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Abstract: Vibration signal analysis is an efficient online transformer fault diagnosis method for
improving the stability and safety of power systems. Operation in harsh interference environments
and the lack of fault samples are the most challenging aspects of transformer fault diagnosis. High-
precision performance is difficult to achieve when using conventional fault diagnosis methods. Thus,
this study proposes a transformer fault diagnosis method based on the adaptive transfer learning
of a two-stream densely connected residual shrinkage network over vibration signals. First, novel
time-frequency analysis methods (i.e., Synchrosqueezed Wavelet Transform and Synchrosqueezed
Generalized S-transform) are proposed to convert vibration signals into different images, effectively
expanding the samples and extracting effective features of signals. Second, a Two-stream Densely
Connected Residual Shrinkage (TSDen2NetRS) network is presented to achieve a high accuracy fault
diagnosis under different working conditions. Furthermore, the Residual Shrinkage layer (RS layer)
is applied as a nonlinear transformation layer to the deep learning framework to remove unimportant
features and enhance anti-interference performance. Lastly, an adaptive transfer learning algorithm
that can automatically select the source data set by using the domain measurement method is
proposed. This algorithm accelerates the training of the deep learning network and improves
accuracy when the number of samples is small. Vibration experiments of transformers are conducted
under different operating conditions, and their results show the effectiveness and robustness of the
proposed method.

Keywords: synchrosqueezed; two-stream; TSDen2NetRS; residual shrinkage layer; adaptive trans-
fer learning

1. Introduction

With the rapid development of digital power grids, research on intelligent, efficient,
and comprehensive fault diagnosis methods guarantees the building of future power
grids. Transformers are the most important electrical equipment in power grid systems;
hence, their failure causes considerable economic losses [1]. However, the probability of
such failure increases remarkably given the influences of natural disasters, the aging and
mechanical deformation of transformers, and other factors [2,3]. Relying only on preventive
tests and regular maintenance cannot meet the safety requirements of grid systems. To
avoid the occurrence of malignant accidents, research on transformer fault state assessment
technology, which exhibits scientific value and economic significance, must be conducted.

As is known to all, the fault diagnosis methods of transformers primarily include
Dissolved Gas Analysis (DGA) [4], Short-circuit Reactance (SCR) [5], Infrared Thermog-
raphy (IRT) [6,7], Frequency Response Analysis (FRA) [8,9], and so on. These traditional
diagnostic methods are hysteretic and cannot diagnose faults before they occur.

However, the transformer vibration-based method is a relatively potential field [10].
The vibration amplitude and frequency spectrum can reflect the operation state of the trans-
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former and realize early fault diagnosis. In addition, the vibration-based fault diagnosis
method has many technical advantages. First, it does not need to change the operating state
of the transformer and is easy to install. Second, it can track changes in the transformer’s
operating state in real-time with high monitoring sensitivity.

Existing diagnostic methods can be divided into model-based methods and data-
driven methods. The model-based methods are to describe the health status of transformers
using physical or mathematical methods [11]. Hong et al. proposed four vibration-based
methods to evaluate the health status of the transformer [12]. However, the physical
and mathematical parameters of the transformer vary with operating conditions, so it is
difficult to establish a diagnostic model only by physical or mathematical methods. The
data-driven methods are to realize fault diagnosis by using machine learning techniques,
which mainly include feature extraction methods and diagnosis models. The feature
extraction methods are to extract useful and non-redundant features of the original data,
which can reveal the specific differences between different faults. At present, the feature
extraction methods mainly include the Short-time Fourier Transform (STFT), Hilbert–
Huang Transform [13,14], Variational Mode Decomposition (VMD) [15], Wavelet Transform
(WT) [16], Synchrosqueezed Wavelet Transform (SWT) [17–19]. However, due to the
nonlinearity and high noise of the transformer vibration signals, it is difficult to achieve
high-precision fault diagnosis only by traditional feature extraction methods.

The current diagnosis methods mainly include shallow intelligent diagnosis methods
and deep learning diagnosis methods. The shallow intelligent diagnosis methods include
Support Vector Machine (SVM), K-Nearest Neighbor (KNN) [20], and Relevance Vector
Machine (RVM), etc. In [20], Zhang et al. proposed the SVM-KNN method for visual
category recognition. In [21], Zhao et al. proposed a fault diagnosis method, which used
the Multiple Kernel Support Vector Machine (MKSVM) method to realize fault diagnosis.
In the work of [22], Wang et al. proposed the multiple kernel RVM method to classify
transformer faults.

Deep learning diagnosis methods mainly include: DBN [23], SAE [24], CNN [25–27],
ResNet [28,29], DenseNet [30–32], Res2Net [33,34], etc. In [23], Hinton et al. proposed
the DBN method, which can establish a joint distribution between observation data and
labels. In [24], Wen et al. used a three-layer sparse autoencoder to extract the features of
the original data. In addition, anti-interference networks have recently been used for fault
diagnosis. In [29], Zhao et al. proposed a soft thresholding layer inserted into the ResNet
architecture for fault diagnosis, but it cannot accurately extract enough multiscale features
and reduce network computation. As a branch of deep learning methods, transfer learning
is developing rapidly and can be used to improve the accuracy of deep learning with
small sample data. Moreover, in recent fault diagnosis research, the original data has been
visualized and combined with the CNN method for fault diagnosis. In the work of [35],
He et al. proposed generative adversarial networks with comprehensive wavelet features
for fault diagnosis. In [36], Chen et al. proposed a novel domain adversarial transfer
network to deal with large distribution difference domains. In [37], Liu et al. proposed
a general transfer learning network under small samples, but it cannot adaptively select
source data sets to improve the intelligent performance of the network.

