Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (23)

Search Parameters:
Keywords = deep ground source heat pump system

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
32 pages, 2768 KiB  
Article
A Comprehensive Simplified Algorithm for Heat Transfer Modeling of Medium-Deep Borehole Heat Exchangers Considering Soil Stratification and Geothermal Gradient
by Boyu Li, Fei Lei and Zibo Shen
Energies 2025, 18(14), 3716; https://doi.org/10.3390/en18143716 - 14 Jul 2025
Viewed by 244
Abstract
Medium-deep borehole heat exchanger (BHE) systems represent an emerging form of ground source heat pump technology. Their heat transfer process is significantly influenced by geothermal gradient and soil stratification, typically simulated using segmented finite line source (SFLS) models. However, this approach involves computationally [...] Read more.
Medium-deep borehole heat exchanger (BHE) systems represent an emerging form of ground source heat pump technology. Their heat transfer process is significantly influenced by geothermal gradient and soil stratification, typically simulated using segmented finite line source (SFLS) models. However, this approach involves computationally intensive procedures that hinder practical engineering implementation. Building upon an SFLS model adapted for complex geological conditions, this study proposes a comprehensive simplified algorithm: (1) For soil stratification: A geothermally-weighted thermal conductivity method converts layered heterogeneous media into an equivalent homogeneous medium; (2) For geothermal gradient: A temperature correction method establishes fluid temperatures under geothermal gradient by superimposing correction terms onto uniform-temperature model results (g-function model). Validated through two engineering case studies, this integrated algorithm provides a straightforward technical tool for heat transfer calculations in BHE systems. Full article
Show Figures

Figure 1

30 pages, 10870 KiB  
Article
Research on Configuration Optimization and Control Methods for Mid-Deep Geothermal Heat Pumps Coupled with Air-Source Heat Pump Systems for Space Heating in Residential Buildings
by Yanhui Wang, Jiewen Deng, Yangyang Su, Chenwei Peng, Minghui Ma, Yin Chen, Lei Fan, Min Chen, Qingpeng Wei and Hui Zhang
Buildings 2025, 15(11), 1938; https://doi.org/10.3390/buildings15111938 - 3 Jun 2025
Cited by 1 | Viewed by 312
Abstract
Mid-deep geothermal heat pump systems (MD-GHPs) feature high energy efficiency and low energy consumption, yet their promotion is restricted by high initial investment. While the initial investment of air-source heat pumps (ASHPs) is obviously lower, it also has a larger energy consumption. To [...] Read more.
Mid-deep geothermal heat pump systems (MD-GHPs) feature high energy efficiency and low energy consumption, yet their promotion is restricted by high initial investment. While the initial investment of air-source heat pumps (ASHPs) is obviously lower, it also has a larger energy consumption. To address the complementary strengths and weaknesses of single-source heat pump systems, this paper puts forward an integrated system combining MD-GHPs and ASHPs, and the series mode was determined as the optimal integration approach for the hybrid system through comparative analysis. Simulation analysis was conducted to explore the adaptability of series mode, and numbers of mid-deep ground heat exchangers in nine cities across various climate regions were studied. The MD-GHP system is suitable for space heating in Xining and Xi’an, while ASHPs are suitable for space heating in Nanjing and Hangzhou. For intermediate resource areas like Urumqi and Tsingdao, the series mode achieves the best economic benefits during the 24th year of operation. Full article
Show Figures

