Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (316)

Search Parameters:
Keywords = decorative coatings

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 2192 KiB  
Article
Visible-Light-Driven Degradation of Biological Contaminants on the Surface of Textile Fabric Modified with TiO2-N Photocatalyst
by Maria Solovyeva, Evgenii Zhuravlev, Yuliya Kozlova, Alevtina Bardasheva, Vera Morozova, Grigory Stepanov, Denis Kozlov, Mikhail Lyulyukin and Dmitry Selishchev
Int. J. Mol. Sci. 2025, 26(15), 7550; https://doi.org/10.3390/ijms26157550 - 5 Aug 2025
Abstract
The problem of spreading harmful infections through contaminated surfaces has become more acute during the recent coronavirus pandemic. The design of self-cleaning materials, which can continuously decompose biological contaminants, is an urgent task for environmental protection and human health care. In this study, [...] Read more.
The problem of spreading harmful infections through contaminated surfaces has become more acute during the recent coronavirus pandemic. The design of self-cleaning materials, which can continuously decompose biological contaminants, is an urgent task for environmental protection and human health care. In this study, the surface of blended cotton/polyester fabric was functionalized with N-doped TiO2 (TiO2-N) nanoparticles using titanium(IV) isopropoxide as a binder to form durable photoactive coating and additionally decorated with Cu species to promote its self-cleaning properties. The photocatalytic ability of the material with photoactive coating was investigated in oxidation of acetone vapor, degradation of deoxyribonucleic acid (DNA) fragments of various lengths, and inactivation of PA136 bacteriophage virus and Candida albicans fungi under visible light and ultraviolet A (UVA) radiation. The kinetic aspects of inactivation and degradation processes were studied using the methods of infrared (IR) spectroscopy, polymerase chain reaction (PCR), double-layer plaque assay, and ten-fold dilution. The results of experiments showed that the textile fabric modified with TiO2-N photocatalyst exhibited photoinduced self-cleaning properties and provided efficient degradation of all studied contaminants under exposure to both UVA and visible light. Additional modification of the material with Cu species substantially improved its self-cleaning properties, even in the absence of light. Full article
(This article belongs to the Special Issue Fabrication and Application of Photocatalytically Active Materials)
Show Figures

Figure 1

26 pages, 8292 KiB  
Review
Progress in the Circular Arc Source Structure and Magnetic Field Arc Control Technology for Arc Ion Plating
by Hao Du, Ke Zhang, Debin Liu and Wenchang Lang
Materials 2025, 18(15), 3498; https://doi.org/10.3390/ma18153498 - 25 Jul 2025
Viewed by 174
Abstract
Aiming at the goal of preparing high-quality coatings, this paper reviews the progress on circular arc source structure and magnetic field arc controlling technology in arc ion plating (AIP), with a focus on design characteristics of the different structures and configuration optimization of [...] Read more.
Aiming at the goal of preparing high-quality coatings, this paper reviews the progress on circular arc source structure and magnetic field arc controlling technology in arc ion plating (AIP), with a focus on design characteristics of the different structures and configuration optimization of the corresponding magnetic fields. The circular arc source, due to its simple structure, convenient installation, flexible target combination, high cooling efficiency, and high ionization rate and deposition rate, has shown significant application potential in AIP technology. In terms of magnetic field arc controlling technology, this paper delves into the design progress of various magnetic field configurations, including fixed magnetic fields generated by permanent magnets, dynamic rotating magnetic fields, axially symmetric magnetic fields, rotating transverse magnetic fields, and multi-mode alternating electromagnetic coupling fields. By designing the magnetic field distribution reasonably, the trajectory and velocity of the arc spot can be controlled precisely, thus reducing the generation of macroparticles, improving target utilization, and enhancing coating uniformity. In particular, the introduction of multi-mode magnetic field coupling technology has broken through the limitations of traditional single magnetic field structures, achieving comprehensive optimization of arc spot motion and plasma transport. Hopefully, these research advances provide an important theoretical basis and technical support for the application of AIP technology in the preparation for high-quality decorative and functional coatings. Full article
(This article belongs to the Section Materials Physics)
Show Figures