Based on the above analysis, the current fault diagnosis methods generally have the
following limitations.

(1) In terms of feature extraction, transformer signals are extremely complicated due to
their different vibration sources. Moreover, a transformer typically works in a strong
interference environment, leading to many redundant signals. However, existing
diagnosis methods usually compress signals to high dimensions or use traditional
methods to extract features. Consequently, important fault features are easily lost,
and the extracted features are not sufficiently comprehensive;

(2) Fault diagnosis methods mostly include shallow and deep learning diagnosis methods
at present. Traditional shallow fault diagnosis methods cannot completely distinguish
fault features from signal signatures due to their simple network characteristics.
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Meanwhile, traditional deep learning diagnosis methods improve the capability to
process complex signals, but they are prone to overfitting when dealing with small
and unbalanced sample data.

Therefore, to address the problems above, this paper proposes an adaptive transfer
learning method based on a two-stream densely connected residual shrinkage network for
transformer fault diagnosis. The major contributions are as follows:

(1) The SWT and Synchrosqueezed Generalized S-transform (SSGST) combined time-
frequency method inherits the advantages of SWT and SSGST. Thus, energy concen-
tration is improved compared with that of the traditional time-frequency methods,
and the limitation of fuzzy time-frequency representation is overcome. Given these
advantages, the feature extraction capability can be effectively improved. Moreover,
the combined time-frequency analysis method converts the vibration signals into
different time-frequency images, increasing the number of time-frequency features
and alleviating the overfitting of deep learning.

(2) A novel Two-stream Densely Connected Residual Shrinkage (TSDen2NetRS) network
is proposed to realize fault diagnosis. The network not only has multiscale signal
analysis capability but also uses a lightweight hybrid network to reduce computation
and memory costs. Furthermore, the proposed method with a residual shrinkage
layer can automatically filter out unimportant interference signals, realize feature
recalibration, and improve anti-interference performance.

(3) An adaptive transfer learning method is applied to transformer fault diagnosis; it can
automatically select the source data set by using the domain measurement method
and improve recognition capability under small samples.

The remainder of this paper is structured as follows. Section 2 illustrates the proposed
method. Section 3 introduces the data acquisition and processing method. Section 4
presents the results and comparisons. Section 5 provides the conclusions.

2. Proposed Method

The architecture of the proposed fault diagnosis method is shown in Figure 1, which
mainly includes the following steps:

Step1: Data acquisition. The transformer vibration signals of different fault types,
locations, and severities are obtained through experiments and COMSOL finite element
simulation software [38–43].

Step2: Feature extraction. The signals acquired are divided into several segments
by the sliding window method, and then the segmented data is transformed into time-
frequency images via the Synchrosqueezed Wavelet Transform (SWT) and Synchrosqueezed
Wavelet Transform (SSGST) combined method.

Step3: Fault diagnosis. The multiple SWT and SSGST time-frequency images are
divided into testing data set, validation data set, and training data set, which are the
inputs of the Two-stream Densely Connected Residual Shrinkage (TSDen2NetRS) network.
Meanwhile, the output features of the network are fused by the fusion method based on the
Convolutional Block Attention Module (CABM). Finally, the transformer fault diagnosis
based on vibration signal is realized.

Step4: Adaptive Transfer learning. The adaptive transfer learning method is used to
automatically select the source data set by using the domain measurement method and
pre-train the TSDen2NetRS network by the selected source data set. The following sections
introduce the four steps in detail.

2.1. SWT and SSGST Combined Time-Frequency Analysis Method

The sliding window overlapping sampling method and the novel time-frequency
analysis method are combined to transform the vibration signals into time-frequency
images, and the images are used as the input of the deep learning network to realize the
transformer fault diagnosis. The process is shown in Figure 2.
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Figure 1. Architecture of the proposed fault diagnosis method.

Figure 2. Flow chart of SWT and SSGST combined time-frequency analysis method.

Step1: The sliding window overlapping sampling method transforms the time series
into different observation segments to expand the data set. Each segment is a short time
series of 0.02 s, and 40 observation points in each segment are selected for time-frequency
transformation (in this article point = 1, 2 · · · 40).

Step2: The SWT and SSGST combined method transforms the signals into time-
frequency images.
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(1) The theory of the SWT method is explained in detail. The Continuous Wavelet
Transform (CWT) of the signal X(t) is defined as

WX(u, h) =
1√
u

+∞∫
−∞

X(t)ψ∗
(

t− h
u

)
dt (1)

where u is the scale expansion factor; h is the translation factor; 1√
u ψ
(

t−h
u

)
is the wavelet

basis function. Instantaneous frequency is estimated by deriving the wavelet coefficients.
The formula is expressed as

ω(u, h) =

{
−iWX(u, h)−1 ∂WX(u,h)

∂h
WX(u, h) 6= 0

∞ WX(u, h) = 0
(2)

where i is the imaginary unit. SWT refers to use a compression algorithm to transfer the
time-scale plane to the time-frequency plane and rearrange the energy. The SWT formula is

WTX(ωl , h) = (∆ω)−1 ∑
uk:|ω(uk ,h)−ωl |≤ ∆ω

2

WX(uk, h)u
− 3

2
k (∆u)k (3)

where uk is the discrete scale; k is the number of scales; ωl = l· fn
N , l ∈ [1, N], ωl is the center

frequency, fn is the sampling frequency, N is the total number of scales; ∆ω = ωl −ωl−1 = fn
N

and (∆u)k = uk − uk−1. Compared with the CWT method, the SWT method has more
concentrated energy in the spectrum and higher frequency resolution.

