Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (22)

Search Parameters:
Keywords = decompression melting

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
53 pages, 7076 KB  
Article
The Diversity of Rare-Metal Pegmatites Associated with Albite-Enriched Granite in the World-Class Madeira Sn-Nb-Ta-Cryolite Deposit, Amazonas, Brazil: A Complex Magmatic-Hydrothermal Transition
by Ingrid W. Hadlich, Artur C. Bastos Neto, Vitor P. Pereira, Harald G. Dill and Nilson F. Botelho
Minerals 2025, 15(6), 559; https://doi.org/10.3390/min15060559 - 23 May 2025
Cited by 1 | Viewed by 1131
Abstract
This study investigates pegmatites with exceptionally rare mineralogical and chemical signatures, hosted by the 1.8 Ga peralkaline albite-enriched granite, which corresponds to the renowned Madeira Sn-Nb-Ta-F (REE, Th, U) deposit in Pitinga, Brazil. Four distinct pegmatite types are identified: border pegmatites, pegmatitic albite-enriched [...] Read more.
This study investigates pegmatites with exceptionally rare mineralogical and chemical signatures, hosted by the 1.8 Ga peralkaline albite-enriched granite, which corresponds to the renowned Madeira Sn-Nb-Ta-F (REE, Th, U) deposit in Pitinga, Brazil. Four distinct pegmatite types are identified: border pegmatites, pegmatitic albite-enriched granite, miarolitic pegmatite, and pegmatite veins. The host rock itself has served as the source for the fluids that gave rise to all these pegmatites. Their mineral assemblages mirror the rare-metal-rich paragenesis of the host rock, including pyrochlore, cassiterite, riebeckite, polylithionite, zircon, thorite, xenotime, gagarinite-(Y), genthelvite, and cryolite. These pegmatites formed at the same crustal level as the host granite and record a progressive magmatic–hydrothermal evolution driven by various physicochemical processes, including tectonic decompressing, extreme fractionation, melt–melt immiscibility, and internal fluid exsolution. Border pegmatites crystallized early from a F-poor, K-Ca-Sr-Zr-Y-HREE-rich fluid exsolved during solidification of the pluton’s border and were emplaced in contraction fractures between the pluton and country rocks. Continued crystallization toward the pluton’s core produced a highly fractionated melt enriched in Sn, Nb, Ta, Rb, HREE, U, Th, and other HFSE, forming pegmatitic albite-enriched granite within centimetric fractures. A subsequent pressure quench—likely induced by reverse faulting—triggered the separation of a supercritical melt, further enriched in rare metals, which migrated into fractures and cavities to form amphibole-rich pegmatite veins and miarolitic pegmatites. A key process in this evolution was melt–melt immiscibility, which led to the partitioning of alkalis between two phases: a K-F-rich aluminosilicate melt (low in H2O), enriched in Y, Li, Be, and Zn; and a Na-F-rich aqueous melt (low in SiO2). These immiscible melts crystallized polylithionite-rich and cryolite-rich pegmatite veins, respectively. The magmatic–hydrothermal transition occurred independently in each pegmatite body upon H2O saturation, with the hydrothermal fluid composition controlled by the local degree of melt fractionation. These highly F-rich exsolved fluids caused intense autometasomatic alteration and secondary mineralization. The exceptional F content (up to 35 wt.% F in pegmatite veins), played a central role in concentrating strategic and critical metals such as Nb, Ta, REEs (notably HREE), Li, and Be. These findings establish the Madeira system as a reference for rare-metal magmatic–hydrothermal evolution in peralkaline granites. Full article
(This article belongs to the Special Issue Critical Metal Minerals, 2nd Edition)
Show Figures

Figure 1

19 pages, 6091 KB  
Article
Foaming of Bio-Based PLA/PBS/PBAT Ternary Blends with Added Nanohydroxyapatite Using Supercritical CO2: Effect of Operating Strategies on Cell Structure
by Pei-Hua Chen, Chin-Wen Chen, Tzu-Hsien Chan, Hsin-Ying Lin, Ke-Ling Tuan, Chie-Shaan Su, Jung-Chin Tsai and Feng-Huei Lin
Molecules 2025, 30(9), 2056; https://doi.org/10.3390/molecules30092056 - 5 May 2025
Viewed by 892
Abstract
This study explored the innovative foaming behavior of a novel biodegradable polymer blend consisting of polylactic acid/poly(butylene succinate)/poly(butylene adipate-co-terephthalate) (PLA/PBS/PBAT) enhanced with nanohydroxyapatite (nHA), using supercritical carbon dioxide (SCCO2) as an environmentally friendly physical foaming agent. The aim was to investigate [...] Read more.
This study explored the innovative foaming behavior of a novel biodegradable polymer blend consisting of polylactic acid/poly(butylene succinate)/poly(butylene adipate-co-terephthalate) (PLA/PBS/PBAT) enhanced with nanohydroxyapatite (nHA), using supercritical carbon dioxide (SCCO2) as an environmentally friendly physical foaming agent. The aim was to investigate the effects of various foaming strategies on the resulting cell structure, aiming for potential applications in tissue engineering. Eight foaming strategies were examined, starting with a basic saturation process at high temperature and pressure, followed by rapid decompression to ambient conditions, referred to as the (1T-1P) strategy. Intermediate temperature and pressure variations were introduced before the final decompression to evaluate the impact of operating parameters further. These strategies included intermediate-temperature cooling (2T-1P), intermediate-temperature cooling with rapid intermediate decompression (2T-2P), and intermediate-temperature cooling with gradual intermediate decompression (2T-2P, stepwise ΔP). SEM imaging revealed that the (2T-2P, stepwise ΔP) strategy produced a bimodal cell structure featuring small cells ranging from 105 to 164 μm and large cells between 476 and 889 μm. This study demonstrated that cell size was influenced by the regulation of intermediate pressure reduction and the change in intermediate temperature. The results were interpreted based on classical nucleation theory, the gas solubility principle, and the effect of polymer melt strength. Foaming results of average cell size, cell density, expansion ratio, porosity, and opening cell content are reported. The hydrophilicity of various foamed polymer blends was evaluated by measuring the water contact angle. Typical compressive stress–strain curves obtained using DMA showed a consistent trend reflecting the effect of foam stiffness. Full article
Show Figures

