A Review on the Impact of Cannabis in Society and the Analytical Methodologies for Cannabinoids
Abstract
:1. Introduction
Therapeutic Research on Cannabis
2. Pharmacokinetic Considerations
3. Analysis of Cannabis Plant Material and Products
4. Biological Sample Analysis
4.1. Analytical Methods in Biological Matrices
4.2. Clinical Analysis
4.3. Forensic Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Van Green, T. Americans Overwhelmingly Say Marijuana Should Be Legal for Medical or Recreational Use. 2022. Available online: https://www.pewresearch.org/fact-tank/2022/11/22/americans-overwhelmingly-say-marijuana-should-be-legal-for-medical-or-recreational-use (accessed on 14 February 2023).
- North America, Europe & Asia Pacific Legal Cannabis Market Size, Share & Trends Analysis Report by Source Type, by Derivatives, by End-Use, by Region, and Segment Forecasts, 2022–2030. Available online: https://www.grandviewresearch.com/industry-analysis/legal-cannabis-market (accessed on 14 February 2023).
- Gasnier, L.J. Reefer Madness. 1936. Available online: https://en.wikipedia.org/wiki/Reefer_Madness (accessed on 14 February 2023).
- Stringer, R.J.; Maggard, S.R. Reefer Madness to Marijuana Legalization: Media Exposure and American Attitudes toward Marijuana (1975–2012). J. Drug Iss. 2016, 46, 428–445. [Google Scholar] [CrossRef]
- Pertwee, R.G. Handbook of Cannabis; Oxford University Press: Oxford, UK, 2014. [Google Scholar]
- Wood, T.B.; Spivey, W.N.; Easterfield, T.H. III.—Cannabinol. Part I. J. Chem. Soc. Trans. 1899, 75, 20–36. [Google Scholar] [CrossRef] [Green Version]
- Yamamoto, I.; Watanabe, K.; Kuzuoka, K.; Narimatsu, S.; Yoshimura, H. The Pharmacological Activity of Cannabinol and its Major Metabolite, 11-Hydroxycannabinol. Chem. Pharm. Bull. 1987, 35, 2144–2147. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Casajuana Kögel, C.; López-Pelayo, H.; Balcells-Olivero, M.M.; Colom, J.; Gual, A. Psychoactive constituents of cannabis and their clinical implications: A systematic review. Adicciones 2018, 30, 140–151. [Google Scholar]
- Corroon, J. Cannabinol and Sleep: Separating Fact from Fiction. Cannabis Cannabinoid Res. 2021, 6, 366–371. [Google Scholar] [CrossRef]
- Tagen, M.; Klumpers, L.E. Review of delta-8-tetrahydrocannabinol (Δ8-THC): Comparative pharmacology with Δ9-THC. Br. J. Pharmacol. 2022, 179, 3915–3933. [Google Scholar] [CrossRef]
- Li, N.; Taylor, L.S.; Mauer, L.J. Degradation kinetics of catechins in green tea powder: Effects of temperature and relative humidity. J. Agric. Food Chem. 2011, 59, 6082–6090. [Google Scholar] [CrossRef]
- White, C.M. A Review of Human Studies Assessing Cannabidiol’s (CBD) Therapeutic Actions and Potential. J. Clin. Pharmacol. 2019, 59, 923–934. [Google Scholar] [CrossRef]
- Russo, E.B. Cannabidiol Claims and Misconceptions. Trends Pharmacol. Sci. 2017, 38, 198–201. [Google Scholar] [CrossRef]
- Bonn-Miller, M.O.; Loflin, M.J.E.; Thomas, B.F.; Marcu, J.P.; Hyke, T.; Vandrey, R. Labeling Accuracy of Cannabidiol Extracts Sold Online. JAMA 2017, 318, 1708. [Google Scholar] [CrossRef]