(2) The SSGST method is presented in detail. The Generalized S-transform (GST) of the
signal X(t) is defined as

SX( f , h) =
∫ +∞

−∞
X(t)

λ| f |m

(2π)
1
2

exp

(
−λ2 f 2m(t− h)2

2

)
exp(−i2π f t)dt (4)

where f is the frequency; m and λ are the parameters for transforming the standard
S-transform window function. The value of the frequency near the center frequency
[ fs − 1

2 fo, fs +
1
2 fo] is squeezed to the center frequency fs, and fo is the frequency interval.

The SSGST method is expressed as

STX( fs, h) = f−1
o ∑

fk :| fs( fk ,h)− fs |≤ fo
2

|SX( fk, h)| fk∆ fk (5)

where fk is the discrete frequency of generalized S-transform, ∆ fk = fk − fk−1.

(3) The theory of the SWT and SSGST combined method is illustrated in detail. The data
processed by the sliding window method is transformed into time-frequency images
by the SWT and SSGST combined methods. It can be calculated as Yj

SWT→ TY j

Yj
SSGST→ T′Yj

(j = 1, 2 . . . Nd) (6)

where Yj is the data segmented by the sliding window method; Nd is the amount of data
after segmentation; TY j is the data transformed by SWT, and T′Yj

is the data transformed
by SSGST.

2.2. The Proposed Novel Deep Learning Method

The deep learning method proposed in this paper needs to solve these problems.
First, due to the change of transformer’s load, environmental interference, and sampling
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frequency, the vibration signal scale will also change, so the ability to analyze multiscale
signals needs to be considered. Second, the traditional deep learning methods are very
redundant, resulting in very large computational and memory costs. The proposed method
needs to consider efficient, lightweight deep learning methods, which mainly include
group convolution and depthwise separable convolution. Finally, transformers usually
operate in harsh interference environments, so the deep learning method proposed in this
paper needs strong anti-interference performance.

2.2.1. TSDen2Net

The two-stream efficient densely connected convolutional network is proposed in
this paper, named TSDen2Net, and this network architecture is from scratch. Compared
with the existing traditional methods, the proposed method mainly has the follow-
ing contributions:

(1) First, we construct two efficient densely connected convolutional networks. Depth-
wise separable convolution is applied to optimize the DenseNet network [30], named
DenseDsc. The original bottleneck block of DenseNet is replaced by four parallel
depthwise separable convolutions, and the novel block is called the DenseDsc bot-
tleneck block, which is presented in Figure 5a. Meanwhile, Res2Net, proposed by
Gao et al., is used to improve the DenseNet network [34], called Dense2Net. The
standard bottleneck block of Dense2Net is replaced by Res2Net, and the block is
named Dense2Net bottleneck block, as is illustrated in Figure 5b.

(2) Then, due to the complex vibration time-frequency images of the transformer, we use
deeper DenseDsc and Dense2Net, which are structured similar to the DenseNet121
network, named DenseDsc121 and Dense2Net121. The overall architecture is shown
in Figure 3. The DenseDsc121 and Dense2Net121 both have 4 DenseDsc blocks and
3 transition layers. Further, the DenseDsc block shown in Figure 3, which is densely
connected by multiple DenseDsc bottleneck blocks. The Dense2Net block shown in
Figure 3 is densely connected by multiple Dense2Net bottleneck blocks.

(3) In order to extract features from different scales, we use DenseDsc121 and Dense2Net121
to construct a two-stream network named TSDen2Net. Its overall architecture is
shown in Figure 4, and the network structure is shown in Table 1. The two-stream
method can extract information at different scales and supplement the lack of effective
information, which is conducive to improving the accuracy considerably.

Table 1. TSDen2Net network.

Layer Name Output DenseDsc Dense2Net

Conv1 64 × 64 3 × 3, stride 1 3 × 3, stride 1
Dense Block1 64 × 64 DenseDsc × 6 Dense2Net × 6

Transition layer 32 × 32 Conv 1 × 1 and
Average pool, stride 2

Conv 1 × 1 and
Average pool, stride 2

Dense Block2 32 × 32 DenseDsc × 12 Dense2Net × 12

Transition layer 16 × 16 Conv 1 × 1 and
Average pool, stride 2

Conv 1 × 1 and
Average pool, stride 2

Dense Block3 16 × 16 DenseDsc × 24 Dense2Net × 24

Transition layer 8 × 8 Conv 1 × 1 and
Average pool, stride 2

Conv 1 × 1 and
Average pool, stride 2

Dense Block4 8 × 8 DenseDsc × 16 Dense2Net × 16
Pooling 4 × 4 Average pool, stride 2 Average pool, stride 2

Concatenate - Concatenate
CABM - Channel and attention spatial attention

Classification - FC and softmax
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Figure 3. (a) Illustration of DenseDsc121 and (b) Dense2Net121.

Figure 4. Structure of TSDen2Net.

2.2.2. TSDen2NetRS

In this paper, we used a new novel soft thresholding layer to reduce the interference,
which is called the Residual Shrinkage layer (RS layer) [29]. The TSDen2Net network with
the RS layer is named TSDen2NetRS. The RS layer overall architecture is shown in Figure 6,
where C is the number of channels and W is the width of the feature map.