Figure 1

29 pages, 42729 KiB  
Article
Sustainable and Functional Polymeric Coating for Wood Preservation
by Ramona Marina Grigorescu, Rodica-Mariana Ion, Lorena Iancu, Sofia Slamnoiu-Teodorescu, Anca Irina Gheboianu, Elvira Alexandrescu, Madalina Elena David, Mariana Constantin, Iuliana Raut, Celina Maria Damian, Cristian-Andi Nicolae and Bogdan Trica
Coatings 2025, 15(8), 875; https://doi.org/10.3390/coatings15080875 - 25 Jul 2025
Viewed by 345
Abstract
The development of sustainable and functional nanocomposites has attracted considerable attention in recent years due to their broad spectrum of potential applications, including wood preservation. Also, a global goal is to reuse the large volumes of waste for environmental issues. In this context, [...] Read more.
The development of sustainable and functional nanocomposites has attracted considerable attention in recent years due to their broad spectrum of potential applications, including wood preservation. Also, a global goal is to reuse the large volumes of waste for environmental issues. In this context, the aim of the study was to obtain soda lignin particles, to graft ZnO nanoparticles onto their surface and to apply these hybrids, embedded into a biodegradable polymer matrix, as protection/preservation coating for oak wood. The organic–inorganic hybrids were characterized in terms of compositional, structural, thermal, and morphological properties that confirm the efficacy of soda lignin extraction and ZnO grafting by physical adsorption onto the decorating support and by weak interactions and coordination bonding between the components. The developed solution based on poly(3-hydroxybutyrate-co-3-hydroxyvalerate) and lignin-ZnO was applied to oak wood specimens by brushing, and the improvement in hydrophobicity (evaluated by water absorption that decreased by 48.8% more than wood, humidity tests where the treated sample had a humidity of 4.734% in comparison with 34.911% for control, and contact angle of 97.8° vs. 80.5° for untreated wood) and UV and fungal attack protection, while maintaining the color and aspect of specimens, was sustained. L.ZnO are well dispersed into the polymer matrix, ensuring a smooth and less porous wood surface. According to the results, the obtained wood coating using both a biodegradable polymeric matrix and a waste-based preservative can be applied for protection against weathering degradation factors, with limited water uptake and swelling of the wood, UV shielding, reduced wood discoloration and photo-degradation, effective protection against fungi, and esthetic quality. Full article
Show Figures

Figure 1

21 pages, 5673 KiB  
Article
Functionalized Magnetic Nanomaterial Based on SiO2/Ca(OH)2-Coated Clusters Decorated with Silver Nanoparticles for Dental Applications
by Izabell Crăciunescu, George Marian Ispas, Alexandra Ciorîta and Rodica Paula Turcu
Crystals 2025, 15(7), 615; https://doi.org/10.3390/cryst15070615 - 30 Jun 2025
Cited by 1 | Viewed by 287
Abstract
In this study, an innovative dental functionalized magnetic nanomaterial was developed by incorporating hydrophilic magnetic clusters as an alternative to conventional isolated magnetic nanoparticles, introducing a novel structural and functional concept in dental applications. The ~100 nm magnetic clusters—composed of densely packed 7 [...] Read more.
In this study, an innovative dental functionalized magnetic nanomaterial was developed by incorporating hydrophilic magnetic clusters as an alternative to conventional isolated magnetic nanoparticles, introducing a novel structural and functional concept in dental applications. The ~100 nm magnetic clusters—composed of densely packed 7 nm Fe3O4 nanoparticles—were sequentially coated with a silica (SiO2) layer (3–5 nm) to improve chemical and mechanical stability, followed by an outer calcium hydroxide [Ca(OH)2] layer to enhance bioactivity and optical integration. This bilayer architecture enables magnetic field-assisted positioning and improved dispersion within dental resin matrices. Silver nanoparticles were incorporated to enhance antimicrobial activity and reduce biofilm formation. The synthesis process was environmentally friendly and scalable. Comprehensive physicochemical characterization confirmed the material’s functional performance. Saturation magnetization decreased progressively with surface functionalization, from 62 to 14 emu/g, while the zeta potential became increasingly negative (from −2.42 to −22.5 mV), supporting its ability to promote apatite nucleation. The thermal conductivity (0.527 W/m·K) closely matched that of human dentin (0.44 W/m·K), and the colorimetric analysis showed improved brightness (ΔL = 5.3) and good color compatibility (ΔE = 11.76). These results indicate that the functionalized magnetic nanomaterial meets essential criteria for restorative use and holds strong potential for future clinical applications. Full article
(This article belongs to the Special Issue Innovations in Magnetic Composites: Synthesis to Application)
Show Figures

