on the Gene Ontology annotations, genes that contribute to the enrichment of
biological processes are mainly related to cell respiratory pathways and muscle contraction
pathways. Genes encoding enzymes that participate in glycolysis and the genes encoding
enzymes that contribute to the electron transport chain were all upregulated by THC.
Research suggests that ∆9-THC exposure is associated with hypothermia and mitochondrial
function disruption, resulting in energy depletion [51,52]. It is, therefore, suggested that the
mitochondrial respiratory chain could be impaired, leading to mitochondrial dysfunction
as well as increased oxidative stress [53] in ∆9-THC-exposed male medaka brain.

In the present study, highly significant DEGs were screened out from the female brain
of the THC exposure group compared to the control. Genes such as ccnj (regulating cell
cycles), plin1, (lipid droplet-associated protein), eloa1 (transcriptional factor), ccna2 (cell
cycle regulator), gdf9 (development of primary follicles in the ovary), and nqo1 (regulates
cell cycles) were significantly downregulated in ∆9-THC-exposed female brain transcrip-
tomes. However, the dnmt1 and kiss genes were significantly upregulated in the brain of
THC-exposed females. The ∆9-THC exposure can alter gene expression patterns and pro-
mote dysregulation of neuronal, astrocytic, and microglial signaling pathways in mice [50].
A study showed reduced dorsal hippocampal neurogenesis linked to impaired spatial
memory in male rats promoted by chronic exposure to the synthetic cannabinoid [54]. Neu-
rogenesis is closely controlled by various factors, including transcription factors, cytokines,
and trophic factors [14,55], especially the cyclin-CDK complex [56]. The application of
the CDK inhibitor in the cell cycle arrest phase of neurons reflects the intervention of cell
cycle genes in neuronal differentiation and proliferation [56]. The ccna2 gene contributes to
two essential control points during the cell cycle by binding to cyclin-dependent kinases
(CDKs) [57]. It binds to CDK2 during the S phase and CDK1 during the G2 phase. The
ccna2-cdk2 complex is suggested to act during the initiation and progression of DNA syn-
thesis, preventing the re-replication of DNA during the cell cycle. The eloa1 gene encodes
protein elongin A, which enhances the RNA Pol II elongation rate [58], demonstrating that
downregulation of eloa1 may also restrict neurogenesis. Additionally, meta-analysis of the
prognostic significance of plin1 has shown that the downregulation of the plin1 gene is
directly linked with tumorigenesis and metastasis [59]. In rat brains, cannabinoids increase
the activity of dnm1 [60], resulting in the alteration of methylome patterns. Thus, upregula-
tion of dnmt1 in the ∆9-THC-exposed medaka brain may alter the brain methylome profile,
which could result in the downregulation of genes. To understand how those genes are
differentially expressed in female brains, a comprehensive genome-wide epigenetic and
simultaneous transcriptomic mapping is needed, which future studies will address. The
ccnj and ccnp genes are not characterized in medaka fish, while ccna2 is predicted to be
expressed in dividing somatic cells and controlling the cell cycle [61]. All the cyclin genes
and plin1 genes are downregulated in the ∆9-THC-exposed female group, suggesting that
the cell cycle checkpoints of somatic cell cycles are possibly disrupted, and abnormal cell
growth might be noticeably induced, leading to the development of cancer cells. In addi-
tion, the sequencing analysis uncovered GO terms that strengthen the connection between
∆9-THC exposure and the development of adverse outcomes in female brains. Analysis
of the RNA-Seq data determined that exposure to ∆9-THC enriched the same set of genes
associated with changes in the regulation of cyclin-dependent protein serine/threonine
kinase regulation and is supported by previous studies associating dysregulation in the
cell cycle that leads to metastasis [62,63].
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The present results showed downregulation of dnmt3aa and upregulation of zpc5,
arrdc3a, cldn11a, krt15, fcg2, tgfb2, cox, and cytb expression. In medaka, the upregulation
of these genes could be correlated with the downregulation of dnmt3aa, indicating epi-
genetic control of ∆9-THC exposure on testicular gene expression. In mammals, altered
endocannabinoid signaling has been reported to cause male reproduction disorders by
inhibiting spermatogenesis, reducing gonadotropin levels, and affecting the appearance
of sperm [64] due to the direct ∆9-THC exposure effect. As suggested by the literature,
downregulation of cox and cytb genes in testes, which control energy metabolism, can
be associated with testicular atrophy [65], while upregulation of cox genes can produce
proinflammatory cytokines and reactive oxygen species which are responsible for the de-
velopment of several types of cancers [66], illustrating that adult ∆9-THC exposure might
have developed oxidative stress in medaka testis, which may lead to several reproduc-
tive diseases. The zona pellucida (ZP) is found in developing oocytes. A study found
that zpc5 upregulation in the testis indicates the formation of the testis–ova complex in
medaka [67], which suggests that zpc5 upregulation in the testis of adult ∆9-THC-exposed
males could impair male reproduction. In THC-exposed males, downregulation of dmrt1
indicates a possible disruption of spermatogenesis in the testis, and downregulation of star
further supports this notion that a disruption in testosterone synthesis could be occurring
in these ∆9-THC-exposed medaka [68]. The result of RNAseq for testis shows that there
are 22 differentially expressed genes, of which only 14 genes are annotated. Among the
14 genes, there are 4 genes related to metabolism: cox1, cox2, cox3, and cytb. These genes
are responsible for energy production through aerobic metabolism [69], although the cox3
gene is not functional in humans. Like cox genes, the cytb gene is a cytochrome b gene that
functions as part of the electron transport chain [70]. All these metabolism-related genes
are upregulated to at least 1.2-fold in THC-exposed testes. The Gene Ontology annotations
suggest that the pathways related to the respiratory electron transport chain are altered
due to alterations in the expression of the aforementioned genes. This is consistent with
Gene Ontology analysis of the male brain, which suggest that ∆9-THC targeted mainly
metabolism and respiratory aspects in male fish. The alterations of cytochrome c subunit
genes and cytochrome b genes are aligned with the finding that THC impairs mitochondrial
function and results in hypothermia in organisms [52,53,71]. Based on these findings, it is
reasonable to suggest that THC targets respiratory chains and metabolism in the male testis.