The RS layer is added at the end of the Dense2Net bottleneck block and the DenseDsc
bottleneck block, which are named Dense2NetRS bottleneck block and DenseDscRS bottle-
neck block in this paper. It can automatically obtain the threshold of each channel according
to the characteristics of the signals. The process is shown in Figure 6. The feature map is
reduced to a 1-D vector after the absolute and Global Average Pooling (GAP) function,
and then it is propagated into the 1-D convolutional layer with adaptive kernel size and a
sigmoid function. The output goes through a sigmoid function, and thus, the output value
is between 0 and 1. It is formalized as follows

αC =
1

1 + e−zC
(7)
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where zC is the feature and αC is the scaling parameter; αC represents the importance of
each feature channel. Then, the thresholds are described as follows

τC = αC.average W, H |xW,H,C| (8)

where τC is the soft threshold of the channel; and W, H, C represent the width, height, and
channel of the input feature map xW,H,C, respectively.

Figure 5. (a) An improved DenseDsc bottleneck block network structure. (b) An improved Dense2Net bottleneck block
network structure.
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Figure 6. Structure of the RS layer network.

The feature whose absolute value is lower than the threshold is set to zero to filter out
the unimportant interference signals and realize the recalibration of the feature.

In summary, the RS layer is inserted into the end of the Dense2Net bottleneck block and
the DenseDsc bottleneck block, which are the basic units of Dense2Net121 and DenseDsc121.
As shown in Figure 3, they are called many times, which can gradually reduce the relevant
features containing noise. In addition, the important advantage is that the RS layer can
automatically obtain the threshold without professional knowledge of the signal process.
Finally, the Dense2Net with RS layer is named Dense2NetRS, and the DenseDsc with RS
layer is called DenseDscRS.

2.3. Adaptive Transfer Learning Method

Deep learning networks usually require sufficient sample data for training. In order
to adapt to fault diagnosis with small samples, the adaptive transfer learning method is
proposed in this paper, which mainly includes the domain similarity measurement method
and transfer learning method.

2.3.1. Domain Similarity Measurement Method

The efficiency of transfer learning is based on the high similarity discrepancy between
the target domain and the source domain. The measurement methods mainly include
Maximum Mean Discrepancy (MMD) and Wasserstein distance.

MMD measures the distance between two distributions based on a kernel distance. It
can be formulated as

MMD[R, P, Q] = supr∈REp∼P[φ(p)]− Eq∼Q[φ(q)] (9)

where the first sup means the maximum value; R is a class of functions; φ is the kernel
mapping function, p and q are the samples in the set; EPand EQ represent the expectation
of P and Q distributions; r represents the norm in the reproducing Hilbert space.

The formula for the Wasserstein distance is expressed as

WD(P, Q) = in fγ∼∏ (P,Q)E(p,q)∼γ[||p− q||] (10)
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where ∏(P, Q) is a collection of all possible joint distributions of P and Q distributions;
γstands for every possible joint distribution set; p and q are the samples in the set; E(p,q)
is the distance expected value of the sample pair; in f is the lower bound of the expected
value.

The formula of the combined measurement method based on MMD, Wasserstein
distance is as follows. It can be concluded that the smaller the value, the smaller the
distribution discrepancy, which can be calculated as

d̂ = βMMD + (1− β)WD (11)

where WD is the Wasserstein distance; MMD is the maximum mean discrepancy; β is the
equilibrium factor to adjust the influence of MMD and Wasserstein distance.

2.3.2. The Proposed Transfer Learning Method

When the source data set is different but similar to the target data set, the transfer
learning method can effectively prevent negative transfer, solve the small sample problem
and improve the performance of fault diagnosis. The transfer learning method proposed in
this paper can be divided into two training steps. The flow chart of the transfer learning
method is shown in Figure 7.

Figure 7. Flow chart of the proposed transfer learning method.
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Step1: Pre-training using the source data set.

(1) The source data set is automatically selected from the candidate data sets for transfer
learning using MMD and Wasserstein distance methods.

(2) The TSDen2NetRS was trained by the source data set.

Step2: Retraining using the target data set.

(1) Determining the target data set and its labels.
(2) Modifying the input data size and output data labels of the network structure accord-

ing to the target data set.
(3) The parameters of the original pre-trained network model remain unchanged except

for the high-level and full connection layer, and then the target data set is used to
retrain the network.

(4) Finally, the network model is fine-tuned by the target data set.

3. Data Acquisition and Processing

A customized TDG-200/10-0.4 kV three-phase transformer with a frequency of 50 Hz
is used for verifying the fault diagnosis method proposed in the current study. The
transformer parameters are shown in Table 2. The length of the transformer is 740 mm,
the width is 400 mm, and the height is 640 mm. The transformer is a core structure,
the high-voltage winding is a cake structure, and the low-voltage winding is a layered
structure. When the transformer is abnormal, the vibration signals of the transformer will
change accordingly.

Table 2. Transformer parameters.

Name Value Name Value

Transformer model TDG-200/10-0.4 kV Link group label Dyn11
High/low-voltage

winding turns 1732/40 High/Low-voltage
winding current(A) 11.5/288.7A

High/low-voltage side
rated voltage 10/0.4 kV Impedance voltage/% 4.0

Low-voltage winding outer
diameter/(mm) 251 mm High-voltage winding

outer diameter/(mm) 368 mm

Low-voltage winding
height/(mm) 403 mm High-voltage winding

height/(mm) 425 mm

3.1. Experiment
3.1.1. Experiment System

In order to measure the vibration signals of the transformer accurately, a signal acqui-
sition platform is built, as shown in Figure 8, which is composed of vibration acceleration
sensors, data acquisition hardware, and signal analysis software. The sensor and acquisi-
tion hardware are connected by coaxial cable, and the acquisition hardware and analysis
software are connected by wire.

