Incomplete Decarboxylation of Acidic Cannabinoids in GC-MS Leads to Underestimation of the Total Cannabinoid Content in Cannabis Oils Without Derivatization
Abstract
1. Introduction
2. Materials and Methods
2.1. Galenic Preparation
2.2. Chemicals and Reagents
2.3. Working Solutions
2.4. Instrumentation
2.5. Quantification of Neutral Forms of Cannabinoids Using GC-MS Analysis Without Derivatization
2.5.1. Sample Preparation
2.5.2. GC Conditions
2.5.3. MS Conditions
2.6. Quantification of Neutral and Acidic Forms of Cannabinoids Using GC-MS Analysis with Derivatization
2.6.1. Sample Preparation
2.6.2. GC Conditions
2.6.3. MS Conditions
2.7. Quantification of Neutral and Acidic Forms of Cannabinoids Using LC-MS Analysis
2.7.1. Sample Preparation
2.7.2. LC Conditions
2.7.3. MS Conditions
2.8. Data Processing
3. Results
3.1. Analytical Methods Development
3.1.1. GC-MS Analysis Without Derivatization
3.1.2. GC-MS Analysis with Derivatization
3.1.3. LC-MS Analysis
3.2. Total Δ9-THC and CBD Yield in the Laboratory Samples Containing THCA and CBDA
3.3. Total Δ9-THC and CBD Yield in Real Cannabis Oil Samples
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
GC-MS | Gas chromatography coupled with mass spectrometry |
LC-MS | Liquid chromatography coupled with mass spectrometry |
SIFAP | Italian Society of Compounding Pharmacists |
Δ9-THC | Delta-9-tetrahydrocannabinol |
CBD | Cannabidiol |
THCA | Tetrahydrocannabinolic acid |
CBDA | Cannabidiolic acid |
IS | Internal standard |
CAL | Calibrators |
QC | Quality controls |
BSTFA:TMCS | N,O-bis(trimethylsilyl)trifluoroacetamide with trimethylchlorosilane |
SD | Standard deviation |
TMS | Trimethylsilyl |
MRM | Multiple reaction monitoring |
SIM | Selected ion monitoring |
DP | Declustering potential |
EP | Entrance potential |
CE | Collision energy |
CXP | Collision cell exit potential |
References
- Pichini, S.; Pacifici, R.; Busardò, F.P.; Tagliabracci, A.; Giorgetti, R. The challenge of clinical application of FM2 cannabis oil produced in Italy for the treatment of neuropathic pain. Eur. Rev. Med. Pharmacol. Sci. 2018, 22, 863–865. [Google Scholar] [CrossRef] [PubMed]
- Campbell, C.T.; Phillips, M.S.; Manasco, K. Cannabinoids in Pediatrics. J. Pediatr. Pharmacol. Ther. JPPT Off. J. PPAG 2017, 22, 176–185. [Google Scholar] [CrossRef] [PubMed]
- Palermiti, A.; Cafaro, A.; Barco, S.; Bucchioni, P.; Franceschini, P.; Cusato, J.; De Nicolò, A.; Manca, A.; De Vivo, E.D.; Russo, E.; et al. Analysis of Cannabinoids Concentration in Cannabis Oil Galenic Preparations: Harmonization between Three Laboratories in Northern Italy. Pharmaceuticals 2021, 14, 462. [Google Scholar] [CrossRef]
- Salute, M.D. DECRETO 9 NOVEMBRE 2015, Funzioni di Organismo Statale per la Cannabis Previsto Dagli Articoli 23 e 28 Della Convenzione Unica Sugli Stupefacenti del 1961, Come Modificata nel 1972. (15A08888) (GU Serie Generale n.279 del 30-11-2015). Available online: https://www.gazzettaufficiale.it/eli/id/2015/11/30/15A08888/sg (accessed on 19 January 2025).
