Miocene Petit-Spot Basanitic Volcanoes on Cretaceous Alba Guyot (Magellan Seamount Trail, Pacific Ocean)
Abstract
:1. Introduction
2. Materials and Methods
2.1. XRF and SEM-EDS
2.2. 40Ar/39Ar Dating
2.3. Calcareous Nannofossil Biostratigraphy
3. Results
3.1. Core Samples
Calcareous Nannofossil Biostratigraphy
3.2. Volcanic and Mantle Rocks
Chemistry of Minerals and Glasses
3.3. 40Ar/39Ar Age of Basanite
4. Discussion
4.1. Formation Conditions of Mineral Assemblages
4.2. Evolution of Volcanism in Alba Guyot
4.3. Petit-Spot Volcanoes in the Pacific Plate and in the Alba Guyot
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Volokhin, Y.G.; Melnikov, M.E.; Shkolnik, E.L.; Vasiliev, B.I.; Govorin, I.N.; Khersberg, L.B.; Zadornov, M.V.; Baturin, G.N.; Mechetin, A.V.; Chudaev, O.V.; et al. Guyots of the Western Pacific and their Mineralisation; Nauka: Moscow, Russia, 1995; 368p. (In Russian) [Google Scholar]
- Pletnev, S.P.; Melnikov, M.E.; S’edin, V.T.; Sedysheva, T.E.; Avdonin, V.V.; Anokhin, V.M.; Zakharov, Y.D.; Punina, T.A.; Smirnova, O.L. Geology of Guyots in the Magellan Seamounts (Pacific Ocean); Dalnauka: Vladivostok, Russia, 2020; 200p. (In Russian) [Google Scholar]
- Melnikov, M.Y.; Podschuveit, V.B.; Pulyaeva, I.A.; Nevretdinov, E.B. Middle Miocene volcanic structures on the Dalmorgeologiya Guyot (Magellan Seamounts, Pacific Ocean). Russ. J. Pacific Geol. 2000, 19, 38–46. [Google Scholar]
- Melnikov, M.Y.; Pletnev, S.P.; Anokhin, V.M.; Sedysheva, T.E.; Ivanov, V.V. Volcanic edifice on guyots of the Magellan Seamounts (Pacific Ocean). Russ. J. Pacific Geol. 2016, 35, 46–53. [Google Scholar] [CrossRef]
- Koppers, A.A.P.; Staudigel, H.; Wijbrans, J.R.; Pringle, M.S. The Magellan seamount trail: Implications for Cretaceous hotspot volcanism and absolute Pacific Plate motion. Earth Planet. Sci. Lett. (EPSL) 1998, 163, 53–68. [Google Scholar] [CrossRef]
- Koppers, A.A.P.; Staudigel, H.; Wijbrans, J.R. Dating crystalline groundmass separates of altered Cretaceous seamount basalts by the 40Ar/39Ar incremental heating technique. Chem. Geol. 2000, 166, 139–158. [Google Scholar] [CrossRef]
- Wei, H.; Zhang, G.-L.; Zhang, J.; Shi, X.-F.; Castillo, P.R.; Zhang, Y.; Zhang, W.-F.; Xu, Y.-G.; Li, H.-Y.; Zhang, H. Overlapping hotspot tracks and melts from diffuse plume materials in the upper mantle generated intraplate seamount groups in the West Pacific. Earth Planet. Sci. Lett. (EPSL) 2024, 643, 118901. [Google Scholar] [CrossRef]
- Peretyazhko, I.S.; Savina, E.A. Chemistry and crystallization conditions of minerals in metasomatized oceanic lithosphere and basaltic rocks of Govorov Guyot, Magellan Seamounts, Pacific Ocean. Minerals 2022, 12, 1305. [Google Scholar] [CrossRef]
- Peretyazhko, I.S.; Savina, E.A.; Pulyaeva, I.A.; Yudin, D.S. Intraplate volcanism of the Alba Guyot. Geodynamic formation models of the Magellan Seamounts in the Pacific Ocean for 100 million years: Russ. Geol. Geophys. 2023, 64, 1–27. [Google Scholar] [CrossRef]