5. Conclusions

In this study, we investigated the effects of human-relevant ∆9-THC exposure in adult
male and female medaka. Transcriptome analyses of the male brain exposed to ∆9-THC
revealed that the THC exposure altered the expression of genes related to mitochondrial
dysfunction, oxidative phosphorylation, and enriched gene sets identified in Parkinson’s
and Alzheimer’s disease. Additionally, abnormal expression of cell-cycle-controlling genes
identified in the female brain are potentially associated with the metastasis pathway. The
male reproductive system, mainly at the gonadal level, can be affected by chronic ∆9-THC
exposure, which is also supported by the enriched DEGs in several biological functions.
Interestingly, no significant DEGs were found in the ovaries in females, suggesting a
sexually dimorphic action of ∆9-THC in the gonads. Overall, this study will open new
arenas of research to understand the role of THC in brain metabolism and reproduction in
higher mammals, including humans, using fish as a plausible animal model.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/jox13020018/s1, Figure S1: The human ortholog of medaka genes
in the male brain, testis, and female brain. Y axis indicates the number of differentially expressed
genes enriched.; Figure S2: The top 12 enrichments of the biological processes from the Gene Ontology
enrichment annotation of male brain from THC-exposed medaka. (2A) Enrichment of biological
processes. (2B) Enrichment of molecular function. (2C) Enrichment of cellular components; Figure S3:
Top 12 enrichments of the biological processes from the Gene Ontology enrichment annotation of
testis from ∆9-THC -exposed medaka. (3A) Enrichment of biological processes. (3B) Enrichment of
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molecular function. (3C) Enrichment of cellular components; Figure S4: Gene Ontology enrichment
annotation of the female brain. (4A) Enrichment of biological processes. (4B) Enrichment of molecular
function. (4C) Enrichment of cellular components; Figure S5: Venn diagram of DEG in males and
females showed a unique set of genes differentially expressed in THC-exposed medaka.
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