Figure 1

24 pages, 5807 KiB  
Article
Research on the Optimized Design of Medium and Deep Ground-Source Heat Pump Systems Considering End-Load Variation
by Jianlin Li, Xupeng Qi, Xiaoli Li, Huijie Huang and Jian Gao
Sustainability 2025, 17(7), 3234; https://doi.org/10.3390/su17073234 - 4 Apr 2025
Cited by 1 | Viewed by 645
Abstract
Ground-source heat pump (GSHP) systems with medium-depth and deeply buried pipes in cold regions are highly important for addressing global climate change and the energy crisis because of their efficient, clean, and sustainable energy characteristics. However, unique geological conditions in cold climates pose [...] Read more.
Ground-source heat pump (GSHP) systems with medium-depth and deeply buried pipes in cold regions are highly important for addressing global climate change and the energy crisis because of their efficient, clean, and sustainable energy characteristics. However, unique geological conditions in cold climates pose serious challenges to the heat transfer efficiency, long-term stability, and adaptability of systems. This study comprehensively analyses the effects of various factors, including well depth, inner-to-outer tube diameter ratios, cementing material, the thermal conductivity of the inner tube, the flow rate, and the start–stop ratio, on the performance of a medium-depth coaxial borehole heat exchanger. Field tests, numerical simulations, and sensitivity analyses are combined to determine the full-cycle thermal performance and heat-transfer properties of medium-depth geological formations and their relationships with system performance. The results show that the source water temperature increases by approximately 4 °C and that the heat transfer increases by 50 kW for every 500 m increase in well depth. The optimization of the inner and outer pipe diameter ratios effectively improves the heat-exchange efficiency, and a larger pipe diameter ratio design can significantly reduce the flow resistance and improve system stability. When the thermal conductivity of the cementing cement increases from 1 W/(m·K) to 2 W/(m·K), the outlet water temperature at the source side increases by approximately 1 °C, and the heat transfer increases by 13 kW. However, the improvement effect of further increasing the thermal conductivity on the heat-exchange efficiency gradually decreases. When the flow rate is 0.7 m/s, the heat transfer is stable at approximately 250 kW, and the system economy and heat-transfer efficiency reach a balance. These findings provide a robust scientific basis for promoting medium-deep geothermal energy heating systems in cold regions and offer valuable references for the green and low-carbon transition in building heating systems. Full article
Show Figures

Figure 1

26 pages, 27035 KiB  
Article
Enhancing Air Conditioning System Efficiency Through Load Prediction and Deep Reinforcement Learning: A Case Study of Ground Source Heat Pumps
by Zhitao Wang, Yubin Qiu, Shiyu Zhou, Yanfa Tian, Xiangyuan Zhu, Jiying Liu and Shengze Lu
Energies 2025, 18(1), 199; https://doi.org/10.3390/en18010199 - 5 Jan 2025
Cited by 2 | Viewed by 1790
Abstract
This study proposes a control method that integrates deep reinforcement learning with load forecasting, to enhance the energy efficiency of ground source heat pump systems. Eight machine learning models are first developed to predict future cooling loads, and the optimal one is then [...] Read more.
This study proposes a control method that integrates deep reinforcement learning with load forecasting, to enhance the energy efficiency of ground source heat pump systems. Eight machine learning models are first developed to predict future cooling loads, and the optimal one is then incorporated into deep reinforcement learning. Through interaction with the environment, the optimal control strategy is identified using a deep Q-network to optimize the supply water temperature from the ground source, allowing for energy savings. The obtained results show that the XGBoost model significantly outperforms other models in terms of prediction accuracy, reaching a coefficient of determination of 0.982, a mean absolute percentage error of 6.621%, and a coefficient of variation for the root mean square error of 10.612%. Moreover, the energy savings achieved through the load forecasting-based deep reinforcement learning control method are greater than those of traditional constant water temperature control methods by 10%. Additionally, without shortening the control interval, the energy savings are improved by 0.38% compared with deep reinforcement learning control methods that do not use predictive information. This approach requires only continuous interaction and learning between the agent and the environment, which makes it an effective alternative in scenarios where sensor and equipment data are not present. It provides a smart and adaptive optimization control solution for heating, ventilation, and air conditioning systems in buildings. Full article
(This article belongs to the Section A: Sustainable Energy)
Show Figures