- Felletti, S.; De Luca, C.; Buratti, A.; Bozza, D.; Cerrato, A.; Capriotti, A.L.; Lagana, A.; Cavazzini, A.; Catani, M. Potency testing of cannabinoids by liquid and supercritical fluid chromatography: Where we are, what we need. J. Chromatogr. A 2021, 1651, 462304. [Google Scholar] [CrossRef]
- Citti, C.; Pacchetti, B.; Vandelli, M.A.; Forni, F.; Cannazza, G. Analysis of cannabinoids in commercial hemp seed oil and decarboxylation kinetics studies of cannabidiolic acid (CBDA). J. Pharm. Biomed. Anal. 2018, 149, 532–540. [Google Scholar] [CrossRef]
- Jones, R.T. Cardiovascular system effects of marijuana. J. Clin. Pharmacol. 2002, 42, 58S–63S. [Google Scholar] [CrossRef]
- Meier, M.H.; Caspi, A.; Ambler, A.; Harrington, H.; Houts, R.; Keefe, R.S.E.; McDonald, K.; Ward, A.; Poulton, R.; Moffitt, T.E. Persistent cannabis users show neuropsychological decline from childhood to midlife. Proc. Natl. Acad. Sci. USA 2012, 109, E2657–E2664. [Google Scholar] [CrossRef] [Green Version]
- Whiting, P.F.; Wolff, R.F.; Deshpande, S.; Di Nisio, M.; Duffy, S.; Hernandez, A.V.; Keurentjes, J.C.; Lang, S.; Misso, K.; Ryder, S.; et al. Cannabinoids for Medical Use. JAMA 2015, 313, 2456. [Google Scholar] [CrossRef] [Green Version]
- National Academies of Sciences, Engineering and Medicine. The Health Effects of Cannabis and Cannabinoids: The Current State of Evidence and Recommendations for Research; The National Academies Press: Washington, DC, USA, 2017. [Google Scholar]
- Smith, L.A.; Azariah, F.; Lavender, V.T.; Stoner, N.S.; Bettiol, S. Cannabinoids for nausea and vomiting in adults with cancer receiving chemotherapy. Cochrane Database Syst. Rev. 2015, 2021, CD009464. [Google Scholar] [CrossRef] [Green Version]
- Koppel, B.S.; Brust, J.C.M.; Fife, T.; Bronstein, J.; Youssof, S.; Gronseth, G.; Gloss, D. Systematic review: Efficacy and safety of medical marijuana in selected neurologic disorders: Report of the Guideline Development Subcommittee of the American Academy of Neurology. Neurology 2014, 82, 1556–1563. [Google Scholar] [CrossRef]
- Pertwee, R.G. The diverse CB1 and CB2 receptor pharmacology of three plant cannabinoids: Δ9-tetrahydrocannabinol, cannabidiol and Δ9-tetrahydrocannabivarin. Br. J. Pharmacol. 2008, 153, 199–215. [Google Scholar] [CrossRef] [Green Version]
- Di Forti, M.; Morgan, C.; Dazzan, P.; Pariante, C.; Mondelli, V.; Marques, T.R.; Handley, R.; Luzi, S.; Russo, M.; Paparelli, A.; et al. High-potency cannabis and the risk of psychosis. Br. J. Psychiatry 2009, 195, 488–491. [Google Scholar] [CrossRef] [Green Version]
- Dinis-Oliveira, R.J. Metabolomics of Δ9-tetrahydrocannabinol: Implications in toxicity. Drug Metab. Rev. 2016, 48, 80–87. [Google Scholar] [CrossRef]
- Lemberger, L.; Crabtree, R.E.; Rowe, H.M. 11-Hydroxy-Δ9-tetrahydrocannabinol: Pharmacology, disposition, and metabolism of a major metabolite of marihuana in man. Science 1972, 177, 62–64. [Google Scholar] [CrossRef] [PubMed]
- Hammond, D. Communicating THC levels and ‘dose’ to consumers: Implications for product labelling and packaging of cannabis products in regulated markets. Int. J. Drug Policy 2021, 91, 102509. [Google Scholar] [CrossRef] [PubMed]