Figure 1

20 pages, 3506 KiB  
Article
AuNP/Magnetic Bead-Enhanced Electrochemical Sensor Toward Dual Saliva Alzheimer’s Biomarkers Detection
by Pengcheng Zhao, Jieyu Wang, Hongju Mao, Lin Zhou, Zhenhua Wu, Yunxing Lu, Teng Sun, Jianan Hui and Guowu Ma
Sensors 2025, 25(13), 4088; https://doi.org/10.3390/s25134088 - 30 Jun 2025
Viewed by 641
Abstract
Alzheimer’s disease (AD) early screening requires non-invasive, high-sensitivity detection of low-abundance biomarkers in complex biofluids like saliva. In this study, we present a miniaturized, silicon-based electrochemical sensor for sequential detection of two AD salivary biomarkers, lactoferrin (Lf) and amyloid β-protein 1-42 (Aβ1-42 [...] Read more.
Alzheimer’s disease (AD) early screening requires non-invasive, high-sensitivity detection of low-abundance biomarkers in complex biofluids like saliva. In this study, we present a miniaturized, silicon-based electrochemical sensor for sequential detection of two AD salivary biomarkers, lactoferrin (Lf) and amyloid β-protein 1-42 (Aβ1-42), on a single reusable electrode. The sensor features a three-electrode system fabricated by sputter-coating a quartz substrate with gold (Au) sensing electrodes, which are further modified with gold nanoparticles (AuNPs) to form 3D dendritic structures that enhance surface area and electron transfer. To improve specificity, immunomagnetic beads (MBs) are employed to selectively capture and isolate target biomarkers from saliva samples. These MB–biomarker complexes are introduced into a polydimethylsiloxane chamber aligned with Au sensing electrodes, where a detachable magnet localizes the complexes onto the electrode surface to amplify redox signals. The AuNPs/MBs sensor achieves detection limits of 2 μg/mL for Lf and 0.1 pg/mL for Aβ1-42, outperforming commercial ELISA kits (37.5 pg/mL for Aβ1-42) and covering physiological salivary concentrations. After the MBs capture the biomarkers, the sensor can output the result within one minute. Cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) measurements confirm enhanced electron transfer kinetics on AuNP-decorated surfaces, while linear correlations (R2 > 0.95) validate quantitative accuracy across biomarker ranges. The compact and integrated design eliminates reliance on bulky instrumentation and enables user-friendly operation, establishing a promising platform for portable, cost-effective AD screening and monitoring. Full article
(This article belongs to the Section Biomedical Sensors)
Show Figures