Velocity, displacement, and acceleration sensors can be used for measuring vibration
signals. The velocity sensor has high sensitivity but narrow bandwidth. The displacement
sensor has poor anti-interference performance for adopting the principle of electromagnetic
induction. Acceleration sensors mainly include capacitive, resistive, piezoelectric sensors.
The capacitive acceleration sensor works by changing the capacitance pole distance, but
its output is nonlinear, the range is limited, and the versatility is not as suitable as the
piezoelectric sensor. The resistive acceleration sensor works by resistivity, and its frequency
response range is from 2 to 270 Hz, which is not suitable for measuring the vibration signals
of the transformer. The piezoelectric acceleration sensor works by the piezoelectric effect.
Due to its wide frequency range and high precision, a piezoelectric sensor is selected to
measure the vibration signals of the transformer.
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Figure 8. Experiment system.

Through theoretical analysis and experimental measurement, the maximum amplitude
of transformer vibration under short-circuit impact is ±15 g, and the frequency distribu-
tion is within 1 kHz. In this case, the B & K4534-001 piezoelectric acceleration sensor is
selected finally because its measuring range is ±71 g, and the frequency response range is
from 0.2 to 12.8 kHz, which is higher than the vibration amplitude and frequency of the
transformer. The precision of the sensor is 0.00013 g. Each unit of the B & K4534-001 sensor
has a lightweight, robust, hermetically sealed titanium housing and an insulated base,
which makes the sensor suitable for use in tough environments. In general, through the
analysis above, we can conclude that the B & K4534-001 sensor is suitable for transformer
vibration experiments.

The 3053 LAN-XI data acquisition hardware is selected to simultaneously acquire
12-channel signals. The frequency range is from 0 to 25.6 kHz. Meanwhile, the sampling
rate is set at 8192 Hz, each sampling time is 10 s, and the sampling interval is 30 mins.

The signal analysis software is LabShop, which can display, store and analyze vibra-
tion signals.

The measurement points are evenly arranged on each surface of the transformer, as
shown in Figure 8, including 63 points on the front and back surfaces of the transformer,
42 points on the left and right surfaces of the transformer, and 45 points on the top surface
of the transformer.

3.1.2. Experimental Data Set Acquisition and Processing

As shown in Figure 9, the time-domain signals can be obtained from different measur-
ing points. The results indicate that the vibration signals of each point are different. After
comparison and analysis of multiple points, the center points of each surface are finally
selected as the monitoring points for different operating states of the transformer.



Electronics 2021, 10, 2130 13 of 27

Figure 9. The procedures of processing the transformer vibration experimental data set.
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The transformer faults mainly include insulation shedding, winding looseness, and
deformation. The labels are represented by Lξ = {0, 1, 2, 3}, and the number of labels
is 4, and the normal state is ‘0′. In order to obtain fault vibration signals with different
fault types, severities, and locations, a customized transformer with fault winding is used
for replacing normal transformers. The specific process is as follows: first, the insulation
shedding fault is realized by changing the connection components between winding
turns. A Mini Circuit Breaker (MCB) is employed to control the connection of the variable
resistor between the two turns. Second, the looseness fault is realized by the customized
transformer with loose windings. Third, the deformation fault is realized by customizing
the transformer with deformation windings.

The sliding window method divides the vibration signals into 0.02 s time series
segments. The 40 sample points are selected from the segments, which are transformed
into time-frequency images by the SWT and SSGST combined methods. The detailed
process is shown in Figure 9.

The amount and labels of the experimental data set are provided in Table 3.

3.2. Simulation
3.2.1. Simulation Model Establishment

The amount and labels of the simulation data set are shown in Table 3. The spe-
cific procedures for obtaining the transformer vibration simulation data set are shown in
Figure 10.

The simulation model is established using COMSOL finite element software [38–43],
which performs a multifield coupling calculation of the external circuit, magnetic field, and
structural force field.

Establishing a three-dimensional geometric model of the transformer, according to
the actual size of the iron core and three-phase windings. However, in order to reduce the
computation, a quarter of the simplified transformer model is used.

Performing multi-physics coupling model.

(1) The iron core material is silicon steel sheet, and the winding material is copper. In
the electromagnetic field, the external circuit is loaded into the electric field model
through the field-circuit coupling method. The control equation in the electric field
can be established using the following formula

−∇× ∂(ε0εr)∇V
∂t

−∇·(σ∇V − Je) = 0 (12)

where ∇× is curl operator, ∇· is divergence operator; ε0 is the vacuum dielectric
constant of the free space; εr is the relative dielectric constant; V is the potential; σ is
the conductivity; Je is the external current density.

(2) Establishing an electromagnetic field coupling model. The external current density Je

is calculated in the electric field, and then it serves as an excitation of the magnetic
field, which can be expressed as

σ
∂A
∂t

+∇×
(

µ−1
0 µ−1

r ∇× A
)
= Je (13)

where ∇× is the curl operator; A is the magnetic vector potential; µ0 is the magnetic
permeability; and µr is the relative magnetic permeability.