- Solimini, R.; Rotolo, M.C.; Pichini, S.; Pacifici, R. Neurological Disorders in Medical Use of Cannabis: An Update. CNS Neurol. Disord. Drug Targets 2017, 16, 527–533. [Google Scholar] [CrossRef]
- Stella, M.; Baiardi, G.; Pasquariello, S.; Sacco, F.; Dellacasagrande, I.; Corsaro, A.; Mattioli, F.; Barbieri, F. Antitumor Potential of Antiepileptic Drugs in Human Glioblastoma: Pharmacological Targets and Clinical Benefits. Biomedicines 2023, 11, 582. [Google Scholar] [CrossRef] [PubMed]
- Gherzi, M.; Milano, G.; Fucile, C.; Calevo, M.G.; Mancardi, M.M.; Nobili, L.; Astuni, P.; Marini, V.; Barco, S.; Cangemi, G.; et al. Safety and pharmacokinetics of medical cannabis preparation in a monocentric series of young patients with drug resistant epilepsy. Complement. Ther. Med. 2020, 51, 102402. [Google Scholar] [CrossRef]
- Elliott, J.; DeJean, D.; Clifford, T.; Coyle, D.; Potter, B.K.; Skidmore, B.; Alexander, C.; Repetski, A.E.; Shukla, V.; McCoy, B.; et al. Cannabis-based products for pediatric epilepsy: A systematic review. Epilepsia 2019, 60, 6–19. [Google Scholar] [CrossRef] [PubMed]
- Devinsky, O.; Cross, J.H.; Laux, L.; Marsh, E.; Miller, I.; Nabbout, R.; Scheffer, I.E.; Thiele, E.A.; Wright, S. Trial of Cannabidiol for Drug-Resistant Seizures in the Dravet Syndrome. N. Engl. J. Med. 2017, 376, 2011–2020. [Google Scholar] [CrossRef]
- De Backer, B.; Debrus, B.; Lebrun, P.; Theunis, L.; Dubois, N.; Decock, L.; Verstraete, A.; Hubert, P.; Charlier, C. Innovative development and validation of an HPLC/DAD method for the qualitative and quantitative determination of major cannabinoids in cannabis plant material. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2009, 877, 4115–4124. [Google Scholar] [CrossRef]
- Mudge, E.M.; Brown, P.N.; Murch, S.J. The Terroir of Cannabis: Terpene Metabolomics as a Tool to Understand Cannabis sativa Selections. Planta Med. 2019, 85, 781–796. [Google Scholar] [CrossRef]
- Mannucci, C.; Navarra, M.; Calapai, F.; Spagnolo, E.V.; Busardò, F.P.; Cas, R.D.; Ippolito, F.M.; Calapai, G. Neurological Aspects of Medical Use of Cannabidiol. CNS Neurol. Disord. Drug Targets 2017, 16, 541–553. [Google Scholar] [CrossRef] [PubMed]
- Russo, E.B.; McPartland, J.M. Cannabis is more than simply delta(9)-tetrahydrocannabinol. Psychopharmacology 2003, 165, 431–432, author reply 433–434. [Google Scholar] [CrossRef] [PubMed]
- Odieka, A.E.; Obuzor, G.U.; Oyedeji, O.O.; Gondwe, M.; Hosu, Y.S.; Oyedeji, A.O. The Medicinal Natural Products of Cannabis sativa Linn.: A Review. Molecules 2022, 27, 1689. [Google Scholar] [CrossRef]
- Woerdenbag, H.J.; Olinga, P.; Kok, E.A.; Brugman, D.A.P.; van Ark, U.F.; Ramcharan, A.S.; Lebbink, P.W.; Hoogwater, F.J.H.; Knapen, D.G.; de Groot, D.J.A.; et al. Potential, Limitations and Risks of Cannabis-Derived Products in Cancer Treatment. Cancers 2023, 15, 2119. [Google Scholar] [CrossRef] [PubMed]