Figure 1

17 pages, 6013 KiB  
Article
The Effect of Injection Molding Processing Parameters on Chrome-Plated Acrylonitrile Butadiene Styrene-Based Automotive Parts: An Industrial Scale
by Yunus Emre Polat, Mustafa Oksuz, Aysun Ekinci, Murat Ates and Ismail Aydin
Polymers 2025, 17(13), 1787; https://doi.org/10.3390/polym17131787 - 27 Jun 2025
Viewed by 570
Abstract
In recent years, plastic decorative materials have been used in the automotive industry due to their advantages such as being environmentally friendly, aesthetic, light and economically affordable. Plastic decorative materials can exhibit high strength and metallic reflection with metal coatings. Chrome plating is [...] Read more.
In recent years, plastic decorative materials have been used in the automotive industry due to their advantages such as being environmentally friendly, aesthetic, light and economically affordable. Plastic decorative materials can exhibit high strength and metallic reflection with metal coatings. Chrome plating is generally preferred in the production of decorative plastic parts in the automotive industry. In this study, the effect of injection molding processing parameters on the metal–polymer adhesion of chrome-plated acrylonitrile butadiene styrene (ABS) was investigated. The ABS-based front grille frames are fabricated by means of using an industrial-scale injection molding machine. Then, the fabricated ABS-based front grille frame was plated with chrome by means of the electroplating method. The metal–polymer adhesion was investigated as a function of the injection molding processing parameters by means of a cross-cut test and scanning electron microscope (SEM). As a result, it was determined that the optimal injection process parameters, a cooling time of 18 s, a mold temperature of 70 °C, injection rates of 45-22-22-20-15-10 mm/s, and packing pressures of 110-100-100 bar, were effective in enhancing polymer–metal adhesion for the ABS-based front grille frame. Full article
(This article belongs to the Special Issue Advances in Polymer Molding and Processing)
Show Figures

Graphical abstract

26 pages, 9909 KiB  
Article
Three-Tiered Defensive System and Ethnic Fusion: A Study of Architectural Art in Guomari Fortress, Eastern Qinghai
by Liyue Wu, Qinchuan Zhan and Yanjun Li
Buildings 2025, 15(13), 2218; https://doi.org/10.3390/buildings15132218 - 24 Jun 2025
Cited by 1 | Viewed by 461
Abstract
Guomari fortress in eastern Qinghai Province exemplifies vernacular architecture shaped by multiethnic interaction, environmental adaptation, and localized defense strategies. Originally a Ming Dynasty military-agricultural outpost, it evolved into a Tu ethnic settlement. Fieldwork, including architectural surveys and spatial analysis, identified a three-tiered defensive [...] Read more.
Guomari fortress in eastern Qinghai Province exemplifies vernacular architecture shaped by multiethnic interaction, environmental adaptation, and localized defense strategies. Originally a Ming Dynasty military-agricultural outpost, it evolved into a Tu ethnic settlement. Fieldwork, including architectural surveys and spatial analysis, identified a three-tiered defensive system: (1) strategic use of terrain and rammed-earth walls; (2) labyrinthine alleys with L-, T-, and cross-shaped intersections; and (3) interconnected rooftops forming elevated circulation routes. Courtyards are categorized into single-line, L-shaped, U-shaped, and fully enclosed layouts, reflecting adaptations to terrain, ritual functions, and thermal needs. Architectural features such as thick loam-coated walls and flat roofs demonstrate climatic adaptation, while the integration of Han timber frameworks, Tibetan prayer halls, and Tu decorative elements reveals cultural convergence. Traditional craftsmanship, including carved wooden scripture blocks and tsampa-based murals, is embedded within domestic and ritual spaces. The fortress’s circulation patterns mirror Tibetan Buddhist cosmology, with mandala-like alleys and rooftop circumambulation routes. These findings offer insights into vernacular resilience and inform conservation strategies for multiethnic fortified settlements. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

11 pages, 2799 KiB  
Article
Influence of Fluorine Nano-Coating on Cutting Force and Surface Roughness of Wood–Plastic Composites During Milling
by Xiaohang Du, Dietrich Buck, Jun Guan, Kai Liu and Zhaolong Zhu
Coatings 2025, 15(5), 574; https://doi.org/10.3390/coatings15050574 - 11 May 2025
Viewed by 824
Abstract
Wood–plastic composites (WPCs) are important materials used in interior architectural decorations and landscape construction products. Enhancing the cutting performance of WPCs is of great significance for improving both production efficiency and product quality in factories. This study aims to elucidate the impact of [...] Read more.
Wood–plastic composites (WPCs) are important materials used in interior architectural decorations and landscape construction products. Enhancing the cutting performance of WPCs is of great significance for improving both production efficiency and product quality in factories. This study aims to elucidate the impact of fluorine nano-coating technology on the cutting performance of cemented carbide tools during the milling of WPCs. The main results are given as follows. The cutting force and surface roughness showed similar trends with the varied parameters; both increased with increasing cutting depth and decreased with increasing cutting speed. The fluorine nano-coating technology exerts a positive influence on the cutting performance in terms of lower cutting forces and surface roughness. Meanwhile, based on the analysis of variance results, the experimental factors of cutting speed, depth, and surface treatment had a significant contribution to both cutting force and surface roughness, and cutting depth had the greatest impact on cutting force and surface roughness, followed by cutting speed and tool surface treatment. In general, the cutting performance of WPCs can be improved by higher cutting speed and lower depth, with the tool surface treated with fluorine nano-coating. Full article
(This article belongs to the Special Issue Innovations in Functional Coatings for Wood Processing)
Show Figures