Graphical abstract

14 pages, 4842 KB  
Technical Note
Mare Volcanism in Apollo Basin Evaluating the Mare Basalt Genesis Models on the Moon
by Xiaohui Fu, Chengxiang Yin, Jin Li, Jiang Zhang, Siyue Chi, Jian Chen and Bo Li
Remote Sens. 2024, 16(21), 4078; https://doi.org/10.3390/rs16214078 - 31 Oct 2024
Viewed by 1580
Abstract
The Apollo basin is a well-preserved double-ringed impact basin located on the northeastern edge of the South Pole–Aitken (SPA) basin. The Apollo basin has been flooded and filled with large volumes of mare lavas, indicating an active volcanism history. Based on orbital data, [...] Read more.
The Apollo basin is a well-preserved double-ringed impact basin located on the northeastern edge of the South Pole–Aitken (SPA) basin. The Apollo basin has been flooded and filled with large volumes of mare lavas, indicating an active volcanism history. Based on orbital data, we reveal that the Apollo basin exhibits an overall asymmetric configuration in the distribution of mare basalts as well as its topography, chemical compositions, and crustal thickness. The Apollo basin is an excellent example for assessing the influences of the above factors on mare basalts petrogenesis and evaluating mare basalt genesis models. It was found that the generation of mare basalt magmas and their emplacement in the Apollo basin seems to be strongly related to local thin crust (<30 km), but the formation of basaltic magmas should be independent of the decompression melting because the mare units (3.34–1.79 Ga) are much younger than the pre-Nectarian Apollo basin. The mare basalts filled in the Apollo basin exhibits a large variation of TiO2 abundances, indicating the heterogeneity of mantle sources, which is possible due to the lunar mantle overturn after the LMO solidification or the impact-induced mantle convection and migration. However, the prolonged mare volcanic history of the Apollo basin is not well explained, especially considering the low Th abundance (<2 ppm) of this region. In addition, the central mare erupted earlier than other mare units within the Apollo basin, which seems to contradict the predictions of the postbasin loading-induced stresses model. Laboratory investigations of the Chang’E-6 mare basalt samples could possibly answer the above questions and provide new insight into the mare volcanic history of the lunar farside and the connections between mare volcanism and impact basin formation/evolution. Full article
Show Figures