Figure 1

15 pages, 4244 KiB  
Article
Study on the Operation Optimization of Medium-Depth U-Type Ground Source Heat Pump Systems
by Chaohui Zhou, Yue Hu, Yuce Liu, Rujie Liu, Yongqiang Luo, Xiao Wang and Huiheng Luo
Energies 2024, 17(13), 3184; https://doi.org/10.3390/en17133184 - 28 Jun 2024
Viewed by 1320
Abstract
Deep geothermal energy is a sustainable and renewable spacing heating source. Although many studies have discussed the design optimization of deep borehole systems, few have accomplished optimization and in-depth analysis of system operation control. In this study, an analytical model of the U-type [...] Read more.
Deep geothermal energy is a sustainable and renewable spacing heating source. Although many studies have discussed the design optimization of deep borehole systems, few have accomplished optimization and in-depth analysis of system operation control. In this study, an analytical model of the U-type deep borehole heat exchanger is proposed, and the average relative error between the simulated outlet temperatures and experimental data is −3.2%. Then, this paper presents an integrated model for the operation optimization study of the U-type deep-borehole ground source heat pump system. The optimal control of flow rate is adopted to match the variation in heating load. Compared with the constant-flow rate (110 m3/h) operation mode, the variable flow rate method reduces the power consumption of the heat pump and circulating pump by 22.1%, from 288,423 kW·h to 224,592 kW·h, during 2112 h of operation. In addition, the system has a larger RHS and COP when the thermal conductivity of the backfill material increases. When the borehole depth increases by 200 m from 2300 m, the energy consumption of the circulating pump will drop from 85,844 kW·h to 56,548 kW·h. The COP of the heat pump unit will decrease approximately linearly as the heating load increases, and the total power consumption will increase accordingly. This work can provide guidance for the design and optimization of U-shaped GSHP systems. Full article
Show Figures

Figure 1

21 pages, 7075 KiB  
Article
Groundwater Potential for the Utilisation of Shallow Geothermal Energy from a Closed Coal Mine
by Željko Vukelić and Jurij Šporin
Water 2024, 16(11), 1572; https://doi.org/10.3390/w16111572 - 30 May 2024
Cited by 3 | Viewed by 1230
Abstract
In accordance with the programme of closure works and the implementation of ecological spatial rehabilitation in the area of the Slovenian coal mine Trbovlje–Hrastnik (RTH), there is a great opportunity to exploit shallow geothermal energy from water and ground sources. In the RTH [...] Read more.
In accordance with the programme of closure works and the implementation of ecological spatial rehabilitation in the area of the Slovenian coal mine Trbovlje–Hrastnik (RTH), there is a great opportunity to exploit shallow geothermal energy from water and ground sources. In the RTH area, there is great energy potential in the utilisation of underground water and heat from the earth. In our research, we have focussed on the use of geothermal energy with heat pumps from groundwater (water/water system) and from ground collectors and wells up to a depth of 150 m (rock/water system). With the water/water system, we have an average of 2.7 MW of thermal energy available, with the rock/water system having 7.5 kW of thermal energy from a 150 m deep well. With the rock/water system in particular, the development of an industrial zone in the RTH area can also provide for a greater demand for thermal energy. The thermal energy obtained in this way is utilised via heat pumps to heat and cool commercial, residential and industrial buildings. The utilisation of shallow geothermal energy can make a major contribution to carbon neutrality, as the use of geothermal energy has no negative impact on the environment and causes no greenhouse gas emissions. The aim of the paper is to provide an overview of the methods used to analyse heat storage in aquifers of abandoned coal mines, to represent these storages in RTH with a basic mathematical–statistical inventory of what is happening in the aquifer, and to investigate the possibility of using shallow geothermal energy with the help of modelling the use of shallow geothermal energy. The results and analyses obtained can make an important scientific contribution to the use of geothermal energy from abandoned and closed mines. Full article
(This article belongs to the Special Issue Advances in Geothermal Water and Energy)
Show Figures