- Peretyazhko, I.S.; Savina, E.A. Cretaceous intraplate volcanism of Govorov Guyot and formation models of the Magellan seamounts, Pacific Ocean. Intern. Geol. Rev. 2023, 65, 2479–2505. [Google Scholar] [CrossRef]
- Pulyaeva, I.A. Stratification of ferromanganese crusts on the Magellan seamounts. In Proceedings of the 30th International Geological Congress, Beijing, China, 8–14 August 1996; Volume 13, pp. 111–128. [Google Scholar]
- Glasby, G.P.; Ren, X.; Shi, X.; Pulyaeva, I.A. Co-rich Mn crusts from the Magellan seamounts cluster: The long journey through time. Geo-Mar Lett. 2007, 27, 315–323. [Google Scholar] [CrossRef]
- Pulyaeva, I.A.; Hein, J.R. Hydrogenetic Fe-Mn crusts from the Atlantic and Pacific oceans: Geological evolution and conditions of formation. In Marine Minerals: Recent Innovations in Technology; UMI: Anaheim, CA, USA, 2011. [Google Scholar]
- Lavrent’ev, Y.G.; Karmanov, N.S.; Usova, L.V. Electron probe microanalysis of minerals: Microprobe or scanning electron microscope? Russ. Geol. Geophys. 2015, 56, 1154–1161. [Google Scholar] [CrossRef]
- Peretyazhko, I.S. CRYSTAL—Applied software for mineralogists, petrologists, and geochemists. Zap. Ross. Mineral. Obs. 1996, 3, 141–148. (In Russian) [Google Scholar]
- Martini, E.; Worsley, T. Standard Neogene calcareous nannoplankton zonation. Nature 1970, 225, 289–290. [Google Scholar] [CrossRef]
- Martini, E. Standard Tertiary and Quaternary calcareous nannoplankton zonation. In Proceedings of the 2nd Planktonic Conference, Roma, Italy, 1971; Farinacci, A., Ed.; Edizioni Tecnoscienza: Bologna, Italy, 1971; Volume 2, pp. 1225–1230. [Google Scholar]
- Bukry, D. Coocolith stratigraphy, eastern equatorial Pacific, Leg. 16, Deep Sea Drilling Project. Initial. Rep. DSDP 1973, 16, 653–711. [Google Scholar]
- Bukry, D. Biostratigraphy of Cenozoic marine sediment by calcareous nannofossils. Micropaleontology 1978, 24, 44–60. [Google Scholar] [CrossRef]
- Bukry, D. Phytoplankton stratigraphy, Deep Sea Drilling Project, Leg 20, Western Pacific Ocean. Initial. Rep. DSDP 1973, 20, 307–317. [Google Scholar]
- Menini, A.; Mattioli, E.; Vicon-Laugier, A.; Suan, G. Calcareous nannofossil biostratigraphy across the Paleocene-Eocene Thermal Maximum. Newsl. Stratigr. 2022, 55, 69–97. [Google Scholar] [CrossRef]
- Okada, H.; Bukry, D. Supplementary modification and introduction of code numbers to the low latitude coccolith biostratigraphic zonation. Mar. Micropaleontol. 1980, 5, 321–325. [Google Scholar] [CrossRef]
- Perch-Nielsen, K. Cenozoic calcareous nannofossils. In Plankton Stratigraphy; Cambridge Earth Science Series; Bolli, H.M., Saunders, J.B., Perch-Nielsen, K., Eds.; Cambridge University Press: Cambridge, UK, 1985; pp. 427–554. [Google Scholar]
- Shumenko, S.I. Guide to Microfossils of the USSR; Nedra: Leningrad, Russia, 1987; Volume 1, 198p. (In Russian) [Google Scholar]
- Takahashi, E.; Uto, K.; Schilling, J.-G. Primary magma compositions and Mg/Fe ratios of their mantle residues along Mid Atlantic Ridge 29° N to 73° N. Tech. Rep. ISEI Okayama Univ. Ser. 1987, A 9, 1–4. [Google Scholar]