Graphical abstract

15 pages, 10805 KiB  
Article
DFT-Based Investigation of Pd-Modified WO3/Porous Silicon Composites for NO2 Gas Sensors: Enhanced Synergistic Effect and High-Performance Sensing
by Xiaoyong Qiang, Zhipeng Wang, Yongliang Guo and Weibin Zhou
Coatings 2025, 15(5), 570; https://doi.org/10.3390/coatings15050570 - 9 May 2025
Viewed by 455
Abstract
Pd-WO3 coatings on porous silicon (PSi) substrates are engineered to enhance interfacial charge transfer and surface reactivity through atomic-scale structural tailoring. This study combines first-principles calculations and experimental characterization to elucidate how Pd nanoparticles (NPs) optimize the coating’s electronic structure and environmental [...] Read more.
Pd-WO3 coatings on porous silicon (PSi) substrates are engineered to enhance interfacial charge transfer and surface reactivity through atomic-scale structural tailoring. This study combines first-principles calculations and experimental characterization to elucidate how Pd nanoparticles (NPs) optimize the coating’s electronic structure and environmental stability. The hierarchical PSi framework with uniform nanopores (200–500 nm) serves as a robust substrate for WO3 nanorod growth (50–100 nm diameter), while Pd decoration (15%–20% surface coverage) strengthens Pd–O–W interfacial bonds, amplifying electron density at the Fermi level by 2.22-fold. Systematic computational analysis reveals that Pd-induced d-p orbital hybridization near the Fermi level (−2 to +1 eV) enhances charge delocalization, optimizing interfacial charge transfer. Experimentally, these modifications enhance the coating’s response to environmental degradation, showing less than 3% performance decay over 30 days under cyclic humidity (45 ± 3% RH). Although designed for gas sensing, the coating’s high surface-to-volume ratio and delocalized charge transport channels demonstrate broader applicability in catalytic and high-stress environments. This work provides a paradigm for designing multifunctional coatings through synergistic interface engineering. Full article
Show Figures

Figure 1

15 pages, 3082 KiB  
Article
New Test Methods for Extractables in No-Wipe Topcoat Gel Polish: Extraction and Quantitation of Uncured Monomers After UV Curing
by Laurisa London-Dawodu, Xuejun J. Yin and Sunan Yuvavanich
Cosmetics 2025, 12(3), 89; https://doi.org/10.3390/cosmetics12030089 - 1 May 2025
Viewed by 798
Abstract
Background: Nail gels are decorative fingernail coatings based on (meth)acrylates that are photopolymerized on the nail surface. After polymerization, these coatings typically retain an uncured layer of monomers at the air interface due to oxygen inhibition, which may pose a risk of skin [...] Read more.
Background: Nail gels are decorative fingernail coatings based on (meth)acrylates that are photopolymerized on the nail surface. After polymerization, these coatings typically retain an uncured layer of monomers at the air interface due to oxygen inhibition, which may pose a risk of skin sensitization unless removed. No-wipe topcoats are formulated to address this issue by curing fully; however, no standard test method exists to verify a complete cure. This study presents a method to quantify residual uncured traces of several common nail gel monomers extracted from polymerized commercial no-wipe nail gels. Method: Commercially available no-wipe nail gels were formed into films of controlled thickness and polymerized using a standard UV-curing nail lamp. Solvent extraction was employed to eliminate residual uncured monomers, namely diethylene glycol dimethacrylate (DEGDMA), isobornyl acrylate (IBOA), and 2-hydroxyethyl methacrylate (HEMA). These monomers were quantified utilizing GC-FID and HPLC techniques. Method validation was conducted with samples of known monomer identity and concentration, thereby establishing specificity, linearity, precision, and detection limits. Results: Validated test protocols were established for the analysis of residual uncured traces of three commonly used monomers in nail gel coatings. In all instances, levels of monomer residue in a cured gel coating were found to range from 56 µg/g to 800 µg/g. Tests conducted on commercial products indicated that levels of these monomers fell within the expected normal ranges for such products. Conclusions: Through the utilization of two chromatographic techniques, three analytical methods were established for the simultaneous determination of ingredient concentrations and residual monomer quantities in unreacted bulk formula and cured UV-gel film. These methods and the resultant data facilitate the evaluation of curing completeness, which is essential for product development and safety assessments. Full article
(This article belongs to the Section Cosmetic Technology)
Show Figures