Figure 1

34 pages, 13566 KiB  
Article
Canada’s Geothermal Energy Update in 2023
by Katherine Huang, Alireza Dehghani-Sanij, Catherine Hickson, Stephen E. Grasby, Emily Smejkal, Mafalda M. Miranda, Jasmin Raymond, Derek Fraser, Kass Harbottle, Daniel Alonso Torres, John Ebell, Julie Dixon, Emily Olsen, Jeanine Vany, Kirsten Marcia, Maurice Colpron, Andrew Wigston, Gordon Brasnett, Martyn Unsworth and Phil Harms
Energies 2024, 17(8), 1807; https://doi.org/10.3390/en17081807 - 10 Apr 2024
Cited by 4 | Viewed by 4848
Abstract
Geothermal energy exploration, development, and research have been ongoing in Canada for several decades. The country’s cold climate and the push to develop renewable energy sources have driven interest in geothermal energy. Despite this drive, regulatory complexities and competition with other relatively inexpensive [...] Read more.
Geothermal energy exploration, development, and research have been ongoing in Canada for several decades. The country’s cold climate and the push to develop renewable energy sources have driven interest in geothermal energy. Despite this drive, regulatory complexities and competition with other relatively inexpensive energy sources with existing infrastructure have hindered development. As such, interest has grown and waned with changes in the energy economy over several decades, leaving many projects at a standstill. As of January 2023, there are currently no operational geothermal power projects in Canada. Many hot spring pool and spa complexes remain active, and Canada is a leading country in the installation of ground source heat pumps (GSHPs; also called geo-exchange systems). However, in the last decade, the interest in deep geothermal systems has renewed, with many new projects starting up across several provinces and territories. Moreover, projects that had shown limited progress for many years—such as Mount Meager in British Columbia—have begun to renew their development efforts. Research is also expanding within prominent research groups and universities. The areas of focus include both building upon previous studies (such as thermal gradients and the heat flow in sedimentary basins) and researching new methods and resources (such as GSHPs, closed-loop systems, integrated geothermal operations, and hybrid systems, including heat storage). The development is supported by federal, provincial, and territorial governments through grants and the development of regulatory frameworks. Although challenges still remain for Canada to develop its geothermal energy resources, several power, thermal, and co-production projects, ongoing research, funding, and regulatory acts are all moving forward to support geothermal development. This paper aims to study Canada’s geothermal energy update in 2023 regarding the aspects mentioned above. Full article
(This article belongs to the Section G: Energy and Buildings)
Show Figures

Figure 1

21 pages, 6870 KiB  
Article
Thermal Performance Analysis and Multi-Factor Optimization of Middle–Deep Coaxial Borehole Heat Exchanger System for Low-Carbon Building Heating
by Mingshan Liang, Jianhua Tu, Lingwen Zeng, Zhaoqing Zhang, Nan Cheng and Yongqiang Luo
Sustainability 2023, 15(21), 15215; https://doi.org/10.3390/su152115215 - 24 Oct 2023
Cited by 4 | Viewed by 1483
Abstract
Ground-source heat pumps with deep borehole heat exchangers can fully utilize deep geothermal energy, effectively reducing the consumption of non-renewable energy for building air conditioning and achieving energy conservation and emissions reduction goals. However, the middle–deep coaxial borehole heat exchange (MDBHE) development is [...] Read more.
Ground-source heat pumps with deep borehole heat exchangers can fully utilize deep geothermal energy, effectively reducing the consumption of non-renewable energy for building air conditioning and achieving energy conservation and emissions reduction goals. However, the middle–deep coaxial borehole heat exchange (MDBHE) development is insufficient, and there is currently a lack of definitive guidelines for system optimal design and operation. This paper firstly establishes an effective and efficient system model and examines nine important parameters related to the design and operation of the MDBHE using a single-factor analysis. Thereafter, we compare and analyze the impact of different parameters through an orthogonal experimentation method. The findings reveal that the three most significant factors are borehole depth, inlet temperature, and mass flow rate, in descending order of importance. In addition, in terms of operation mode, this paper makes a comparative analysis of the operation of the MDBHE in variable flow mode and constant flow mode. The results showed that the average energy consumption of the pump in the variable flow mode decreased by 9.6%, and the surrounding ground temperature recovered at a faster rate. Full article
Show Figures

Figure 1

16 pages, 4600 KiB  
Article
The Development of a Novel Direct-Expansion Ground Source Heat Pump (DE-GSHP) for Embankment Heating in Cold Regions
by Mingxing Cao, Yimin Zhang and Tianfei Hu
Appl. Sci. 2023, 13(19), 11090; https://doi.org/10.3390/app131911090 - 9 Oct 2023
Viewed by 1566
Abstract
This study aimed to investigate the practical applications of a ground source heat pump (GSHP) system for heating applications in embankment engineering. A special direct-expansion GSHP (DE-GSHP) was designed and manufactured, and its performance was experimentally assessed. Subsequently, the newly developed DE-GSHP structure [...] Read more.
This study aimed to investigate the practical applications of a ground source heat pump (GSHP) system for heating applications in embankment engineering. A special direct-expansion GSHP (DE-GSHP) was designed and manufactured, and its performance was experimentally assessed. Subsequently, the newly developed DE-GSHP structure demonstrated an excellent heating performance with respect to positive heat-supplying temperatures in cold regions. The temperature could be automatically controlled at 30, 45, 60, and 75; additionally, the heat-absorbing temperatures were maintained below 0 °C, which was extremely lower than that of the deep frost-free stratum. Further, the experimental data were used to evaluate the coefficient of performance of the DE-GSHP, which was more than 3.5. The findings indicated that the GSHP has potential applications for embankment heating in cold regions. Full article
(This article belongs to the Section Civil Engineering)
Show Figures