- Wass, S.Y. Multiple origins of clinopyroxenes in alkali basaltic rocks. Lithos 1979, 12, 115–132. [Google Scholar] [CrossRef]
- Chen, L.; Tang, L.; Li, X.; Dong, Y.; Yu, X.; Ding, W. Geochemistry of peridotites from the Yap Trench, Western Pacific: Implications for subduction zone mantle evolution. Int. Geol. Rev. 2019, 61, 1037–1051. [Google Scholar] [CrossRef]
- Le Bas, M.J.; Le Maitre, R.; Strackeisen, A.; Zanettin, B. A chemical classification of volcanic rocks based on the total alkali–silica diagram. J. Petrol. 1986, 27, 745–750. [Google Scholar] [CrossRef]
- Irvine, T.N.; Baragar, W.R.A. A Guide to the Chemical Classification of the Common Volcanic Rocks. Can. J. Earth Sci. 1971, 8, 523–548. [Google Scholar] [CrossRef]
- Hirano, N.; Machida, S. The mantle structure below petit-spot volcanoes, Commun. Earth Environ. 2022, 3, 110. [Google Scholar] [CrossRef]
- Mikuni, K.; Hirano, N.; Machida, S.; Sumino, H.; Akizawa, N.; Tamura, A.; Morishita, T.; Kato, Y. Contribution of carbonatite and recycled oceanic crust to petit-spot lavas on the western Pacific Plate. Solid Earth 2024, 15, 167–196. [Google Scholar] [CrossRef]
- Heaton, D.E.; Koppers, A.A.P. High-resolution 40Ar/39Ar geochronology of the Louisville seamounts IODP expedition 330 drill sites: Implications for the duration of hot spot-related volcanism and age progressions. Geochem. Geophys. Geosystems (GGG) 2019, 20, 4073–4102. [Google Scholar] [CrossRef]
- Wells, P.R.A. Pyroxene thermometry in simple and complex systems. Contrib. Mineral. Petrol. 1977, 46, 129–139. [Google Scholar] [CrossRef]
- Brey, G.P.; Köhler, T. Geothermobarometry in four-phase lherzolites II: New thermobarometers and practical assessment of existing thermobarometers. J. Petrol. 1990, 31, 1353–1378. [Google Scholar] [CrossRef]
- Taylor, W. An experimental test of some geothermometer and geobarometer formulations for upper mantle peridotites with application to the thermobarometry of fertile lherzolite and garnet websterite. Neues Jahrb. Mineral. Abh. 1998, 172, 381–408. [Google Scholar] [CrossRef]
- O’Neill, H.S.C.; Wall, V.J. The olivine-orthopyroxene-spinel oxygen-geobarometer, the nickel precipitation curve and the oxygen fugacity of the earth’s upper mantle. J. Petrol. 1987, 28, 1169–1191. [Google Scholar] [CrossRef]
- Nimis, P.; Taylor, W.R. Single clinopyroxene thermobarometry for garnet peridotites. Part I. Calibration and testing of a Cr-in-Cpx barometer and an enstatite-in-Cpx thermometer. Contrib. Mineral. Petrol. 2000, 139, 541–554. [Google Scholar] [CrossRef]
- Sudholz, Z.J.; Yaxley, G.M.; Jaques, A.L.; Brey, G.P. Experimental recalibration of the Cr-in-clinopyroxene geobarometer: Improved precision and reliability above 4.5 GPa. Contrib. Mineral. Petrol. 2021, 176, 11. [Google Scholar] [CrossRef]
- Hellebrand, E.; Snow, J.E.; Dick, H.J.B.; Hofmann, A.W. Coupled major and trace elements as indicators of the extent of melting in mid-ocean-ridge peridotites. Nature 2001, 410, 677–681. [Google Scholar] [CrossRef] [PubMed]