- Toennes, S.W.; Ramaekers, J.G.; Theunissen, E.L.; Moeller, M.R.; Kauert, G.F. Comparison of cannabinoid pharmacokinetic properties in occasional and heavy users smoking a marijuana or placebo joint. J. Anal. Toxicol. 2008, 32, 470–477. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Desrosiers, N.A.; Himes, S.K.; Scheidweiler, K.B.; Concheiro-Guisan, M.; Gorelick, D.A.; Huestis, M.A. Phase I and II cannabinoid disposition in blood and plasma of occasional and frequent smokers following controlled smoked cannabis. Clin. Chem. 2014, 60, 631–643. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alvarez, J.C.; Hartley, S.; Etting, I.; Ribot, M.; Derridj-Ait-Younes, N.; Verstuyft, C.; Larabi, I.A.; Simon, N. Population pharmacokinetic model of blood THC and its metabolites in chronic and occasional cannabis users and relationship with on-site oral fluid testing. Br. J. Clin. Pharmacol. 2021, 87, 3139–3149. [Google Scholar] [CrossRef]
- Heuberger, J.A.A.C.; Guan, Z.; Oyetayo, O.-O.; Klumpers, L.; Morrison, P.D.; Beumer, T.L.; Van Gerven, J.M.A.; Cohen, A.F.; Freijer, J. Population Pharmacokinetic Model of THC Integrates Oral, Intravenous, and Pulmonary Dosing and Characterizes Short- and Long-term Pharmacokinetics. Clin. Pharmacokinet. 2015, 54, 209–219. [Google Scholar] [CrossRef]
- Huestis, M.A.; Henningfield, J.E.; Cone, E.J. Blood cannabinoids. I. Absorption of THC and formation of 11-OH-THC and THCCOOH during and after smoking marijuana. J. Anal. Toxicol. 1992, 16, 276–282. [Google Scholar] [CrossRef]
- Kelly, P.; Jones, R.T. Metabolism of tetrahydrocannabinol in frequent and infrequent marijuana users. J. Anal. Toxicol. 1992, 16, 228–235. [Google Scholar] [CrossRef]
- Merrick, J.; Lane, B.; Sebree, T.; Yaksh, T.; O’Neill, C.; Banks, S.L. Identification of Psychoactive Degradants of Cannabidiol in Simulated Gastric and Physiological Fluid. Cannabis Cannabinoid Res. 2016, 1, 102–112. [Google Scholar] [CrossRef] [Green Version]
- Huestis, M.A. Human Cannabinoid Pharmacokinetics. Chem. Biodivers. 2007, 4, 1770–1804. [Google Scholar] [CrossRef] [Green Version]
- Mechoulam, R.; Hanuš, L.R. Cannabidiol: An overview of some chemical and pharmacological aspects. Part I: Chemical aspects. Chem. Phys. Lipids 2002, 121, 35–43. [Google Scholar] [CrossRef]
- Ohlsson, A.; Lindgren, J.E.; Andersson, S.; Agurell, S.; Gillespie, H.; Hollister, L.E. Single-dose kinetics of deuterium-labelled cannabidiol in man after smoking and intravenous administration. Biomed. Environ. Mass Spectrom. 1986, 13, 77–83. [Google Scholar] [CrossRef]
- Sholler, D.J.; Spindle, T.R.; Cone, E.J.; Goffi, E.; Kuntz, D.; Mitchell, J.M.; Winecker, R.E.; Bigelow, G.E.; Flegel, R.R.; Vandrey, R. Urinary Pharmacokinetic Profile of Cannabidiol (CBD), Δ9-Tetrahydrocannabinol (THC) and Their Metabolites following Oral and Vaporized CBD and Vaporized CBD-Dominant Cannabis Administration. J. Anal. Toxicol. 2021, 46, 494–503. [Google Scholar] [CrossRef]
- Elsohly, M.A.; Mehmedic, Z.; Foster, S.; Gon, C.; Chandra, S.; Church, J.C. Changes in Cannabis Potency Over the Last 2 Decades (1995–2014): Analysis of Current Data in the United States. Biol. Psychiatry 2016, 79, 613–619. [Google Scholar] [CrossRef] [Green Version]