Figure 1

28 pages, 18261 KB  
Article
Composite Granitic Plutonism in the Southern Part of the Wadi Hodein Shear Zone, South Eastern Desert, Egypt: Implications for Neoproterozoic Dioritic and Highly Evolved Magma Mingling during Volcanic Arc Assembly
by Khaled M. Abdelfadil, Sherif Mansour, Asran M. Asran, Mohammed H. Younis, David R. Lentz, Abdel-Rahman Fowler, Mohammed S. Fnais, Kamal Abdelrahman and Abdelhady Radwan
Minerals 2024, 14(10), 1002; https://doi.org/10.3390/min14101002 - 1 Oct 2024
Cited by 5 | Viewed by 2279
Abstract
The Abu Farayed Granite (AFG), located in the southeastern desert of Egypt, was intruded during the early to late stages of Pan-African orogeny that prevailed within the Arabian–Nubian Shield. The AFG intrudes an association of gneisses, island arc volcano–sedimentary rocks, and serpentinite masses. [...] Read more.
The Abu Farayed Granite (AFG), located in the southeastern desert of Egypt, was intruded during the early to late stages of Pan-African orogeny that prevailed within the Arabian–Nubian Shield. The AFG intrudes an association of gneisses, island arc volcano–sedimentary rocks, and serpentinite masses. Field observations, supported by remote sensing and geochemical data, reveal a composite granitic intrusion that is differentiated into two magmatic phases. The early granitic phase comprises weakly deformed subduction-related calc–alkaline rocks ranging from diorite to tonalite, while the later encloses undeformed granodiorite and granite. Landsat-8 (OLI) remote sensing data have shown to be highly effective in discriminating among the different varieties of granites present in the area. Furthermore, the data have provided important insights into the structural characteristics of the AFG region. Specifically, the data indicate the presence of major tectonic trends with ENE–WSW and NW–SE directions transecting the AFG area. Geochemically, the AFG generally has a calc–alkaline metaluminous affinity with relatively high values of Cs, Rb, K, Sr, Nd, and Hf but low contents of Nb, Ta, P, and Y. The early magmatic phase has lower alkalis and REEs, while the later phases have higher alkalis and REEs with distinctly negative Eu anomalies. The AFG is structurally controlled, forming a N–S arch, which may be due to the influence of the wadi Hodein major shear zone. The diorite and tonalite are believed to have been originally derived from subduction-related magmatism during regional compression. This began with the dehydration of the descending oceanic crust with differential melting of the metasomatized mantle wedge. Magma ascent was long enough to react with the thickened crust and therefore suffered fractional crystallization and assimilation (AFC) to produce the calc–alkaline diorite–tonalite association. The granodiorite and granites were produced due to partial melting, assimilation, and fractionation of lower crustal rocks (mainly diorite–tonalite of the early stage) after subduction and arc volcanism during a late orogenic relaxation–rebound event associated with uplift transitioning to extension. Full article
(This article belongs to the Section Mineral Geochemistry and Geochronology)
Show Figures

Figure 1

23 pages, 103115 KB  
Article
Miocene Petit-Spot Basanitic Volcanoes on Cretaceous Alba Guyot (Magellan Seamount Trail, Pacific Ocean)
by Igor S. Peretyazhko, Elena A. Savina and Irina A. Pulyaeva
Geosciences 2024, 14(10), 252; https://doi.org/10.3390/geosciences14100252 - 25 Sep 2024
Cited by 1 | Viewed by 1427
Abstract
New data obtained from core samples of two boreholes and dredged samples from the Alba Guyot in the Magellan Seamount Trail (MST), Western Pacific, including the 40Ar/39Ar age determinations of basanite, and the mineralogy of basanite, tuff, tuffite, mantle-derived inclusions [...] Read more.
New data obtained from core samples of two boreholes and dredged samples from the Alba Guyot in the Magellan Seamount Trail (MST), Western Pacific, including the 40Ar/39Ar age determinations of basanite, and the mineralogy of basanite, tuff, tuffite, mantle-derived inclusions in basanite and tuff (lherzolite xenolith and Ol, Cpx, and Opx xenocrysts), and calcareous nannofossil biostratigraphy, have implications for the guyot′s development and history. Volcanic units in the upper part of the Alba Guyot main edifice and its Oma Vlinder satellite, at sea depths between 3600 and 2200 m, were deposited during the Cretaceous 112 to 86 Ma interval. In the following ~60 myr, the Alba Guyot became partly submerged and denuded with the formation of a flat summit platform while the respective fragment of the Pacific Plate was moving to the Northern Hemisphere. Volcanic activity in the northeastern part of the guyot summit platform was rejuvenated in the Miocene (24–15 Ma) and produced onshore basanitic volcanoes and layers of tuff in subaerial and tuffite in shallow-water near-shore conditions. In the Middle-Late Miocene (10–6 Ma), after the guyot had submerged, carbonates containing calcareous nannofossils were deposited on the porous surfaces of tuff and tuffite. Precipitation of the Fe-Mn crust (Unit III) recommenced during the Pliocene–Pleistocene (<1.8 Ma) when the guyot summit reached favorable sea depths. The location of the MST guyots in the northwestern segment of the Pacific Plate near the Mariana Trench, along with the Miocene age and alkali-basaltic signatures of basanite, provide first evidence for petit-spot volcanism on the Alba Guyot. This inference agrees with the geochemistry of Cenozoic petit-spot basaltic rocks from the Pacific and Miocene basanite on the Alba Guyot. Petit-spot volcanics presumably originated from alkali-basaltic melts produced by decompression partial melting of carbonatized peridotite in the metasomatized oceanic lithosphere at the Lithosphere–Asthenosphere Boundary level. The numerous volcanic cones with elevations of up to 750 m high and 5.1 km in basal diameter, discovered on the Alba summit platform, provide the first evidence of voluminous Miocene petit-spot basanitic volcanism upon the Cretaceous guyots and seamounts of the Pacific. Full article
(This article belongs to the Section Geochemistry)
Show Figures