- Pacifici, R.; Marchei, E.; Salvatore, F.; Guandalini, L.; Busardò, F.P.; Pichini, S. Evaluation of cannabinoids concentration and stability in standardized preparations of cannabis tea and cannabis oil by ultra-high performance liquid chromatography tandem mass spectrometry. Clin. Chem. Lab. Med. 2017, 55, 1555–1563. [Google Scholar] [CrossRef]
- Carcieri, C.; Tomasello, C.; Simiele, M.; De Nicolò, A.; Avataneo, V.; Canzoneri, L.; Cusato, J.; Di Perri, G.; D’Avolio, A. Cannabinoids concentration variability in cannabis olive oil galenic preparations. J. Pharm. Pharmacol. 2018, 70, 143–149. [Google Scholar] [CrossRef]
- Bettiol, A.; Lombardi, N.; Crescioli, G.; Maggini, V.; Gallo, E.; Mugelli, A.; Firenzuoli, F.; Baronti, R.; Vannacci, A. Galenic Preparations of Therapeutic Cannabis sativa Differ in Cannabinoids Concentration: A Quantitative Analysis of Variability and Possible Clinical Implications. Front. Pharmacol. 2018, 9, 1543. [Google Scholar] [CrossRef]
- MacCallum, C.A.; Russo, E.B. Practical considerations in medical cannabis administration and dosing. Eur. J. Intern. Med. 2018, 49, 12–19. [Google Scholar] [CrossRef]
- Dei Cas, M.; Casagni, E.; Casiraghi, A.; Minghetti, P.; Fornasari, D.M.M.; Ferri, F.; Arnoldi, S.; Gambaro, V.; Roda, G. Phytocannabinoids Profile in Medicinal Cannabis Oils: The Impact of Plant Varieties and Preparation Methods. Front. Pharmacol. 2020, 11, 570616. [Google Scholar] [CrossRef]
- Desaulniers Brousseau, V.; Wu, B.S.; MacPherson, S.; Morello, V.; Lefsrud, M. Cannabinoids and Terpenes: How Production of Photo-Protectants Can Be Manipulated to Enhance Cannabis sativa L. Phytochemistry. Front. Plant Sci. 2021, 12, 620021. [Google Scholar] [CrossRef]
- Urvashi; Han, J.H.; Hong, M.; Kwon, T.H.; Druelinger, M.; Park, S.H.; Kinney, C.A.; Olejar, K.J. Thermo-chemical conversion kinetics of cannabinoid acids in hemp (Cannabis sativa L.) using pressurized liquid extraction. J. Cannabis Res. 2024, 6, 33. [Google Scholar] [CrossRef]
- Casiraghi, A.; Roda, G.; Casagni, E.; Cristina, C.; Musazzi, U.M.; Franzè, S.; Rocco, P.; Giuliani, C.; Fico, G.; Minghetti, P.; et al. Extraction Method and Analysis of Cannabinoids in Cannabis Olive Oil Preparations. Planta Med. 2018, 84, 242–249. [Google Scholar] [CrossRef] [PubMed]
- Franzin, M.; Ruoso, R.; Del Savio, R.; Niaki, E.A.; Pettinelli, A.; Decorti, G.; Stocco, G.; Addobbati, R. Quantification of 7 cannabinoids in cannabis oil using GC-MS: Method development, validation and application to therapeutic preparations in Friuli Venezia Giulia region, Italy. Heliyon 2023, 9, e15479. [Google Scholar] [CrossRef] [PubMed]
- Galant, N.; Czarny, J.; Powierska-Czarny, J.; Piotrowska-Cyplik, A. Development and Validation of the LC-MS/MS Method for Determination of 130 Natural and Synthetic Cannabinoids in Cannabis Oil. Molecules 2022, 27, 8601. [Google Scholar] [CrossRef]