- Mudge, E.M.; Murch, S.J.; Brown, P.N. Leaner and greener analysis of cannabinoids. Anal. Bioanal. Chem. 2017, 409, 3153–3163. [Google Scholar] [CrossRef] [Green Version]
- Citti, C.; Braghiroli, D.; Vandelli, M.A.; Cannazza, G. Pharmaceutical and biomedical analysis of cannabinoids: A critical review. J. Pharm. Biomed. Anal. 2018, 147, 565–579. [Google Scholar] [CrossRef]
- Citti, C.; Battisti, U.M.; Braghiroli, D.; Ciccarella, G.; Schmid, M.; Vandelli, M.A.; Cannazza, G. A Metabolomic Approach Applied to a Liquid Chromatography Coupled to High-Resolution Tandem Mass Spectrometry Method (HPLC-ESI-HRMS/MS): Towards the Comprehensive Evaluation of the Chemical Composition of Cannabis Medicinal Extracts. Phytochem. Anal. 2018, 29, 144–155. [Google Scholar] [CrossRef]
- Reidel, B.; Abdelwahab, S.; Wrennall, J.A.; Clapp, P.W.; Beers, J.L.; Jackson, K.D.; Tarran, R.; Kesimer, M. Vaping additives cannabinoid oil and vitamin E acetate adhere to and damage the human airway epithelium. J. Appl. Toxicol. 2022. [Google Scholar] [CrossRef]
- Meng, Q.; Buchanan, B.; Zuccolo, J.; Poulin, M.-M.; Gabriele, J.; Baranowski, D.C. A reliable and validated LC-MS/MS method for the simultaneous quantification of 4 cannabinoids in 40 consumer products. PLoS ONE 2018, 13, e0196396. [Google Scholar] [CrossRef]
- Galant, N.; Czarny, J.; Powierska-Czarny, J.; Piotrowska-Cyplik, A. Development and Validation of the LC–MS/MS Method for Determination of 130 Natural and Synthetic Cannabinoids in Cannabis Oil. Molecules 2022, 27, 8601. [Google Scholar] [CrossRef]
- Lee, J.H.; Min, A.Y.; Han, J.H.; Yang, Y.J.; Kim, H.; Shin, D. Development and validation of LC-MS/MS method with QuEChERS clean-up for detecting cannabinoids in foods and dietary supplements. Food Addit. Contam. Part A 2020, 37, 1413–1424. [Google Scholar] [CrossRef] [PubMed]
- Brown, A.; Reynolds, L.; Vergne, M.J. What’s the 4-1-1 on 4:20? Comparison of analysis methods for THC and CBD quantitation in hemp hearts and other products derived from cannabis. In Proceedings of the 73rd Annual Meeting of the Southeastern Meeting of the American Chemical Society, San Juan, Puerto Rico, 19–22 October 2022. [Google Scholar]
- Heo, S.; Yoo, G.J.; Choi, J.Y.; Park, H.J.; Do, J.-A.; Cho, S.; Baek, S.Y.; Park, S.-K. Simultaneous Analysis of Cannabinoid and Synthetic Cannabinoids in Dietary Supplements Using UPLC with UV and UPLC–MS-MS. J. Anal. Toxicol. 2016, 40, 350–359. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Namdar, D.; Mazuz, M.; Ion, A.; Koltai, H. Variation in the compositions of cannabinoid and terpenoids in Cannabis sativa derived from inflorescence position along the stem and extraction methods. Ind. Crops Prod. 2018, 113, 376–382. [Google Scholar] [CrossRef]
- Russo, E.B. Taming THC: Potential cannabis synergy and phytocannabinoid-terpenoid entourage effects. Br. J. Pharmacol. 2011, 163, 1344–1364. [Google Scholar] [CrossRef] [PubMed]
- ElSohly, M.A.; Chandra, S.; Radwan, M.; Majumdar, C.G.; Church, J.C. A Comprehensive Review of Cannabis Potency in the United States in the Last Decade. Biol. Psychiatry Cogn. Neurosci. Neuroimaging 2021, 6, 603–606. [Google Scholar] [CrossRef]