Figure 1

22 pages, 8347 KB  
Article
Geochronology, Geochemistry, and In Situ Sr-Nd-Hf Isotopic Compositions of a Tourmaline-Bearing Leucogranite in Eastern Tethyan Himalaya: Implications for Tectonic Setting and Rare Metal Mineralization
by Yangchen Drolma, Kaijun Li, Yubin Li, Jinshu Zhang, Chengye Yang, Gen Zhang, Ruoming Li and Duo Liu
Minerals 2024, 14(8), 755; https://doi.org/10.3390/min14080755 - 26 Jul 2024
Viewed by 1487
Abstract
Himalayan leucogranite is an excellent target for understanding the orogenic process of the India–Asia collision, but its origin and tectonic significance are still under debate. An integrated study of geochronology, geochemistry, and in situ Sr-Nd-Hf isotopes was conducted for a tourmaline-bearing leucogranite in [...] Read more.
Himalayan leucogranite is an excellent target for understanding the orogenic process of the India–Asia collision, but its origin and tectonic significance are still under debate. An integrated study of geochronology, geochemistry, and in situ Sr-Nd-Hf isotopes was conducted for a tourmaline-bearing leucogranite in the eastern Tethyan Himalaya using LA-ICP-MS, X-ray fluorescence spectroscopy, and ICP-MS and LA-MC-ICP-MS, respectively. LA-ICP-MS U-Pb dating of zircon and monazite showed that it was emplaced at ~19 Ma. The leucogranite had high SiO2 and Al2O3 contents ranging from 73.16 to 73.99 wt.% and 15.05 to 15.24 wt.%, respectively. It was characterized by a high aluminum saturation index (1.14–1.19) and Rb/Sr ratio (3.58–6.35), which is characteristic of S-type granite. The leucogranite was enriched in light rare-earth elements (LREEs; e.g., La and Ce) and large ion lithophile elements (LILEs; e.g., Rb, K, and Pb) and depleted in heavy rare-earth elements (e.g., Tm, Yb, and Lu) and high field strength elements (HFSEs; e.g., Nb, Zr, and Ti). It was characterized by high I Sr (t) (0.7268–0.7281) and low ε Nd (t) (−14.6 to −13.2) and ε Hf (t) (−12.6 to −9.47), which was consistent with the isotopic characteristics of the Higher Himalayan Sequence. Petrogenetically, the origin of the leucogranite is best explained by the decompression-induced muscovite dehydration melting of an ancient metapelitic source within the Higher Himalayan Sequence during regional extension due to the movement of the South Tibetan Detachment System (STDS). The significantly high lithium and beryllium contents of the leucogranite and associated pegmatite suggest that Himalayan leucogranites possess huge potential for lithium and beryllium exploration. Full article
Show Figures

Figure 1

19 pages, 5380 KB  
Article
Petrology and Geochemistry of an Unusual Granulite Facies Xenolith of the Late Oligocene Post-Obduction Koum Granodiorite (New Caledonia, Southwest Pacific): Geodynamic Inferences
by Dominique Cluzel, Fabien Trotet and Jean-Louis Paquette
Minerals 2024, 14(5), 466; https://doi.org/10.3390/min14050466 - 28 Apr 2024
Viewed by 1178
Abstract
Pressure–temperature estimates of a xenolith found within a post-obduction granodiorite in southern New Caledonia provide evidence for subcrustal, granulite facies, peak crystallisation conditions (ca. 850 °C—8.5 ± 1.0 kbar), followed by isobaric cooling to 700 °C, and final decompression with partial rehydration at [...] Read more.
Pressure–temperature estimates of a xenolith found within a post-obduction granodiorite in southern New Caledonia provide evidence for subcrustal, granulite facies, peak crystallisation conditions (ca. 850 °C—8.5 ± 1.0 kbar), followed by isobaric cooling to 700 °C, and final decompression with partial rehydration at ca. 650 °C—3.5 kbar. The xenolith, dated at 24.7 Ma (U-Pb zircon), i.e., the same age as the granodiorite host rock, has low SiO2 (35.5 wt%) and high Al2O3 (33.2 wt%) contents, suggesting that it is the restite of a previous melting episode, while the elevated Ca (Ba and Sr) contents suggest mantle metasomatism. Although the concentrations of Rb, K, Ca, Ba, and Sr have been strongly modified, some geochemical (REE patterns and some “immobile” trace element ratios) and isotopic (Sr and Nd isotopic ratios, U-Pb zircon age) characteristics of the granulite facies xenolith are similar to those of the xenoliths found in other Late Oligocene intrusions in southern New Caledonia; therefore, this rock is interpreted to be related to an early magmatic episode. The rock protolith was emplaced and equilibrated at the base of the crust where it underwent ductile deformation. Younger ascending magma picked it up and they eventually crystallised together at a shallow crustal level, near the tectonic sole of the ophiolite. The recrystallisation and ductile deformation at ~8.5 kbar suggest that a rheological discontinuity existed at about 25–28 km, probably representing the Moho. It is concluded that a continental crust of normal thickness must have existed beneath New Caledonia at about 24 Ma, i.e., 10 Ma after obduction. Full article
(This article belongs to the Section Mineral Geochemistry and Geochronology)
Show Figures