(3) Realizing the coupling of the electromagnetic field and the structural force field. The
current density, magnetic flux density, and magnetic field strength are calculated in
the electromagnetic field, and then these variables are used in the structural force
field. Thus, physical quantities, including winding vibration acceleration, velocity,
and displacement, are calculated.
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Electromagnetic force F(t) is decomposed into three directions, representing three-
dimensional space. The formula is as follows

Fx = JyBz − JzBy
Fy = JzBx − JxBz
Fz = JxBy − JyBx

(14)

where Fx, Fy, Fz represent electromagnetic forces in x, y, z directions; Jx, Jy, Jz represent
current density in x, y, z directions; Bx, By, Bz represent magnetic flux densities in x, y,
z directions.
The control equation in the structural field can be described as

M
d2S
dt2 + ς

dS
dt

+ GS = F(t) (15)

where M is the mass matrix; d2S
dt2 is the winding acceleration; dS

dt is the winding
speed; ς is the damping coefficient matrix; G is the stiffness matrix; S is the winding
displacement; and F(t) is the electromagnetic force on the winding.

Figure 10. The procedures of obtaining the transformer vibration simulation data set, including geometric model establish-
ment, coupling calculation of the external circuit, magnetic field, and structural force field, obtaining the vibration curves
and time-frequency image representations.
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Table 3. Transformer vibration data set.

Type Label
Data Set SWT/SSGST

Time-Frequency Images

Simulation Experiment Simulation Experiment

Normal 0 3000 300 3000 300
Insulation shedding 1 3400 300 3400 300

Looseness 2 3000 300 3000 300
Deformation 3 3600 300 3600 300
Total number - 13,000 1200 13,000 1200

3.2.2. Simulation Data Set Acquisition and Processing

In this study, three types of transformer fault models are established by COMSOL sim-
ulation software, which mainly includes winding insulation shedding, winding looseness,
and deformation.

The insulation shedding simulation model is established by reducing the original
number of turns from 5% to 20%.

The looseness fault simulation model is established by changing the original axial
winding length from 5% to 20%.

The deformation fault simulation model is established by changing the surface area of
the winding at 1/2 position from 10% to 20%.

The simulation vibration acceleration signals are obtained through point diagrams at
different locations of the transformer by COMSOL software, and then these signals are
transformed into time-frequency images by the sliding window and time-frequency methods.

3.3. Simulation and Experimental Data Analysis

To verify the accuracy and rationality of the simulation model, a comparative test with
experimental signals is conducted.

The similarity between experimental and simulation signals is calculated by the 2D
correlation coefficient (corr2) function, which can be calculated as

corr2 =
∑Line ∑Col

(
ELineCol − E

)√(
∑Line ∑Col

(
DLineCol − D

)2
)(

∑Line ∑Col
(
ELineCol − E

)2
) (16)

where corr2 is the 2-D correlation coefficient. D and E depict vibration signal mapping
data matrices of the experiment and simulation; Line and Col represented the number of
lines and columns in the matrices, respectively.

The experimental and simulation vibration signal curves under the rated load are
shown in Figure 11. The similarity calculated by corr2 is 0.9712, which proves the accuracy
of the simulation model.

As for the difference of the frequency domain, the experimental signal contains high-
frequency information of 200–500 Hz in addition to the fundamental frequency of 100 Hz.
This is due to the uneven distribution of insulation between the actual transformer winding
turns. By comparing the experimental and simulation signals, the amplitude is about
0.016 m/s2 at the fundamental frequency of 100 Hz, which verifies the correctness of the
fundamental frequency vibration of the simulation model.
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Figure 11. Comparison diagram of simulation and experimental vibration signals.

4. Results and Comparisons

To verify the accuracy and robustness of the proposed method, the performance of
the method is tested under different time-frequency methods and interferences.

4.1. SWT and SSGST Combined Time-Frequency Analysis Method
4.1.1. Time-Frequency Analysis Results

The SWT and SSGST time-frequency analysis (TFA) methods improve the energy
concentration compared with the traditional time-frequency methods, including STFT,
CWT, and GST. The results are presented in Figure 12.

Furthermore, in order to evaluate the energy concentration of the different time-
frequency methods quantitatively, we calculate the Rényi entropies as listed in Table 4.

Table 4. Rényi entropies by five TFA methods.

TFA STFT CWT GST SWT SSGST

Rényi entropies 19.6057 16.3274 16.1428 15.3513 12.5701

The results indicate that the energy of SWT and SSGST time-frequency analysis
methods is more concentrated and more sensitive to the changes of time-frequency images.
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Figure 12. Time-frequency analysis results: (a) STFT result, (b) CWT result, (c) GST result, (d) SWT result, (e) SSGST result.

4.1.2. Comparison of Diagnosis Performance with Different Time-Frequency
Analysis Methods

To prove the superiority of the time-frequency methods in fault diagnosis, the paper
compares the SWT and SSGST time-frequency methods with the method based on one-
dimensional data. The results are shown in line 1) of Table 5. The accuracy based on
one-dimensional data in the simulation data set is 94.11%, which is 2.07% and 2.46% lower
than the SWT and SSGST methods. The accuracy in the experimental data set is 88.33%,
which is 2.5% lower than the SWT and SSGST methods.

Table 5. Deep fault diagnosis of different methods.