Figure 1

7 pages, 2607 KiB  
Proceeding Paper
Perspective on the Biomimetic Approaches for the Design of Hydrophobic and Antimicrobial Paper Coatings with Hierarchical Surface Structures
by Pieter Samyn
Mater. Proc. 2025, 20(1), 8; https://doi.org/10.3390/materproc2025020008 - 17 Apr 2025
Viewed by 706
Abstract
The design of functional paper coatings with excellent barrier properties, including water repellence, anti-microbial properties, and recyclability, is highly demanded in view of the sustainable use of paper as flexible substrates for various industrial applications such as packaging. The enhanced coating functionalities should [...] Read more.
The design of functional paper coatings with excellent barrier properties, including water repellence, anti-microbial properties, and recyclability, is highly demanded in view of the sustainable use of paper as flexible substrates for various industrial applications such as packaging. The enhanced coating functionalities should be incorporated through a combination of selected bio-based materials and the creation of appropriate surface textures enhancing coating performance. The bio-inspired approaches through the replication of hierarchical surface structures with multi-scale dimensional features in combination with selection of appropriate bio-based functional groups offer new concepts for coating design. In this short perspective paper, concepts in the field are illustrated with a focus on the combination of hydrophobic and anti-microbial properties. Based on long-term work with the available toolbox of bio-based building blocks and nanoscale architectures, they can be processed into applicable aqueous suspensions for sprayable paper coatings. The macroscopic roughness profile of paper substrates can be complemented through the decoration of nanoscale bio-based polymer particles of polyhydroxybutyrate or vegetable oil capsules with dimensions in the range of 20–50 nm or 100–500 nm depending on the synthesis conditions. The anti-microbial properties can be provided by the surface modification of nanocellulose with biologically active molecules sourced from nature. Besides the more fundamental issues in design and synthesis, the industrial application of the bio-inspired coatings through spray-coating becomes relevant. Full article
(This article belongs to the Proceedings of The 1st International Online Conference on Biomimetics)
Show Figures

Figure 1

38 pages, 6339 KiB  
Review
A Comprehensive Review on Intumescent Coatings: Formulation, Manufacturing Methods, Research Development, and Issues
by Touha Nazrun, Md Kamrul Hassan, Md Rayhan Hasnat, Md Delwar Hossain, Bulbul Ahmed and Swapan Saha
Fire 2025, 8(4), 155; https://doi.org/10.3390/fire8040155 - 15 Apr 2025
Cited by 2 | Viewed by 3057
Abstract
Fire has been proven to threaten human lives and buildings significantly. Extensive research is being conducted globally to reduce fire risks, particularly in high-rise buildings that incorporate steel for structural support, timber for decorative elements, and cladding for insulation. Traditional passive fireproofing materials, [...] Read more.
Fire has been proven to threaten human lives and buildings significantly. Extensive research is being conducted globally to reduce fire risks, particularly in high-rise buildings that incorporate steel for structural support, timber for decorative elements, and cladding for insulation. Traditional passive fireproofing materials, such as concrete coverings, gypsum boards, and cementitious coatings, often lack aesthetic appeal. Intumescent coatings offer a promising solution to this issue. These coatings require a thin layer on the substrate to protect from fire, and the thin layer expands up to many times its original thickness when exposed to fire, forming an insulating char that acts as a barrier between fire and the substrate. This barrier prevents the steel from reaching critical temperature and helps maintain its integrity during a fire incident. Hence, intumescent coatings are a great choice for passive fire protection of load-bearing steel, wooden structures, timber, and cementitious buildings. Although some research articles discuss intumescent coating types, application methods, fabrication processes, cost-effectiveness, bonding performance, toxicity, and various uses, a comprehensive study encompassing all these topics still needs to be conducted. This review paper explores different types of intumescent coatings, their formulation and manufacturing methods, their application processes, and their use on various substrates. It also covers the key intumescent coating materials and their interactions during fire. Challenges and issues, such as fire protection time, char-forming temperature, and toxicity, are discussed. Full article
Show Figures