- Joern, W.A. Detection of past and recurrent marijuana use by a modified GC/MS procedure. J. Anal. Toxicol. 1987, 11, 49–52. [Google Scholar] [CrossRef]
- Tai, S.-C.; Welch, M. Determination of 11-nor-Δ9-tetrahydrocannabinol-9-carboxylic acid in a urine-based standard reference material by isotope-dilution liquid chromatography-mass spectrometry with electrospray ionization. J. Anal. Toxicol. 2000, 24, 385–389. [Google Scholar] [CrossRef] [Green Version]
- Fenn, J.B.; Mann, M.; Meng, C.K.; Wong, S.F.; Whitehouse, C.M. Electrospray ionization for mass spectrometry of large biomolecules. Science 1989, 246, 64–71. [Google Scholar] [CrossRef]
- Banerjee, S.; Mazumdar, S. Electrospray ionization mass spectrometry: A technique to access the information beyond the molecular weight of the analyte. Int. J. Anal. Chem. 2012, 2012, 282574. [Google Scholar] [CrossRef] [Green Version]
- Sempio, C.; Almaraz-Quinones, N.; Jackson, M.; Zhao, W.; Wang, G.S.; Liu, Y.; Leehey, M.; Knupp, K.; Klawitter, J.; Christians, U.; et al. Simultaneous Quantification of 17 Cannabinoids by LC–MS-MS in Human Plasma. J. Anal. Toxicol. 2021, 46, 383–392. [Google Scholar] [CrossRef]
- Reber, J.D.; Karschner, E.L.; Seither, J.Z.; Knittel, J.L.; Dozier, K.V.; Walterscheid, J.P. An Enhanced LC–MS-MS Technique for Distinguishing Δ8- and Δ9-Tetrahydrocannabinol Isomers in Blood and Urine Specimens. J. Anal. Toxicol. 2022, 46, 343–349. [Google Scholar] [CrossRef]
- Young, B.L.; Victoria Zhang, Y. A rapid Dilute-and-Shoot LC-MS/MS method for quantifying THC-COOH and THC-COO(Gluc) in urine. J. Chromatogr. B 2022, 1211, 123495. [Google Scholar] [CrossRef]
- Vikingsson, S.; Winecker, R.E.; Cone, E.J.; Kuntz, D.J.; Dorsey, B.; Jacques, M.; Senter, M.; Flegel, R.R.; Hayes, E.D. Prevalence of Cannabidiol, ∆9- and ∆8-Tetrahydrocannabinol and Metabolites in Workplace Drug Testing Urine Specimens. J. Anal. Toxicol. 2022, 46, 866–874. [Google Scholar] [CrossRef]
- Mano, Y.; Kita, K.; Kusano, K. Hematocrit-independent recovery is a key for bioanalysis using volumetric absorptive microsampling devices, MitraTM. Bioanalysis 2015, 7, 1821–1829. [Google Scholar] [CrossRef] [PubMed]
- Protti, M.; Rudge, J.; Sberna, A.E.; Gerra, G.; Mercolini, L. Dried haematic microsamples and LC–MS/MS for the analysis of natural and synthetic cannabinoids. J. Chromatogr. B 2017, 1044–1045, 77–86. [Google Scholar] [CrossRef]
- Nie, B.; Henion, J.; Ryona, I. The Role of Mass Spectrometry in the Cannabis Industry. J. Am. Soc. Mass Spectrom. 2019, 30, 719–730. [Google Scholar] [CrossRef]
- Coulter, C.; Miller, E.; Crompton, K.; Moore, C. Tetrahydrocannabinol and Two of its Metabolites in Whole Blood Using Liquid Chromatography-Tandem Mass Spectrometry. J. Anal. Toxicol. 2008, 32, 653–658. [Google Scholar] [CrossRef] [Green Version]
- Malaca, S.; Busardò, F.P.; Gottardi, M.; Pichini, S.; Marchei, E. Dilute and shoot ultra-high performance liquid chromatography tandem mass spectrometry (UHPLC–MS/MS) analysis of psychoactive drugs in oral fluid. J. Pharm. Biomed. Anal. 2019, 170, 63–67. [Google Scholar] [CrossRef]