Figure 1

27 pages, 20880 KB  
Article
Geochemical Evidence for Genesis of Nb–Ta–Be Rare Metal Mineralization in Highly Fractionated Leucogranites at the Lalong Dome, Tethyan Himalaya, China
by Jiangang Fu, Guangming Li, Genhou Wang, Weikang Guo, Suiliang Dong, Yingxu Li, Hai Zhang, Wei Liang and Yanjie Jiao
Minerals 2023, 13(11), 1456; https://doi.org/10.3390/min13111456 - 19 Nov 2023
Cited by 8 | Viewed by 2249
Abstract
Leucogranites in the Lalong Dome are composed of two-mica granite, muscovite granite, albite granite, and pegmatite from core to rim. Albite granite-type Be–Nb–Ta rare metal ore bodies are hosted by albite granite and pegmatite. Based on field and petrographic observations and whole-rock geochemical [...] Read more.
Leucogranites in the Lalong Dome are composed of two-mica granite, muscovite granite, albite granite, and pegmatite from core to rim. Albite granite-type Be–Nb–Ta rare metal ore bodies are hosted by albite granite and pegmatite. Based on field and petrographic observations and whole-rock geochemical data, highly differentiated leucogranites have been identified in the Lalong Dome. Two-mica granites, albite granites, and pegmatites yielded monazite ages of 23.6 Ma, 21.9 Ma, and 20.6 Ma, respectively. The timing of rare metal mineralization is 20.9 Ma using U–Pb columbite dating. Leucogranites have the following characteristics: high SiO2 content (>73 wt.%); peraluminosity with high Al2O3 content (13.6–15.2 wt.%) and A/CNK (mostly > 1.1); low TiO2, CaO, and MgO content; enrichment of Rb, Th, and U; depletion of Ba, Nb, Zr, Sr, and Ti; strong negative Eu anomalies; low εNd(t) values ranging from −12.7 to −9.77. These features show that the leucogranites are crust-derived high-potassium calc-alkaline and peraluminous S-type granites derived from muscovite dehydration melting under the water-absent condition, which possibly resulted from structural decompression responding to the activity of the South Tibetan detachment system (STDS). Geochemical data imply a continuous magma fractional crystallization process from two-mica granites through muscovite granites to albite granites and pegmatites. The differentiation index (Di) gradually strengthens from two-mica granite, muscovite granite, and albite granite to pegmatite, in which albite granite and pegmatite are highest (Di = 94). The Nb/Ta and Zr/Hf ratios of albite granite and pegmatite were less than 5 and 18, respectively, which suggests that albite granite and pegmatite belong to rare metal granites and have excellent potential for rare metal mineralization. Full article
Show Figures

Figure 1

18 pages, 24574 KB  
Article
The Late Carboniferous Mafic–Ultramafic Complex Induced by Slab Breakoff in Eastern North Tianshan, Central Asian Orogenic Belt
by Feng Gao, Yuanfeng Cheng, Ruiqing Guo, Xiaoqiang Liu and Zengxin Liu
Minerals 2023, 13(10), 1293; https://doi.org/10.3390/min13101293 - 4 Oct 2023
Cited by 6 | Viewed by 1912
Abstract
The Late Carboniferous to Early Permian is a critical period of the Chinese Tianshan, witnessing the tectonic transition from subduction to post-collisional extension during the final amalgamation of the Central Asian Orogenic Belt (CAOB). The late Carboniferous Mozbaysay mafic–ultramafic complex in the Qijiaojing–Balikun [...] Read more.
The Late Carboniferous to Early Permian is a critical period of the Chinese Tianshan, witnessing the tectonic transition from subduction to post-collisional extension during the final amalgamation of the Central Asian Orogenic Belt (CAOB). The late Carboniferous Mozbaysay mafic–ultramafic complex in the Qijiaojing–Balikun area, eastern North Tianshan, provides important clues for revealing the nature and timing of this tectonic transition. The Mozbaysay complex comprises mainly hornblende gabbros and lherzolites. LA-ICP-MS U-Pb zircon ages of hornblende gabbro yielded a weighted mean age of 306 ± 1.9 Ma for this complex. These mafic–ultramafic rocks have high contents of MgO (up to 30 wt.%), Cr (up to 2493 ppm), and Ni (up to 1041 ppm), but low contents of SiO2 (40.34–47.70 wt.%). They are enriched in LREE and show characteristics of enriched mid-ocean ridge basalts (E-MORB). The relatively high Th/Yb and Ba/Nb ratios imply the mantle sources could have been metasomatized by slab–mantle interaction with aqueous fluids from dehydration of the subducted slab. Thus, these mafic–ultramafic rocks were most likely produced by partial melting of the asthenospheric and lithospheric mantle with a slight influence of slab-derived fluids. Therefore, we suggest that the formation of these Late Carboniferous mafic–ultramafic rocks was triggered by the decompression-induced influx of asthenospheric heat and melting through a slab window during post-collisional slab breakoff. Combined with geological data, the petrogenetic links of the Late Carboniferous mafic–ultramafic rocks in eastern North Tianshan to slab breakoff suggest that the tectonic transition from convergence to post-collision most likely initiated in situ at ca. 306 Ma and lasted to ca. 300 Ma. Full article
(This article belongs to the Section Mineral Geochemistry and Geochronology)
Show Figures