Figure 1

19 pages, 40454 KiB  
Article
Shining a Light on Carbon-Reinforced Polymers: Mg/MgO and TiO2 Nanomodifications for Enhanced Optical Performance
by Lukas Haiden, Michael Feuchter, Andreas J. Brunner, Michel Barbezat, Amol Pansare, Bharath Ravindran, Velislava Terziyska and Gerald Pinter
J. Compos. Sci. 2025, 9(4), 187; https://doi.org/10.3390/jcs9040187 - 12 Apr 2025
Cited by 1 | Viewed by 504
Abstract
This study examines the intrinsic optical enhancements of carbon fiber-reinforced polymers (CFRPs) achieved through the integration of magnesium oxide (MgO) nanoparticles, as well as Mg/MgO and titanium dioxide (TiO2) thin films onto carbon fibers. Integration was performed by quasi-continuous electrophoretic deposition [...] Read more.
This study examines the intrinsic optical enhancements of carbon fiber-reinforced polymers (CFRPs) achieved through the integration of magnesium oxide (MgO) nanoparticles, as well as Mg/MgO and titanium dioxide (TiO2) thin films onto carbon fibers. Integration was performed by quasi-continuous electrophoretic deposition (EPD) and physical vapor deposition (PVD), respectively. Employing a customized electrophoretic cell, EPD facilitated uniform MgO nanoparticle deposition onto unsized carbon fibers, ensuring stable nanoparticle dispersion and precise fiber coating. As a result, the fibers exhibited increased ultraviolet (UV) reflectance, largely attributed to the optical properties of the protective MgO layer. In parallel, PVD enabled the deposition of Mg/MgO and TiO2 thin films with tailored thicknesses, providing precise control over key optical parameters such as reflectivity and interference effects. Mg/MgO coatings demonstrated high UV reflectivity, while TiO2 layers, with their varying refractive indices, generated vibrant colors in the visible (Vis) range through thickness-dependent light interference. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) assessed the quality, thickness, and uniformity of these thin films, and UV/Vis spectroscopy confirmed the influence of deposition parameters on the resulting optical performance. Post-lamination analyses revealed that both EPD and PVD modifications significantly enhanced UV reflectivity and allowed for customizable color effects. This dual strategy underscores the potential of combining EPD and PVD to develop advanced CFRPs with superior UV resistance, decorative optical features, and improved environmental stability. Full article
(This article belongs to the Special Issue Carbon Fiber Composites, 4th Edition)
Show Figures