- Niedbala, R.S.; Kardos, K.W.; Fritch, D.F.; Kardos, S.; Fries, T.; Waga, J.; Robb, J.; Cone, E.J. Detection of marijuana use by oral fluid and urine analysis following single-dose administration of smoked and oral marijuana. J. Anal. Toxicol. 2001, 25, 289–303. [Google Scholar] [CrossRef] [Green Version]
- Brosius, C.R.; Caron, K.T.; Sosnoff, C.S.; Blount, B.C.; Wang, L. Rapid Development and Validation of a Liquid Chromatography-Tandem Mass Spectrometry Method to Measure Cannabinoids in Bronchoalveolar-Lavage Fluid of Patients with e-Cigarette, or Vaping, Product Use-Associated Lung Injury. ACS Omega 2022, 7, 443–452. [Google Scholar] [CrossRef]
- Scheidweiler, K.B.; Barnes, A.J. Quantification of Eight Cannabinoids Including Cannabidiol in Human Urine Via Liquid Chromatography Tandem Mass Spectrometry. In LC-MS in Drug Analysis: Methods and Protocols; Langman, L.J., Snozek, C.L.H., Eds.; Springer: New York, NY, USA, 2019; pp. 11–22. [Google Scholar]
- Kapur, B.M.; Aleksa, K. What the lab can and cannot do: Clinical interpretation of drug testing results. Crit. Rev. Clin. Lab. Sci. 2020, 57, 548–585. [Google Scholar] [CrossRef]
- Deventer, K.; Pozo, O.J.; Verstraete, A.G.; Van Eenoo, P. Dilute-and-shoot-liquid chromatography-mass spectrometry for urine analysis in doping control and analytical toxicology. TrAC, Trends Anal. Chem. 2014, 55, 1–13. [Google Scholar] [CrossRef]
- Kintz, P.; Cirimele, V. Testing human blood for cannabis by GC-MS. Biomed. Chromatogr. 1997, 11, 371–373. [Google Scholar] [CrossRef]
- Castro, A.L.; Tarelho, S.; Melo, P.; Franco, J.M. A fast and reliable method for quantitation of THC and its 2 main metabolites in whole blood by GC–MS/MS (TQD). Forensic Sci. Int. 2018, 289, 344–351. [Google Scholar] [CrossRef]
- Vandrey, R.; Herrmann, E.S.; Mitchell, J.M.; Bigelow, G.E.; Flegel, R.; LoDico, C.; Cone, E.J. Pharmacokinetic Profile of Oral Cannabis in Humans: Blood and Oral Fluid Disposition and Relation to Pharmacodynamic Outcomes. J. Anal. Toxicol. 2017, 41, 83–99. [Google Scholar] [CrossRef] [Green Version]
- Bergeria, C.L.; Spindle, T.R.; Cone, E.J.; Sholler, D.; Goffi, E.; Mitchell, J.M.; Winecker, R.E.; Bigelow, G.E.; Flegel, R.; Vandrey, R. Pharmacokinetic Profile of ∆9-Tetrahydrocannabinol, Cannabidiol and Metabolites in Blood following Vaporization and Oral Ingestion of Cannabidiol Products. J. Anal. Toxicol. 2022, 46, 583–591. [Google Scholar] [CrossRef]
- Logan, B.K.; D’Orazio, A.L.; Mohr, A.L.A.; Limoges, J.F.; Miles, A.K.; Scarneo, C.E.; Kerrigan, S.; Liddicoat, L.J.; Scott, K.S.; Huestis, M.A. Recommendations for Toxicological Investigation of Drug-Impaired Driving and Motor Vehicle Fatalities—2017 Update. J. Anal. Toxicol. 2017, 42, 63–68. [Google Scholar] [CrossRef] [Green Version]
- Lira, M.C.; Heeren, T.C.; Buczek, M.; Blanchette, J.G.; Smart, R.; Pacula, R.L.; Naimi, T.S. Trends in Cannabis Involvement and Risk of Alcohol Involvement in Motor Vehicle Crash Fatalities in the United States, 2000–2018. Am. J. Public Health 2021, 111, 1976–1985. [Google Scholar] [CrossRef]