Figure 1

16 pages, 5990 KB  
Review
The Geological and Tectonic Evolution of Feni, Papua New Guinea
by Olive L. Ponyalou, Michael G. Petterson and Joseph O. Espi
Geosciences 2023, 13(9), 257; https://doi.org/10.3390/geosciences13090257 - 24 Aug 2023
Cited by 2 | Viewed by 7037
Abstract
Feni is located at the southeastern end of the NW-trending Tabar–Lihir–Tanga–Feni (TLTF) volcanic island chain, in northeastern Papua New Guinea. This island chain is renowned for hosting alkaline volcanics, geothermal activity, copper–gold mineralization, and mining. There is no agreed consensus on the tectonic [...] Read more.
Feni is located at the southeastern end of the NW-trending Tabar–Lihir–Tanga–Feni (TLTF) volcanic island chain, in northeastern Papua New Guinea. This island chain is renowned for hosting alkaline volcanics, geothermal activity, copper–gold mineralization, and mining. There is no agreed consensus on the tectonic and petrogenetic evolution of Feni. Thus, the purpose of our paper is to present the geology of Feni within the context of the regional tectonic evolution of the TLTF chain and offer a succinct and generic geodynamic model that sets the stage for our next paper. The methodologies used in this study include a critical review of published and unpublished literature in conjunction with our geological observations on Feni. The Pliocene-to-Holocene TLTF chain is a younger arc situated within the greater Eocene-to-Oligocene Melanesian Arc bounded by New Ireland to the west, the Kilinailau Trench and Ontong Java Plateau in the east, and the New Britain Trench to the south. The geological units mapped on Feni include a large volume of basaltic lava flow and trachyandesite stocks intruding a limestone and siltstone basement. Younger units include the trachyte domes, pyroclastic flow, and ash fall deposits. The major structures on Feni are normal or extensional faults such as the Niffin Graben. Feni magmatism is attributed to the petrogenetic processes of polybaric or decompression melting and crystal fractionation of magmas previously influenced by sediment assimilation, mantle wedge metasomatism, slab tears, slab melts, and subduction. Deep lithospheric normal faults provide the fluid pathways for the Feni alkaline magmas. Full article
Show Figures

Figure 1

23 pages, 10746 KB  
Review
Tectonic Evolution of the JLJB, North China Craton, Revisited: Constraints from Metamorphism, Geochemistry and Geochronology of the Ji’an Group and Related Granites
by Erlin Zhu, Chenyue Liang, Changqing Zheng, Xuechun Xu and Yan Yang
Minerals 2023, 13(7), 835; https://doi.org/10.3390/min13070835 - 21 Jun 2023
Cited by 1 | Viewed by 1582
Abstract
The Jiao-Liao-Ji Belt (JLJB) is the most representative Paleoproterozoic orogenic belt in the North China Craton (NCC). The sedimentation, metamorphism and magmatism of the Ji’an Group and associated granites provide significant insights into the tectonic evolution of the JLJB. In this study, we [...] Read more.
The Jiao-Liao-Ji Belt (JLJB) is the most representative Paleoproterozoic orogenic belt in the North China Craton (NCC). The sedimentation, metamorphism and magmatism of the Ji’an Group and associated granites provide significant insights into the tectonic evolution of the JLJB. In this study, we have synthesized published geochemistry and geochronology data on metasedimentary, metavolcanic and igneous rocks. According to the available data, the protoliths of the metasedimentary rocks are sets of shale, wacke, arkose, quartz sandstone and carbonate, while the protoliths of the metavolcanic rocks are calc-alkaline basalt, basaltic andesite, andesite, dacite and rhyolite. The rock assemblages indicate a transformation of the tectonic environment from a passive margin to an active continental margin following the onset of plate convergence and subduction. The A2-type gneissic granite (Qianzhuogou pluton) is formed in a subsequent back-arc basin extension setting at 2.20–2.14 Ga. The Ji’an Group was finally deposited in an active continental margin during the closure of a back-arc basin at 2.14–2.0 Ga. Then, the sediments were involved in a continent–arc–continent collision between the Longgang and Nangrim blocks at ~1.95 Ga. This process was accompanied by HP granulite-facies metamorphism at ~1.90 Ga. The subsequent exhumation and regional extension resulted in decompression melting during 1.90–1.86 Ga, producing metamorphism with an isothermal decompression clockwise P–T path. The resulting metapelites are characterized by perthite + sillimanite, and mafic granulites are characterized by orthopyroxene + clinopyroxene. The S-type porphyritic granite (Shuangcha pluton) is formed during the crustal anatexis. Meanwhile, extensive anatexis produced significant heating and triggered prograde to peak metamorphism with an anticlockwise P–T path. Cordierite-bearing symplectites around the garnet in the metapelites indicate a superposed isobaric cooling metamorphism. The ages of monazites and anatectic zircons suggest that the post-exhumation cooling occurred at 1.86–1.80 Ga. The Paleoproterozoic magmatism, sedimentation and metamorphism suggest a process of subduction back-arc basin extension and closure, collision and exhumation for the tectonic evolution of the JLJB. Full article
(This article belongs to the Special Issue Linking Metamorphism with Orogenesis)
Show Figures