- Pourseyed Lazarjani, M.; Torres, S.; Hooker, T.; Fowlie, C.; Young, O.; Seyfoddin, A. Methods for quantification of cannabinoids: A narrative review. J. Cannabis Res. 2020, 2, 35. [Google Scholar] [CrossRef] [PubMed]
- Cardenia, V.; Toschi, T.G.; Scappini, S.; Rubino, R.C.; Rodriguez-Estrada, M.T. Development and validation of a Fast gas chromatography/mass spectrometry method for the determination of cannabinoids in Cannabis sativa L. J. Food Drug Anal. 2018, 26, 1283–1292. [Google Scholar] [CrossRef]
- Dussy, F.E.; Hamberg, C.; Luginbühl, M.; Schwerzmann, T.; Briellmann, T.A. Isolation of Delta9-THCA-A from hemp and analytical aspects concerning the determination of Delta9-THC in cannabis products. Forensic Sci. Int. 2005, 149, 3–10. [Google Scholar] [CrossRef]
- Citti, C.; Pacchetti, B.; Vandelli, M.A.; Forni, F.; Cannazza, G. Analysis of cannabinoids in commercial hemp seed oil and decarboxylation kinetics studies of cannabidiolic acid (CBDA). J. Pharm. Biomed. Anal. 2018, 149, 532–540. [Google Scholar] [CrossRef]
- Lindekamp, N.; Weigel, S.; Sachse, B.; Schäfer, B.; Rohn, S.; Triesch, N. Comprehensive analysis of 19 cannabinoids in commercial CBD oils: Concentrations, profiles, and safety implications. J. Consum. Prot. Food Saf. 2024, 19, 259–267. [Google Scholar] [CrossRef]
- Fernández, N.; Lanosa, D.A.; Janezic, N.S.; Quiroga, P.N. Development and validation of a GC-MS method for quantification of terpenes in cannabis oil (Cannabis sativa L.). Application to commercially available preparations in Argentina. J. Appl. Res. Med. Aromat. Plants 2023, 35, 100466. [Google Scholar] [CrossRef]
- Leghissa, A.; Hildenbrand, Z.L.; Schug, K.A. A review of methods for the chemical characterization of cannabis natural products. J. Sep. Sci. 2018, 41, 398–415. [Google Scholar] [CrossRef] [PubMed]
Compound | Precursor Ion (m/z) | Product Ion (m/z) | DP | EP | CE | CXP |
---|---|---|---|---|---|---|
THC | 315.3 | 193.1 | 50 | 6 | 30 | 12 |
123.1 | 50 | 6 | 40 | 11 | ||
CBD | 315.3 | 193.1 | 50 | 6 | 30 | 12 |
123.1 | 50 | 6 | 40 | 11 | ||
THC-d3 | 318.3 | 196.1 | 50 | 6 | 42 | 15 |
CBD-d3 | 318.3 | 196.1 | 50 | 6 | 42 | 15 |
THCA | 357.1 | 339.0 | −115 | −10 | −29 | −20 |
245.0 | −115 | −10 | −40 | −20 | ||
CBDA | 357.1 | 339.0 | −115 | −10 | −29 | −20 |
245.0 | −115 | −10 | −40 | −20 |
GC-MS WITHOUT DERIVATIZATION | ||||||
---|---|---|---|---|---|---|
Standard | Total Δ9-THC, Nominal Concentration (ng/mL) | Total Δ9-THC, Calculated Concentration (ng/mL) ± SD | Total CBD, Nominal Concentration (ng/mL) | Total CBD, Calculated Concentration (ng/mL) ± SD | Yield, Total Δ9-THC (%) | Yield, Total CBD (%) |
QCI | 175 | 108 ± 0.01 | 175 | 92 ± 0.003 | 61.8 | 52.3 |
QCII | 351 | 228 ± 0.03 | 351 | 200 ± 0.01 | 65.5 | 57.0 |