- Lenné, M.G.; Dietze, P.M.; Triggs, T.J.; Walmsley, S.; Murphy, B.; Redman, J.R. The effects of cannabis and alcohol on simulated arterial driving: Influences of driving experience and task demand. Accid. Anal. Prev. 2010, 42, 859–866. [Google Scholar] [CrossRef]
- Hartman, R.L.; Huestis, M.A. Cannabis effects on driving skills. Clin. Chem. 2013, 59, 478–492. [Google Scholar] [CrossRef] [Green Version]
- Banta-Green, C.; Rowhani-Rahbar, A.; Ebel, B.E.; Andris, L.M.; Qiu, Q. Cannabis Use among Drivers Suspected of Driving under the Influence or Involved in Collisions: Analysis of Washington State Patrol Data; AAA Foundation for Traffic Safety: Washington, DC, USA, 2016. [Google Scholar]
- Ryona, I.; Henion, J. A Book-Type Dried Plasma Spot Card for Automated Flow-Through Elution Coupled with Online SPE-LC-MS/MS Bioanalysis of Opioids and Stimulants in blood. Anal. Chem. 2016, 88, 11229–11237. [Google Scholar] [CrossRef] [PubMed]
- Reynolds, L. Development of cannabinoid testing method using blood plasma cards and LC-MS/MS. In Proceedings of the 73rd Southeastern Regional ACS Meeting, San Juan, Puerto Rico, 19–22 October 2022. [Google Scholar]
- Protti, M.; Mandrioli, R.; Mercolini, L. Tutorial: Volumetric absorptive microsampling (VAMS). Anal. Chim. Acta 2019, 1046, 32–47. [Google Scholar] [CrossRef] [PubMed]
- Cone, E.J.; Presley, L.; Lehrer, M.; Seiter, W.; Smith, M.; Kardos, K.W.; Fritch, D.; Salamone, S.; Niedbala, R.S. Oral Fluid Testing for Drugs of Abuse: Positive Prevalence Rates by Intercept™ Immunoassay Screening and GC-MS-MS Confirmation and Suggested Cutoff Concentrations. J. Anal. Toxicol. 2002, 26, 541–546. [Google Scholar] [CrossRef] [Green Version]
- Lee, D.; Huestis, M.A. Current knowledge on cannabinoids in oral fluid. Drug Test. Anal. 2014, 6, 88–111. [Google Scholar] [CrossRef] [Green Version]
- Cone, E.J.; Huestis, M.A. Interpretation of Oral Fluid Tests for Drugs of Abuse. Ann. N. Y. Acad. Sci. 2007, 1098, 51–103. [Google Scholar] [CrossRef]
- Arkell, T.R.; Kevin, R.C.; Stuart, J.; Lintzeris, N.; Haber, P.S.; Ramaekers, J.G.; McGregor, I.S. Detection of Δ9THC in oral fluid following vaporized cannabis with varied cannabidiol (CBD) content: An evaluation of two point-of-collection testing devices. Drug Test. Anal. 2019, 11, 1486–1497. [Google Scholar] [CrossRef] [Green Version]
- Musshoff, F.; Madea, B. Review of Biologic Matrices (Urine, Blood, Hair) as Indicators of Recent or Ongoing Cannabis Use. Ther. Drug Monit. 2006, 28, 155–163. [Google Scholar] [CrossRef] [Green Version]
- Cone, E.J.; Bigelow, G.E.; Herrmann, E.S.; Mitchell, J.M.; LoDico, C.; Flegel, R.; Vandrey, R. Non-Smoker Exposure to Secondhand Cannabis Smoke. I. Urine Screening and Confirmation Results. J. Anal. Toxicol. 2014, 39, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Citti, C.; Russo, F.; Sgrò, S.; Gallo, A.; Zanotto, A.; Forni, F.; Vandelli, M.A.; Laganà, A.; Montone, C.M.; Gigli, G.; et al. Pitfalls in the analysis of phytocannabinoids in cannabis inflorescence. Anal. Bioanal. Chem. 2020, 412, 4009–4022. [Google Scholar] [CrossRef]
Cannabis Product | Extraction | Analysis | Run Time (min) | Analyte | Reference |
---|---|---|---|---|---|