Figure 1

29 pages, 9293 KiB  
Article
Economic and Energy Performance of Heating and Ventilation Systems in Deep Retrofitted Norwegian Detached Houses
by Vegard Heide, Håkon Selstad Thingbø, Anne Gunnarshaug Lien and Laurent Georges
Energies 2022, 15(19), 7060; https://doi.org/10.3390/en15197060 - 26 Sep 2022
Cited by 10 | Viewed by 3312
Abstract
The aim of this study was to evaluate the life-cycle costs (LCC) and energy performance of different heating and ventilation systems (HVAC) in deep-energy renovation of Norwegian detached houses. Eight different HVAC combinations based on heat pumps are compared using two case buildings, [...] Read more.
The aim of this study was to evaluate the life-cycle costs (LCC) and energy performance of different heating and ventilation systems (HVAC) in deep-energy renovation of Norwegian detached houses. Eight different HVAC combinations based on heat pumps are compared using two case buildings, with different performance levels for the building envelope. The case buildings are small wooden dwellings without a hydronic heating system, which is representative of existing Norwegian detached houses. The insulation level had only a limited effect on the relative performance of the various HVAC combinations. Many solutions with medium and higher investments have a payback time close to the technical lifetime. Uncertainty regarding investment costs is important and affects the relative performance between HVAC combinations. Electricity prices also have a decisive influence on the relative performance. Solutions with lower investment costs often lead to low total costs but higher energy use. However, solutions with medium investment cost lead to a significant reduction in energy use and only a minor increase in total costs. Improving the cost-effectiveness of these technologies (reduced investment costs, grants, increased electricity price) would unlock large energy-saving potential. The lack of hydronic distribution systems in existing Norwegian buildings is a barrier to implementing air-to-water and ground-source heat pumps. For the investigated cases, the current government subsidies in Norway do not seem large enough to make investments in deep-energy renovation profitable. Full article
(This article belongs to the Section G: Energy and Buildings)
Show Figures

Figure 1

16 pages, 4970 KiB  
Article
Study on the Thermomechanical Response of Deep Buried Pipe Energy Piles under Temperature Load
by Jingquan Wang, Chunxia Chang, Zhi Chen, Henglin Xiao, Bo Wang, Jinjia Tan and Di Hai
Energies 2022, 15(10), 3842; https://doi.org/10.3390/en15103842 - 23 May 2022
Cited by 3 | Viewed by 2180
Abstract
A deep buried pipe energy pile (DBP-EP) is a composite structure that integrates ground-source heat pump (GSHP) systems and inside buried pipe energy piles (IBP-EP) to effectively achieve the improvement of heat transfer efficiency and quantity. Utilizing this technology in building a pile [...] Read more.
A deep buried pipe energy pile (DBP-EP) is a composite structure that integrates ground-source heat pump (GSHP) systems and inside buried pipe energy piles (IBP-EP) to effectively achieve the improvement of heat transfer efficiency and quantity. Utilizing this technology in building a pile foundation can contribute to reducing carbon emissions. This paper studies the variation rules of the thermomechanical response of DBP-EP under temperature load via field testing and numerical simulation. The results show that, under heating and cooling conditions, the DBP-EP temperature variation within the pile is substantial, while there is no significant change in the temperature field at the bottom of the pile. This is different from the internal temperature change of the temperature distribution of IBP-EP. The minimum axial average strain of the DBP-EP under the cooling condition is significantly smaller than that under the heating condition. However, the additional axial average strain under the temperature load is significantly larger than that in the heating condition, resulting in larger additional axial stress when the pile is cooled. The connection between the pile and foundation must considered in design due to the large settlement of the pile top under cooling conditions. When only under the temperature load, the maximum axial average pressure increments of the pile in our test during heating and cooling are −85.3 kN/°C and 99.4 kN/°C, respectively, suggesting that the additional load cannot be ignored. Full article
Show Figures