Figure 1

25 pages, 20567 KB  
Article
Tectonometamorphic Evolution of the Migmatitic Paragneisses of the Filali Unit (Internal Rif, Morocco)
by Abdelkhaleq Afiri, Abderrahim Essaifi, Ali Charroud, Mourad Aqnouy, Kamal Abdelrahman, Amar Alali and Mohamed Abioui
Minerals 2023, 13(4), 484; https://doi.org/10.3390/min13040484 - 30 Mar 2023
Cited by 2 | Viewed by 3005
Abstract
A lithosphere-scale extensional shear zone juxtaposes an underlying sub-continental peridotite body and overlying migmatitic paragneisses of the Filali unit in the Beni Bousera massif (Internal Rif, Morocco). Three stages are recognized in the metamorphic evolution of the aluminous paragneiss, marked by the chemical [...] Read more.
A lithosphere-scale extensional shear zone juxtaposes an underlying sub-continental peridotite body and overlying migmatitic paragneisses of the Filali unit in the Beni Bousera massif (Internal Rif, Morocco). Three stages are recognized in the metamorphic evolution of the aluminous paragneiss, marked by the chemical zoning of garnet porphyroblasts and the evolution of associated mineral assemblages characterized by the presence of kyanite and rutile (M1), sillimanite, k-feldspar and melt (M2), and cordierite (M3). Phase-equilibrium modeling (pseudosections) and multi-equilibrium thermobarometry point to P-T conditions of 7 kbar 750 °C and 3.5 kbar 685 °C for the M2 and M3 stages, respectively. M1 conditions of 9.3 kbar 660 °C were inferred using modeling after the reintegration of melt lost during M2 into the bulk composition. Published geochronological data suggest a Variscan age (250–340 Ma) for the M1 event, whereas M2 and M3 are Oligo-Miocene and related to the Alpine orogeny. The recorded sub-isothermal decompression is related to significant crustal attenuation in the Oligo-Miocene and is responsible for the juxtaposition of the hot asthenospheric mantle and the crustal units, causing the melting of the paragneiss. The exhumation of the gneisses by crustal extension is associated with the westward retreat of an Alpine subduction (slab rollback). Full article
Show Figures

Figure 1

23 pages, 5956 KB  
Article
Multiple Sources of Indosinian Granites and Constraints on the Tectonic Evolution of the Paleo-Tethys Ocean in East Kunlun Orogen
by Guochao Chen, Xianzhi Pei, Ruibao Li, Zuochen Li, Youxin Chen, Chengjun Liu and Lei Pei
Minerals 2022, 12(12), 1604; https://doi.org/10.3390/min12121604 - 14 Dec 2022
Cited by 7 | Viewed by 2185
Abstract
Numerous Indosinian granitoids occur in the East Kunlun Orogen (EKO). The Indosinian was a key transitional period associated with the evolution of the Paleo-Tethys Ocean. Here, we study the relationship between the petrogenesis of the granitoids and the regional tectonic setting based on [...] Read more.
Numerous Indosinian granitoids occur in the East Kunlun Orogen (EKO). The Indosinian was a key transitional period associated with the evolution of the Paleo-Tethys Ocean. Here, we study the relationship between the petrogenesis of the granitoids and the regional tectonic setting based on a comprehensive analysis of the petrology, geochronology, and geochemistry of typical granitoids in the eastern part of the EKO. The Indosinian granitoid compositions are dominated by quartz diorites, granodiorites, monzogranites, porphyritic monzogranites, and syenogranites. Early Indosinian granitoids are large, granitic batholiths, while the middle and late Indosinian granitoids are smaller in size. From the early Indosinian to late Indosinian, the granitoids show a transition from a medium-K calc-alkaline to high-K calc-alkaline composition. They are enriched in light rare earth elements (LREEs) and large-ion lithophile elements (LILEs) and depleted in high-field-strength elements (HFSEs), especially for the Helegangxilikete and the Kekeealong plutons. The late Indosinian granitoids have relatively low Y and Yb contents, high Sr contents, and high La/Yb and Sr/Y ratios, which suggests adakitic affinity. The zircon saturation temperatures of the early Indosinian syenogranite and the Keri syenogranite are above 800 °C. The zircon saturation temperatures of other Indosinian granites (average 749 °C) are lower than those of the biotite and amphibole partial melting experiment. In the early Indosinian (255–240 Ma), numerous granitoids were the products of the partial melting of the juvenile lower crust by mafic magma underplating. This underplating is geodynamically related to the continuous subduction of a branch of Paleo-Tethys Ocean, with slab break-off, rapid upwelling, and mantle decompression. In the middle Indosinian (240–230 Ma), the compression that accompanied the continent–continent collision was not conducive to fluid activity, and hence, the formation of magma could be attributed to dehydration partial melting of muscovite, biotite, or amphibole. In the late Indosinian (230–200 Ma), the delamination of thickened crust would provide heat and channels for fluid migration, leading to a flare-up of the magmas. The composition and petrogenesis of the Indosinian granitoids in the eastern EKO are the result of processes associated with the subduction, collisional, and post-collisional stages, during the evolution of the Paleo-Tethys Ocean. Full article
Show Figures

