Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (5)

Search Parameters:
Keywords = deep residual shrinkage net

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 7248 KiB  
Article
Identification and Suppression of Magnetotelluric Noise via a Deep Residual Network
by Liang Zhang, Zhengyong Ren, Xiao Xiao, Jintian Tang and Guang Li
Minerals 2022, 12(6), 766; https://doi.org/10.3390/min12060766 - 16 Jun 2022
Cited by 15 | Viewed by 3126
Abstract
The magnetotelluric (MT) method is widely applied in petroleum, mining, and deep Earth structure exploration but suffers from cultural noise. This noise will distort apparent resistivity and phase, leading to false geological interpretation. Therefore, denoising is indispensable for MT signal processing. The sparse [...] Read more.
The magnetotelluric (MT) method is widely applied in petroleum, mining, and deep Earth structure exploration but suffers from cultural noise. This noise will distort apparent resistivity and phase, leading to false geological interpretation. Therefore, denoising is indispensable for MT signal processing. The sparse representation method acts as a critical role in MT denoising. However, this method depends on the sparse assumption leading to inadequate denoising results in some cases. We propose an alternative MT denoising approach, which can achieve accurate denoising without assumptions on datasets. We first design a residual network (ResNet), which has an excellent fitting ability owing to its deep architecture. In addition, the ResNet network contains skip-connection blocks to guarantee the robustness of network degradation. As for the number of training, validation, and test datasets, we use 10,000,000; 10,000; and 100 field data, respectively, and apply the gradual shrinkage learning rate to ensure the ResNet’s generalization. In the noise identification stage, we use a small-time window to scan the MT time series, after which the gramian angular field (GAF) is applied to help identify noise and divide the MT time series into noise-free and noise data. We keep the noise-free data section in the denoising stage, and the noise data section is fed into our network. In our experiments, we test the performances of different time window sizes for noise identification and suppression and record corresponding time consumption. Then, we compare our approach with sparse representation methods. Testing results show that our approach can obtain the desired denoising results. The accuracy and loss curves show that our approach can well suppress the MT noise, and our network has a good generalization. To further validate our approach’s effectiveness, we show the apparent resistivity, phase, and polarization direction of test datasets. Our approach can adjust the distortion of apparent resistivity and phase and randomize the polarization direction distribution. Although our approach requires the high quality of the training dataset, it achieves accurate MT denoising after training and can be meaningful in cases of a severe MT noisy environment. Full article
(This article belongs to the Special Issue Electromagnetic Exploration: Theory, Methods and Applications)
Show Figures

Figure 1

20 pages, 4501 KiB  
Article
A Photovoltaic System Fault Identification Method Based on Improved Deep Residual Shrinkage Networks
by Fengxin Cui, Yanzhao Tu and Wei Gao
Energies 2022, 15(11), 3961; https://doi.org/10.3390/en15113961 - 27 May 2022
Cited by 14 | Viewed by 2715
Abstract
With the increasing installed capacity of photovoltaic (PV) power generation, it has become a significant challenge to detect abnormalities and faults of PV modules in a timely manner. Considering that all the fault information of the PV module is contained in the current-voltage [...] Read more.
With the increasing installed capacity of photovoltaic (PV) power generation, it has become a significant challenge to detect abnormalities and faults of PV modules in a timely manner. Considering that all the fault information of the PV module is contained in the current-voltage (I-V) curve, this pioneering study takes the I-V curve as the input and proposes a PV-fault identification method based on improved deep residual shrinkage networks (DRSN). This method can not only identify single faults (e.g., short-circuit, partial-shading, and abnormal aging), but also effectively identify the simultaneous existence of hybrid faults. Moreover, it can achieve end-to-end fault diagnosis. The diagnostic accuracy of the proposed method on the measured data reaches 97.73%, is better than the convolutional neural network (CNN), the support vector machine (SVM), the deep residual network (ResNet), and the stage-wise additive modeling using multi-class exponential loss function based on the classification and regression tree (SAMME-CART). In addition, the possibility of the aforementioned method running on the Raspberry Pi has been verified in this study, which is of great significance for realizing the edge diagnosis of PV fault. Full article
(This article belongs to the Topic Solar Thermal Energy and Photovoltaic Systems)
Show Figures