QCIII | 702 | 393 ± 0.04 | 702 | 327 ± 0.03 | 56.1 | 46.6 |
GC-MS WITH DERIVATIZATION | ||||||
---|---|---|---|---|---|---|
Standard | Total Δ9-THC, Nominal Concentration (ng/mL) | Total Δ9-THC, Calculated Concentration (ng/mL) ± SD | Total CBD, Nominal Concentration (ng/mL) | Total CBD, Calculated Concentration (ng/mL) ± SD | Yield, Total Δ9-THC (%) | Yield, Total CBD (%) |
QCI | 175 | 175 ± 0.03 | 175 | 196 ± 0.04 | 100.0 | 111.7 |
QCII | 351 | 349 ± 0.02 | 351 | 393 ± 0.06 | 99.6 | 112.1 |
QCIII | 702 | 722 ± 0.09 | 702 | 757 ± 0.06 | 102.9 | 107.9 |
LC-MS | ||||||
---|---|---|---|---|---|---|
Standard | Total Δ9-THC, Nominal Concentration (ng/mL) | Total Δ9-THC, Calculated Concentration (ng/mL) ± SD | Total CBD, Nominal Concentration (ng/mL) | Total CBD, Calculated Concentration (ng/mL) ± SD | Yield, Total Δ9-THC (%) | Yield, Total CBD (%) |
QCI | 175 | 191 ± 0.01 | 175 | 196 ± 0.09 | 109.0 | 111.9 |
QCII | 351 | 404 ± 0.01 | 351 | 409 ± 0.02 | 115.2 | 116.5 |
QCIII | 702 | 715 ± 0.01 | 702 | 714 ± 0.03 | 101.9 | 101.8 |
Inflorescence Variety | GC-MS Analysis with Derivatization | GC-MS Analysis Without Derivatization | Variation (%) | |||
---|---|---|---|---|---|---|
Δ9-THC (mg/mL) | CBD (mg/mL) | Δ9-THC (mg/mL) | CBD (mg/mL) | Δ9-THC | CBD | |
Bedrocan | 13.4 (a) | ND | 12.9 | ND | 4% | ND |
Bediol, No. 1 | 4.7 | 7.1 (a) | 4.9 | 6.5 | 4% | 8.5% |
Bediol, No. 2 | 4.8 | 6.9 (a) | 4.7 | 6.5 | 2% | 5.8% |
Bediol, No. 3 | 5.1 | 7.5 (a) | 5.2 | 7.1 | 2% | 5.4% |
Bediol, No. 4 | 4.8 | 7.3 (a) | 4.8 | 6.6 | 0% | 10% |
Bediol, No. 5 | 5.1 | 7.5 (a) | 4.9 | 6.9 | 4% | 8% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Franzin, M.; Di Lenardo, R.; Ruoso, R.; Addobbati, R. Incomplete Decarboxylation of Acidic Cannabinoids in GC-MS Leads to Underestimation of the Total Cannabinoid Content in Cannabis Oils Without Derivatization. Pharmaceutics 2025, 17, 334. https://doi.org/10.3390/pharmaceutics17030334
Franzin M, Di Lenardo R, Ruoso R, Addobbati R. Incomplete Decarboxylation of Acidic Cannabinoids in GC-MS Leads to Underestimation of the Total Cannabinoid Content in Cannabis Oils Without Derivatization. Pharmaceutics. 2025; 17(3):334. https://doi.org/10.3390/pharmaceutics17030334
Chicago/Turabian StyleFranzin, Martina, Rebecca Di Lenardo, Rachele Ruoso, and Riccardo Addobbati. 2025. "Incomplete Decarboxylation of Acidic Cannabinoids in GC-MS Leads to Underestimation of the Total Cannabinoid Content in Cannabis Oils Without Derivatization" Pharmaceutics 17, no. 3: 334. https://doi.org/10.3390/pharmaceutics17030334
APA StyleFranzin, M., Di Lenardo, R., Ruoso, R., & Addobbati, R. (2025). Incomplete Decarboxylation of Acidic Cannabinoids in GC-MS Leads to Underestimation of the Total Cannabinoid Content in Cannabis Oils Without Derivatization. Pharmaceutics, 17(3), 334. https://doi.org/10.3390/pharmaceutics17030334