hemp oil | dilution (MeOH: water) | LC-MS/MS | 4 | CBD, Δ9-THC, CBN | [42] |
1 mL methanol | LC-MS/MS | 11 | CBD, CBDA, Δ9-THC and THCA | [43] | |
1:5 v/v dilution hemp oil:2-propanol | HPLC-UV and MS XIC | 15 | THCA, CBDA, CBDV, Δ9-THC, CBD, CBG and CBN | [15] | |
100 mg oil in 1 mL acetonitrile | LC-MS/MS | 13 | CBD, CBDA, Δ9-THC, THCA, CBG, CBGA, CBC, CBDV, CBDVA, CBN, THCVA, THCV | [44] | |
plant material | 1 mL methanol | LC-MS/MS | CBD, Δ9-THC | [43] | |
4:1 methanol:water | HPLC-UV | 22 | CBD, CBDA, Δ9-THC, THCA | [39] | |
solids and dietary supplements | QuEChERS water:acetontrile | LC-MS/MS | CBD, Δ9-THC | [45] | |
QuEChERS water:acetontrile | GCMS | 10 | CBD, Δ9-THC | [46] | |
Methanol | HPLC | 13 | Δ9-THC and eight synthentic cannabinoids | [47] | |
Methanol | LC-MS/MS | 12 | Δ9-THC and eight synthentic cannabinoids | [47] | |
e-cigarette liquid | methanol (10 mg/mL) | GCMS | 18 | Δ9-THC, Δ8-THC, Δ8-iso THC and cannabielsoin (CBE) | [48] |
Matrix | Extraction | Analysis | Range (ng/mL) | Analyte | Reference |
---|---|---|---|---|---|
urine | dilute and shoot 1:9 with 95/5 methanol/H2O with 0.1% formic acid. | LC-MS/MS | 25–8000 | Δ9-THC-COOH, Δ9-THC -COO(Glu) | [58] |
base and enzyme hydrolysis | LC-MS/MS | 2–100 | ∆9- and ∆8-THC, THC, 11-11-OH-∆9-THC, ∆9- and ∆8-THC-COOH, ∆9-THCV, ∆9-THCVCOOH, CBD, 7-OH-CBD, CBD-COOH | [59] | |
base hydrolysis, SPE | LC-MS/MS | 1–50 THC, 5–250 THC-COOH | ∆9-THC, ∆8-THC, ∆9-THC-COOH, ∆8-THC-COOH | [57] | |
blood | Micro-sampling device (VAMS), acetonitrile-water | UPLC-MS/MS | 5–250 | ∆9-THC | [60,61] |
dried plasma sample (DPS) | LC-MS/MS | unknown | ∆9-THC, THC-COOH, 11-OH-∆9-THC | [62] | |
acetonitrile with polymeric SPE | LC-MS/MS | 0.5–100 | ∆9-THC, ∆9-THC-COOH, 11-OH-∆9-THC | [63] | |
oral fluid | dilute and shoot 1:3 dilution with water | LC-MS/MS | 1–500 | CBD, THC * | [64] |
0.2 M NaOH and hexane/ethyl acetate (9:1, v/v). Trimethyl-silylation derivatization | GC-MS/MS | LOQ 0.2 | THC | [65] | |
bronchoalveolar-lavage fluid | solid phase extraction | LC-MS/MS | 0.2–500 | Δ9-THC, Δ8-THC, 11-COOH-THC, 11-OH-THC, CBD, 7-nor-7-CBD | [66] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vergne, M.J.; Reynolds, L.; Brown, A.; Pullias, G.; Froemming, A. A Review on the Impact of Cannabis in Society and the Analytical Methodologies for Cannabinoids. Psychoactives 2023, 2, 37-51. https://doi.org/10.3390/psychoactives2010003
Vergne MJ, Reynolds L, Brown A, Pullias G, Froemming A. A Review on the Impact of Cannabis in Society and the Analytical Methodologies for Cannabinoids. Psychoactives. 2023; 2(1):37-51. https://doi.org/10.3390/psychoactives2010003
Chicago/Turabian StyleVergne, Matthew J., Lindsey Reynolds, Alexus Brown, Grayson Pullias, and Anna Froemming. 2023. "A Review on the Impact of Cannabis in Society and the Analytical Methodologies for Cannabinoids" Psychoactives 2, no. 1: 37-51. https://doi.org/10.3390/psychoactives2010003
APA StyleVergne, M. J., Reynolds, L., Brown, A., Pullias, G., & Froemming, A. (2023). A Review on the Impact of Cannabis in Society and the Analytical Methodologies for Cannabinoids. Psychoactives, 2(1), 37-51. https://doi.org/10.3390/psychoactives2010003