Figure 1

16 pages, 7466 KB  
Article
Crustal Electrical Structure of the Ganzi Fault on the Eastern Tibetan Plateau: Implications for the Role of Fluids in Earthquakes
by Yuanzhi Cheng, Yanlong Kong, Zhongxing Wang, Yonghui Huang and Xiangyun Hu
Remote Sens. 2022, 14(13), 2990; https://doi.org/10.3390/rs14132990 - 22 Jun 2022
Cited by 3 | Viewed by 2537
Abstract
The initiation and evolution of seismic activity in intraplate regions are controlled by heterogeneous stress and highly fractured rocks within the rock mass triggered by fluid migration. In this study, we imaged the electrical structure of the crust beneath the Ganzi fault using [...] Read more.
The initiation and evolution of seismic activity in intraplate regions are controlled by heterogeneous stress and highly fractured rocks within the rock mass triggered by fluid migration. In this study, we imaged the electrical structure of the crust beneath the Ganzi fault using a three-dimensional magnetotelluric inversion technique, which is host to an assemblage of resistive and conductive features extending into the lower crust. It presents a near-vertical low-resistance zone that cuts through the brittle ductile transition zone, extends to the lower crust, and acts as a pathway for fluid migration from the crustal flow to the upper crustal depths. Conductors in the upper and lower crust are associated with saline fluids and 7% to 16% partial melting, respectively. The relationship between the earthquake epicenter and the surrounding electrical structure suggests that the intraplate seismicity is triggered by overpressure fluids, which are dependent on fluid volume changes generated by the decompression dehydration of partially molten material during upwelling and native fluid within the crustal flow. Full article
(This article belongs to the Special Issue Geophysical Data Processing in Remote Sensing Imagery)
Show Figures

Graphical abstract

24 pages, 7360 KB  
Article
Ultrahigh-Pressure Metamorphism and P-T Path of Xiaoxinzhuang Eclogites from the Southern Sulu Orogenic Belt, Eastern China, Based on Phase Equilibria Modelling
by Haiqi Yuan, Jian Wang and Keiko Hattori
Minerals 2022, 12(2), 216; https://doi.org/10.3390/min12020216 - 8 Feb 2022
Cited by 3 | Viewed by 2572
Abstract
Three types of eclogites were identified in the Xiaoxinzhuang area in the northern Sulu ultrahigh pressure (UHP) terrene based on their petrographic, compositional characteristics and locations. They are composed of garnet, omphacite, amphibole, epidote, phengite, quartz/coesite, rutile, apatite, ilmenite and kyanite. Garnet in [...] Read more.
Three types of eclogites were identified in the Xiaoxinzhuang area in the northern Sulu ultrahigh pressure (UHP) terrene based on their petrographic, compositional characteristics and locations. They are composed of garnet, omphacite, amphibole, epidote, phengite, quartz/coesite, rutile, apatite, ilmenite and kyanite. Garnet in eclogite exhibits weak compositional zoning, which shows an increase in Xgr and a decrease in Xpy from core to mantle, and a decrease in Xgr and a slight increase in Xpy from mantle to rim. Phengite inclusions in garnet show higher Si, up to 3.424 p.f.u., than those in the matrix. Pseudosections calculated using THERMOCALC in the NCKFMASHTO system for three representative samples record three stages of metamorphism: (I) prograde stage, (II) post- Pmax decompression and heating to the Tmax stage and (III) retrograde stage. Stage-I was recorded in garnet cores with mineral assemblage of garnet + omphacite ± amphibole ± lawsonite + phengite + quartz + rutile, and the P-T condition is constrained at 23.5–26.4 kbar and 623–655 °C. The Pmax, 41.5 kbar at 801 °C, is revealed from garnet enclosed by coarse-grained garnet with the mineral assemblage of garnet + omphacite + phengite + coesite + rutile. Stage-II produced garnet rim with mineral assemblage of garnet + omphacite + amphibole + quartz + rutile + metabasite melt, which constrained the P-T conditions of 21.4–23.0 kbar and 869–924 °C. Stage-III, recorded by unzoned garnet grain with the mineral assemblage of garnet + omphacite + amphibole + ilmenite + rutile + metabasite melt, constrained P-T conditions of 13.5–16.4 kbar and 813–852 °C. The data suggest that the rocks in the Xiaoxinzhuang area were subducted to a depth of over 135 km and underwent an UHP metamorphism. The P-T-t path revealed by the Xiaoxinzhuang eclogites is different from those in other areas of the Sulu UHP terrane, suggesting that they represent different rock slices during the subduction and exhumations. Full article
Show Figures

Figure 1

Back to TopTop