Figure 1

17 pages, 8713 KiB  
Article
Experimental Study to Analyze Feasibility of a Novel Panelized Ground-Source Thermoelectric System for Building Space Heating and Cooling
by Rui Miao, Xiaoou Hu, Yao Yu, Qifeng Zhang, Zhibin Lin, Abdulaziz Banawi and Ahmed Cherif Megri
Energies 2022, 15(1), 209; https://doi.org/10.3390/en15010209 - 29 Dec 2021
Cited by 5 | Viewed by 2237
Abstract
A thermoelectric module is a device that converts electrical energy into thermal energy through a mechanism known as the Peltier effect. A Peltier device has hot and cold sides/substrates, and heat can be pumped from the cold side to the hot side under [...] Read more.
A thermoelectric module is a device that converts electrical energy into thermal energy through a mechanism known as the Peltier effect. A Peltier device has hot and cold sides/substrates, and heat can be pumped from the cold side to the hot side under a given voltage. By applying it in buildings and attaching it to building envelope components, such as walls, as a heating and cooling device, the heating and cooling requirements can be met by reversing the voltage applied on these two sides/substrates. In this paper, we describe a novel, panelized, ground source, radiant system design for space heating and cooling in buildings by utilizing the Peltier effect. The system is equipped with water pipes that are attached to one side of the panel and connected with a ground loop to exchange heat between the cold/hot sides of the thermoelectric module and the underground region. The ground loop is inserted in boreholes, similar to those used for a vertical closed-loop Ground Source Heat Pump (GSHP) system, which could be more than a hundred meters deep. Experiments were conducted to evaluate the feasibility of the developed panel system applied in buildings. The results show that: (1) the average cooling Coefficients Of Performance (COP) of the system are low (0.6 or less) even though the ground is used as a heat sink, and thus additional studies are needed to improve it in the future, such as to arrange the thermoelectric modules in cascade and/or develop a new thermoelectric material that has a large Seebeck coefficient; and (2) the developed system using the underground region as the heat source has the potential of meeting heating loads of a building while maintaining at a higher system coefficient of performance (up to ~3.0) for space heating, compared to conventional heating devices, such as furnaces or boilers, especially in a region with mild winters and relatively warm ground. Full article
(This article belongs to the Section G: Energy and Buildings)
Show Figures

Figure 1

25 pages, 3521 KiB  
Article
Different Approaches for Evaluation and Modeling of the Effective Thermal Resistance of Groundwater-Filled Boreholes
by Oleg Todorov, Kari Alanne, Markku Virtanen and Risto Kosonen
Energies 2021, 14(21), 6908; https://doi.org/10.3390/en14216908 - 21 Oct 2021
Cited by 6 | Viewed by 2503
Abstract
Groundwater-filled boreholes are a common solution in Scandinavian installations of ground source heat pumps (GSHP) due to the particular hydro-geological conditions with existing bedrock, and groundwater levels close to the surface. Different studies have highlighted the advantage of water-filled boreholes compared with their [...] Read more.
Groundwater-filled boreholes are a common solution in Scandinavian installations of ground source heat pumps (GSHP) due to the particular hydro-geological conditions with existing bedrock, and groundwater levels close to the surface. Different studies have highlighted the advantage of water-filled boreholes compared with their grouted counterparts since the natural convection of water within the borehole tends to decrease the effective thermal resistance Rb*. In this study, several methods are proposed for the evaluation and modeling of the effective thermal resistance of groundwater-filled boreholes. They are based on distributed temperature sensing (DTS) measurements of six representative boreholes within the irregular 74-single-U 300 m-deep borehole field of Aalto New Campus Complex (ANCC). These methods are compared with the recently developed correlations for groundwater-filled boreholes, which are implemented within the python-based simulation toolbox Pygfunction. The results from the enhanced Pygfunction simulation with daily update of Rb* show very good agreement with the measured mean fluid temperature of the first 39 months of system operation (March 2018–May 2021). It is observed that in real operation the effective thermal resistance Rb* can vary significantly, and therefore it is concluded that the update of Rb* is crucial for a reliable long-term simulation of groundwater-filled boreholes. Full article
(This article belongs to the Special Issue Volume III: Low Enthalpy Geothermal Energy)
Show Figures