Type Method
Test Accuracy
(Simulation

Data Set)

Test Accuracy
(Experimental

Data Set)

(1) (with one-dimensional
vibration data)

One-dimensional
data 94.11% (960/1020) 88.33% (106/120)

(2) (with single visualization
feature extraction)

STFT 91.47% (933/1020) 89.16% (107/120)
CWT 92.94% (948/1020) 88.33% (106/120)
GST 96.08% (980/1020) 87.50% (105/120)
SWT 96.18% (981/1020) 90.83% (109/120)

SSGST 96.57% (985/1020) 90.83% (109/120)

(3) (with combined visualization
feature extraction) SWT+ SSGST 97.25% (992/1020) 95.00% (114/120)

In order to better verify the effectiveness of the SWT and SSGST time-frequency
methods, they are compared with other time-frequency analysis methods. The final results
are shown in line 2) of Table 5. The accuracy of SWT and SSGST in the simulation data
set is higher than that of the other three time-frequency methods, reaching 96.18% and
96.57%. The accuracy of SWT and SSGST in the experimental data set is 90.83%, which is
2.5% higher than that of other time-frequency methods on average.
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To further highlight the importance of the combined time-frequency method, the SWT
and SSGST combined method is compared with other methods. The results in line (3) of
Table 5 show that the method achieves the best classification performance, reaching 97.25%
and 95%.

Consequently, the SWT and SSGST combined time-frequency analysis method has a
great influence on the accuracy of fault diagnosis.

4.2. TSDen2NetRS Method
4.2.1. Comparison of Diagnosis Performance with Different Intelligent Diagnosis Methods

In order to verify the advantages of the proposed deep learning fault diagnosis method,
this paper compares it with different intelligent classification methods, including SVM
and K-Nearest Neighbor (KNN) [20]. The different intelligent methods are trained by
simulation and experimental data sets obtained by SSGST. The results are shown in Table
7. The accuracy of the proposed method in the experimental data set and the simulation
data set is higher than that of the other two intelligent methods, reaching 95% and 97.25%,
which are 9.3% and 19.3% higher than that of the SVM and KNN methods on average.

In order to further illustrate the high-precision fault diagnosis of the proposed TS-
Den2NetRS method, this paper compares it with other deep learning methods, including
Xception [44], ResNet50 [29], InceptionV3 [45], MobileNet [46], and DenseNet121 [30]. The
hyperparameters of different deep learning methods are set in Table 6. Meanwhile, the
simulation and experimental data sets are divided into training, validation, and testing
data sets in accordance with the ratio of 7:2:1. The accuracy of the fault diagnosis results of
different deep learning methods is shown in line 2) of Table 7. The results indicate that the
accuracy of the proposed method in the experimental data set and the simulation data set
reaches 95% and 97.25%, which is improved by 5.8% and 3.8% on average.

Table 6. Hyperparameter settings.

Type Setting

Initial learning rate 0.001
Learning rate schedule piecewise

Mini batch size 32
Max epochs 20

Learning rate drop period 25
Learning rate drop factor 0.2
Execution environment GPU

Optimizer Adam
Verbose 0

Table 7. Results of different intelligent fault diagnosis methods.

Type Method
Test Accuracy
(Simulation

Data Set)

Test Accuracy
(Experimental

Data Set)

(1) Traditional intelligent
classification method

SVM 65.10% (664/1020) 84.17% (101/120)
KNN 90.69% (925/1020) 88.33% (106/120)

(2) Deep learning method
(CNNS)

Xception 96.56% (985/1020) 90.83% (109/120)
ResNet50 91.17% (930/1020) 81.67% (95/120)

InceptionV3 93.33% (952/1020) 91.67% (110/120)
MobileNet 93.53% (954/1020) 92.50% (111/120)

DenseNet121 91.67% (935/1020) 89.17% (107/120)
TSDen2NetRS 97.25% (992/1020) 95.00% (114/120)

4.2.2. Comparison of Anti-Interference with Different Intelligent Diagnosis Methods

In order to test the anti-interference performance of the proposed method, Gaussian
noise is applied to the original data to evaluate the diagnostic performance of the model in
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different interference environments. Signal-to-Noise Ratio (SNR) is adopted in the current
study, and the formula is defined as follows

SNRdB = 10log10

(
Psignal/Pnoise

)
(17)

where Psignal represents the original signal; Pnoise represents the additional Gaussian noise.
The fault classification performance after the addition of different noise interferences

to the original signals is presented in Figure 13. The results show that different types of
faults are gradually separated with a decrease in noise interference. Meanwhile, signals at
the same label become closer, and the labels of different types become sparser. Therefore,
signal noise interference seriously affects the diagnostic performance, and research on the
anti-interference performance of the method is necessary. The experimental data set is used
as the input of the deep learning network.

Figure 13. Classification results under different interference. Label 0: Normal state, Label 1: Insulation shedding state,
Label 2: Looseness state, Label 3: Deformation state.
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The accuracy of the TSDen2NetRS method is compared with that of single-stream
Dense2NetRS and DenseDscRS methods. The results in Figure 14 show that the two-
stream method has better diagnostic performance than single-stream methods under
different interferences.

Figure 14. Diagnosis performance between two-stream and single-stream methods.

In addition, the anti-interference performance of TSDen2NetRS is compared with that
of the Xception, ResNet50, InceptionV3, MobileNet and DenseNet121 methods. The results
are presented in Figure 15. When the SNR is 10, 8, 6, 4, 2, 0, −2, −4, the TSDen2NetRS
method exhibits better anti-interference performance, with the accuracy of 89.16%, 85.00%,
86.66%, 83.33%, 79.16%, 76.66%, 75.83%, 71.66%, which is 11.86%, 8.8%, 15.66%, 14.33%,
16.9%, 16.41%, 19.35%, 15.66% higher than that of other methods on average.