Figure 1

22 pages, 11861 KiB  
Article
Solution-Processed Nanostructured Hybrid Materials Based on Graphene Oxide Flakes Decorated with Ligand-Exchanged PbS QDs: Synthesis, Characterization and Optoelectronic Properties
by Giovanny Perez-Parra, Nayely Torres-Gomez, Vineetha Vinayakumar, Diana F. Garcia-Gutierrez, Selene Sepulveda-Guzman and Domingo I. Garcia-Gutierrez
Appl. Nano 2025, 6(2), 7; https://doi.org/10.3390/applnano6020007 - 1 Apr 2025
Viewed by 902
Abstract
Nanostructured hybrid materials based on the combination of semiconductor QDs and GO are promising candidates for different optoelectronic and catalytic applications and being able to produce such hybrid materials in solution will expand their possible range of applications. In the current work, capping [...] Read more.
Nanostructured hybrid materials based on the combination of semiconductor QDs and GO are promising candidates for different optoelectronic and catalytic applications and being able to produce such hybrid materials in solution will expand their possible range of applications. In the current work, capping ligand-exchange procedures have been developed to replace the lead oleate normally found on the surface of PbS QDs synthesized by the popular hot-injection method. After the capping ligand-exchange process, the QDs are water soluble, which makes them soluble in most GO solutions. Solution-processed nanostructured hybrid materials based on GO flakes decorated with ligand-exchanged (EDT, TBAI and L-Cysteine) PbS QDs were synthesized by combining PbS QDs and GO solutions. Afterward, the resulting hybrid materials were thoroughly characterized by means of FTIR, XPS, Raman, UV-Vis-NIR and photoluminescence spectroscopy, as well as SEM and TEM techniques. The results indicate a clear surface chemistry variation in the capping ligand-exchanged PbS QDs, showing the presence of the exchanged ligand molecules. Thin films from the solution-processed nanostructured hybrid materials were deposited by the spin coating technique, and their optoelectronic properties were studied. Depending on the capping ligand molecule, the photoresponse and resistance of the thin films varied; the sample with the EDT ligand exchange showed the highest photoresponse and the lowest resistance. This surface chemistry had a direct effect on the charge carrier transfer and transport behavior of the nanostructured hybrid materials synthesized. These results show a novel and accessible route for synthesizing solution-processed and affordable nanostructured hybrid materials based on semiconductor QDs and GO. Additionally, the importance of the surface chemistry displayed by the PbS QDs and GO was clearly seen in determining the final optoelectronic properties displayed by their hybrid materials. Full article
Show Figures

Figure 1

18 pages, 4954 KiB  
Article
In Situ Growth of Au NPs on Nitrogen-Doped Graphene Quantum Dots Decorated Graphene Composites for the Construction of an Electrochemical Immunosensor and Its Application in CEA Detection
by Zhengzheng Yan, Lujie Wang and Fei Yan
Molecules 2025, 30(6), 1347; https://doi.org/10.3390/molecules30061347 - 17 Mar 2025
Cited by 2 | Viewed by 1063
Abstract
Carcinoembryonic antigen (CEA) is an important tumor biomarker for the early clinical diagnosis of various cancers, and, therefore, the accurate and sensitive quantitative determination of CEA is of vital significance. In this study, we demonstrated the in situ growth of Au nanoparticles (AuNPs) [...] Read more.
Carcinoembryonic antigen (CEA) is an important tumor biomarker for the early clinical diagnosis of various cancers, and, therefore, the accurate and sensitive quantitative determination of CEA is of vital significance. In this study, we demonstrated the in situ growth of Au nanoparticles (AuNPs) on nitrogen-doped graphene quantum dots (N-GQDs) decorated reduced graphene oxide (rGO) nanocomposites by using simple drop-coating and electrochemical deposition methods. N-GQDs@rGO can be formed through the π–π stacking interaction and possesses a high specific surface area and many functional groups, providing lots of anchor sites (amino moieties in NGQDs) for the in situ electrochemical growth of AuNPs without the addition of reductants and protective agents. Such AuNPs/N-GQDs@rGO ternary nanocomposites combine the characteristics of three nanomaterials, showing a large surface area, excellent solubility, good conductivity, catalytic activity, a simple fabrication process, and notable stability, which are further used to construct a label-free electrochemical immunosensor for the determination of CEA. Under the optimized experimental conditions, the AuNPs/N-GQDs@rGO-based electrochemical immunosensor achieves a broad linear response, ranging from 1 pg/mL to 0.5 μg/mL and a low detection limit of 0.13 pg/mL. Moreover, the AuNPs/N-GQDs@rGO-based electrochemical immunosensor shows exceptional selectivity, anti-interference, and anti-fouling capabilities for the direct analysis of CEA amounts in fetal bovine serum samples, showing vast potential in the clinical screening of cancer. Full article
Show Figures

Figure 1

Back to TopTop