Figure 1

31 pages, 3450 KiB  
Article
EU Emission Targets of 2050: Costs and CO2 Emissions Comparison of Three Different Solar and Heat Pump-Based Community-Level District Heating Systems in Nordic Conditions
by Hassam ur Rehman, Janne Hirvonen, Juha Jokisalo, Risto Kosonen and Kai Sirén
Energies 2020, 13(16), 4167; https://doi.org/10.3390/en13164167 - 12 Aug 2020
Cited by 24 | Viewed by 4807
Abstract
In Finland, old apartments (1980s) contribute toward emissions. The objective is to reduce CO2 emissions to reach Europe’s targets of 2050. Three different centralized solar-based district heating systems integrated either with non-renovated or renovated old buildings in the community were simulated and [...] Read more.
In Finland, old apartments (1980s) contribute toward emissions. The objective is to reduce CO2 emissions to reach Europe’s targets of 2050. Three different centralized solar-based district heating systems integrated either with non-renovated or renovated old buildings in the community were simulated and compared against the reference city-level district heating system. The three proposed centralized systems were: Case 1: photovoltaic (PV) with a ground source heat pump (GSHP); Case 2: PV with an air-water heat pump (A2WHP); and Case 3: PV with A2WHPs, seasonal storage, and GSHPs. TRNSYS simulation software was used for dynamic simulation of the systems. Life cycle cost (LCC), CO2 emissions and purchased electricity were calculated and compared. The results show that the community-level district heating system (Case 3) outperformed Case 1, Case 2, and the city-level district heating. With non-renovated buildings, the relative emissions reduction was 83% when the reference energy system was replaced with Case 3 and the emissions reduction cost was 3.74 €/kg.CO2/yr. The relative emissions reduction was 91% when the buildings were deep renovated and integrated with Case 3 when compared to the reference system with non-renovated buildings and the emission reduction cost was 11.9 €/kg.CO2/yr. Such district heating systems could help in meeting Europe’s emissions target for 2050. Full article
(This article belongs to the Special Issue Energy Performance and Indoor Climate in Buildings)
Show Figures

Graphical abstract

18 pages, 18269 KiB  
Article
A Comprehensive Set of Cooling Measures for the Overall Control and Reduction of High Temperature-Induced Thermal Damage in Oversize Deep Mines: A Case Study
by Wei Zhang, Tianyi Wang, Dongsheng Zhang, Jiajia Tang, Peng Xu and Xu Duan
Sustainability 2020, 12(6), 2489; https://doi.org/10.3390/su12062489 - 22 Mar 2020
Cited by 19 | Viewed by 4183
Abstract
The mining process in deep mines occurs at elevated temperatures and thus is significantly jeopardized by the thermal damage. In this study, the main factors causing high-temperatures under particular mining geological and prevailing conditions of coal mine production, namely for the Longgu Coal [...] Read more.
The mining process in deep mines occurs at elevated temperatures and thus is significantly jeopardized by the thermal damage. In this study, the main factors causing high-temperatures under particular mining geological and prevailing conditions of coal mine production, namely for the Longgu Coal Mine (LCM) in Shandong Province of China, were specified and analyzed in detail. This included exothermic heat from the surrounding rock of an underground roadway, inflow of high-temperature water, seasonal temperature rise, mechanical and electrical equipment operation, and airflow compression in the mine. The integrated artificial cooling mode was implemented on the basis of the original normal ventilation and cooling facilities of the LCM, which involved cooling by mobile refrigeration units, water source heat pump refrigeration units, and a ground centralized ice-cooling radiation system, as well as the underground centralized cooling system provided by Wärme-Austausch-Technik (WAT) GmbH. Eventually, a comprehensive set of measures for the overall control and reduction of high-temperature-induced damage was realized, which ensured more effective cooling of the LCM. Thus, the average temperature of the main operation sites was reduced by 8 K, while that of the underground working faces was maintained at 299.15 K. These measures also resulted in excellent technical and economic benefits: the total three-year increase in revenue and savings reached 76.3 million USD, hence relevant findings of the study are expected to provide technical guidance on the treatment of high-temperature-induced damage in deep mines. Full article
Show Figures

Figure 1

Back to TopTop