4.3. Adaptive Transfer Learning Method between Different Domains

Compared with the traditional transfer learning methods [36,37], the adaptive method
can automatically select the source domain by using the domain measurement method. In
order to prove the advantages of the proposed method, the experiments are designed to
contain eight cases in Table 8. In each case, the source data set is one of the candidate data
sets, and the target data set is the simulation data set or experimental data set.
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Figure 15. Fault diagnosis performance with different Gaussian noises.
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Table 8. Adaptive transfer learning results between different domains.

Network Domain MMD WD ^
d Transfer Accuracy

(1) Single- stream
(Dense2NetRS)

ImageNet-Simulation 0.8379 108.79 1.9174 96.96% (989/1020)
Fusion-Simulation 0.6937 20.09 0.8877 97.64% (996/1020)

Stitching-Simulation 0.7973 57.48 1.3641 97.45% (994/1020)

ImageNet-Experiment 0.7868 112.85 1.9074 91.67% (110/120)
Fusion-Experiment 0.5760 20.75 0.7777 92.50% (111/120)

Stitching-Experiment 0.7173 60.27 1.3128 91.67% (110/120)
Simulation-Experiment 0.4915 8.65 0.5731 95.83% (115/120)

(2) Two-stream
(TSDen2NetRS) Simulation-Experiment 0.4915 8.65 0.5731 98.33% (118/120)

In this paper, four data sets are selected as candidate data sets, which mainly include:

(1) ImageNet data set: the public data set;
(2) Fusion data set: ImageNet is extracted with the same size, type, and number as the

SWT or SSGST time-frequency images and then fusing them;
(3) Stitching data set: ImageNet is extracted with the same size, type, and number as the

SWT or SSGST time-frequency images and then stitches them;
(4) Simulation data set: The time-frequency images of the simulation data set generated

by COMSOL software.

The transfer learning results between different data sets are shown in Table 8.

(1) The network structure is Dense2NetRS signal-stream. The first three lines indicate
that when the target data set is the simulation data set, the smaller the value of d̂ is, the
higher the accuracy of the transfer learning is. The results from the fourth to seventh
lines show that when the target data set is the experimental data set, the smaller the
value of d̂ is, the better the performance of the transfer learning is, which verifies the
feasibility of adaptive source data set selection through the domain measurement
method. Further, the accuracy in the seventh line of fault diagnosis can be increased
from 90.83% to 95.83%.

(2) The network structure is TSDen2NetRS two-stream. The accuracy in the last line
of Table 8 increased from 95.00% to 98.33%. The result proves that the adaptive
transfer learning method applied to a two-stream network can achieve higher
diagnostic accuracy.

Moreover, as the results show in Figure 16, it can be clearly noticed that the proposed
adaptive transfer learning method based on the TSDen2NetRS network can achieve the
best accuracy in different cases. This can effectively prove the feasibility of the proposed
method and its superiority in fault diagnosis.
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Figure 16. Comparison of different transfer learning methods between different domains.
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5. Conclusions

An adaptive transfer learning method based on a two-stream densely connected
residual shrinkage network for transformer fault diagnosis is proposed in this paper. For
the experimental data set, the fault diagnosis accuracy of TSDens2NetRS based on the SWT
and SSGST combined method can reach 95%. Compared with other intelligent diagnostic
methods, the accuracy of the proposed method is 9.3% higher than other methods on
average. Meanwhile, for anti-interference performance, the diagnosis accuracy of the
proposed method is 15.66% higher than other deep learning methods on average when
the SNR is -4. In addition, the final accuracy of TSDen2NetRS with the adaptive transfer
learning method increases from 95% to 98.33%, which means the proposed method has
better fault diagnosis performance. The conclusions of this study are as follows:

(1) The results of the time-frequency methods show that the SWT and SSGST combined
method can extract more concentrated energy signals, which can better reflect the
changes of the signals than the traditional time-frequency methods.

(2) The TSDen2NetRS method results show that the novel method can effectively distin-
guish different transformer faults in a strong interference environment and greatly
improve fault diagnosis accuracy.

(3) The results of the adaptive transfer learning method show that it can automatically
select the source domain, which has the closest distribution to the target domain.
Moreover, it can greatly improve the diagnosis performance under small samples.

In our future work, the diagnostic performance of the proposed method on variable
working conditions and complex industrial scenes will be further investigated.
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Abbreviations

TSDen2NetRS Two-stream Densely Connected Residual Shrinkage network
RS layer Residual Shrinkage layer
DGA Dissolved Gas Analysis
SCR Short-circuit Reactance
IRT Infrared Thermography
FRA Frequency Response Analysis
STFT Short-time Fourier Transform
VMD Variational Mode Decomposition
WT Wavelet Transform
SWT Synchrosqueezed Wavelet Transform
SVM Support Vector Machine
KNN K-Nearest Neighbor
RVM Relevance Vector Machine
MKSVM Multiple Kernel Support Vector Machine
VGG Visual Geometry Group
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SSGST Synchrosqueezed Generalized S-transform
CABM Convolutional Block Attention Module
TSDen2Net Two-Stream Efficient Densely Convolutional Network
DenseDsc DenseNet with Depthwise Separable Convolution
Dense2Net DenseNet with Res2Net
Dense2NetRS Dense2Net with RS layer
DenseDscRS DenseDsc with RS layer
MCB Small Circuit Breaker
MMD Maximum Mean Discrepancy
TFA Time-Frequency Analysis
GST Generalized S-Transform
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