Figure 1

20 pages, 9029 KiB  
Article
DRs-UNet: A Deep Semantic Segmentation Network for the Recognition of Active Landslides from InSAR Imagery in the Three Rivers Region of the Qinghai–Tibet Plateau
by Ximing Chen, Xin Yao, Zhenkai Zhou, Yang Liu, Chuangchuang Yao and Kaiyu Ren
Remote Sens. 2022, 14(8), 1848; https://doi.org/10.3390/rs14081848 - 12 Apr 2022
Cited by 29 | Viewed by 4272
Abstract
At present, Synthetic Aperture Radar Interferometry (InSAR) has been an important technique for active landslides recognition in the geological survey field. However, the traditional interpretation method through human–computer interaction highly relies on expert experience, which is time-consuming and subjective. To solve the problem, [...] Read more.
At present, Synthetic Aperture Radar Interferometry (InSAR) has been an important technique for active landslides recognition in the geological survey field. However, the traditional interpretation method through human–computer interaction highly relies on expert experience, which is time-consuming and subjective. To solve the problem, this study designed an end-to-end semantic segmentation network, called deep residual shrinkage U-Net (DRs-UNet), to automatically extract potential active landslides in InSAR imagery. The proposed model was inspired by the structure of U-Net and adopted a residual shrinkage building unit (RSBU) as the feature extraction block in its encoder part. The method of this study has three main advantages: (1) The RSBU in the encoder part incorporated with soft thresholding can reduce the influence of noise from InSAR images. (2) The residual connection of the RSBU makes the training of the network easier and accelerates the convergency process. (3) The feature fusion of the corresponding layers between the encoder and decoder effectively improves the classification accuracy. Two widely used networks, U-Net and SegNet, were trained under the same experiment environment to compare with the proposed method. The experiment results in the test set show that our method achieved the best performance; specifically, the F1 score is 1.48% and 4.1% higher than U-Net and SegNet, which indicates a better balance between precision and recall. Additionally, our method has the best IoU score of over 90%. Furthermore, we applied our network to a test area located in Zhongxinrong County along Jinsha River where landslides are highly evolved. The quantitative evaluation results prove that our method is effective for the automatic recognition of potential active landslide hazards from InSAR imagery. Full article
(This article belongs to the Special Issue Intelligent Perception of Geo-Hazards from Earth Observations)
Show Figures

Figure 1

19 pages, 6294 KiB  
Article
Fully Automatic Analysis of Muscle B-Mode Ultrasound Images Based on the Deep Residual Shrinkage U-Net
by Weimin Zheng, Linxueying Zhou, Qingwei Chai, Jianguo Xu and Shangkun Liu
Electronics 2022, 11(7), 1093; https://doi.org/10.3390/electronics11071093 - 30 Mar 2022
Cited by 8 | Viewed by 3665
Abstract
The parameters of muscle ultrasound images reflect the function and state of muscles. They are of great significance to the diagnosis of muscle diseases. Because manual labeling is time-consuming and laborious, the automatic labeling of muscle ultrasound image parameters has become a research [...] Read more.
The parameters of muscle ultrasound images reflect the function and state of muscles. They are of great significance to the diagnosis of muscle diseases. Because manual labeling is time-consuming and laborious, the automatic labeling of muscle ultrasound image parameters has become a research topic. In recent years, there have been many methods that apply image processing and deep learning to automatically analyze muscle ultrasound images. However, these methods have limitations, such as being non-automatic, not applicable to images with complex noise, and only being able to measure a single parameter. This paper proposes a fully automatic muscle ultrasound image analysis method based on image segmentation to solve these problems. This method is based on the Deep Residual Shrinkage U-Net(RS-Unet) to accurately segment ultrasound images. Compared with the existing methods, the accuracy of our method shows a great improvement. The mean differences of pennation angle, fascicle length and muscle thickness are about 0.09°, 0.4 mm and 0.63 mm, respectively. Experimental results show that the proposed method realizes the accurate measurement of muscle parameters and exhibits stability and robustness. Full article
(This article belongs to the Special Issue Machine Learning in the Industrial Internet of Things)
Show Figures

Figure 1

27 pages, 63153 KiB  
Article
Adaptive Transfer Learning Based on a Two-Stream Densely Connected Residual Shrinkage Network for Transformer Fault Diagnosis over Vibration Signals
by Xiaoyan Liu, Yigang He and Lei Wang
Electronics 2021, 10(17), 2130; https://doi.org/10.3390/electronics10172130 - 2 Sep 2021
Cited by 14 | Viewed by 2658
Abstract
Vibration signal analysis is an efficient online transformer fault diagnosis method for improving the stability and safety of power systems. Operation in harsh interference environments and the lack of fault samples are the most challenging aspects of transformer fault diagnosis. High-precision performance is [...] Read more.
Vibration signal analysis is an efficient online transformer fault diagnosis method for improving the stability and safety of power systems. Operation in harsh interference environments and the lack of fault samples are the most challenging aspects of transformer fault diagnosis. High-precision performance is difficult to achieve when using conventional fault diagnosis methods. Thus, this study proposes a transformer fault diagnosis method based on the adaptive transfer learning of a two-stream densely connected residual shrinkage network over vibration signals. First, novel time-frequency analysis methods (i.e., Synchrosqueezed Wavelet Transform and Synchrosqueezed Generalized S-transform) are proposed to convert vibration signals into different images, effectively expanding the samples and extracting effective features of signals. Second, a Two-stream Densely Connected Residual Shrinkage (TSDen2NetRS) network is presented to achieve a high accuracy fault diagnosis under different working conditions. Furthermore, the Residual Shrinkage layer (RS layer) is applied as a nonlinear transformation layer to the deep learning framework to remove unimportant features and enhance anti-interference performance. Lastly, an adaptive transfer learning algorithm that can automatically select the source data set by using the domain measurement method is proposed. This algorithm accelerates the training of the deep learning network and improves accuracy when the number of samples is small. Vibration experiments of transformers are conducted under different operating conditions, and their results show the effectiveness and robustness of the proposed method. Full article
(This article belongs to the Section Artificial Intelligence)
Show Figures

Figure 1

Back to TopTop