- Tivey, M.A.; Sager, W.W.; Lee, S.M.; Tominaga, M. Origin of the Pacific Jurassic quiet zone. Geology 2006, 34, 789–792. [Google Scholar] [CrossRef]
- Hochmuth, K.; Golf, K.; Uenzelmann-Neben, G. Playing jigsaw with Large Igneous Provinces—A plate tectonic reconstruction of Ontong Java Nui, West Pacific. Geochemistry. Geophys. Geosystems (GGG) 2015, 16, 3789–3807. [Google Scholar] [CrossRef]
- Seton, M.; Müller, R.D.; Zahirovic, S.; Gain, C.; Torsvik, T.; Shephard, G.; Talsma, A.; Gurnis, M.; Turner, M.; Maush, S.; et al. Global continental and ocean basin reconstructions since 200 Ma. Earth Sci. Rev. 2012, 113, 212–270. [Google Scholar] [CrossRef]
- Hirano, N.; Kawamura, K.; Hattori, M.; Saito, K.; Ogawa, Y. A new type of intra-plate volcanism; Young alkali-basalts discovered from the subducting Pacific Plate, Northern Japan Trench. Geophys. Res. Let. 2001, 28, 2719–2722. [Google Scholar] [CrossRef]
- Hirano, N.; Machida, S.; Sumino, H.; Shimizu, K.; Tamura, A.; Morishita, T.; Iwano, H.; Sakata, S.; Ishii, T.; Arai, S.; et al. Petit-spot volcanoes on the oldest portion of the Pacific Plate. Deep.-Sea Res. Part I 2019, 154, 103142. [Google Scholar] [CrossRef]
- Hirano, N. Petit-spot volcanism: A new type of volcanic zone discovered near a trench. Geochem. J. 2011, 45, 157–167. [Google Scholar] [CrossRef]
- Harigane, Y.; Mizukami, T.; Morishita, T.; Michibayashi, K.; Abe, N.; Hirano, N. Direct evidence for upper mantle structure in the NW Pacific Plate: Microstructural analysis of a petit-spot peridotite xenolith. Earth Planet. Sci. Lett. (EPSL) 2011, 302, 194–202. [Google Scholar] [CrossRef]
- Machida, S.; Kogiso, T.; Hirano, N. Petit-spot as definitive evidence for partial melting in the asthenosphere caused by CO2. Nat. Commun. 2017, 8, 14302. [Google Scholar] [CrossRef]
- Pilet, S.; Baker, M.B.; Stolper, E.M. Metasomatized lithosphere and the origin of alkaline lavas. Science 2008, 320, 916–919. [Google Scholar] [CrossRef] [PubMed]
- Pilet, S.; Abe, N.; Rochat, L.; Kaczmarek, M.A.; Hirano, N.; Machida, S.; Buchs, D.M.; Baumgartner, P.O.; Müntener, O. Pre-subduction metasomatic enrichment of the oceanic lithosphere induced by plate flexure. Nat. Geosci. 2016, 9, 898–903. [Google Scholar] [CrossRef]
- Taneja, R.; Rushmer, T.; Blichert-Toft, J.; Turner, S.; O’Neill, C. Mantle heterogeneities beneath the Northeast Indian Ocean as sampled by intra-plate volcanism at Christmas Island. Lithos 2016, 262, 561–575. [Google Scholar] [CrossRef]
- Reinhard, A.A.; Jackson, M.G.; Blusztajn, J.; Koppers, A.A.P.; Simms, A.R.; Konter, J.G. “Petit Spot” rejuvenated volcanism superimposed on plume-derived Samoan Shield volcanoes: Evidence from a 645m drill core from Tutuila Island, American Samoa. Geochem. Geophys. Geosystems (GGG) 2019, 20, 1485–1507. [Google Scholar] [CrossRef]
- Falloon, T.J.; Hoernle, K.; Schaefer, B.F.; Bindeman, I.N.; Hart, S.R.; Garbe-Schonberg, D.; Duncan, R.A. Petrogenesis of lava from Christmas Island, Northeast Indian Ocean. Implications for the nature of recycled components in non-plume intraplate settings. Geosciences 2022, 12, 118. [Google Scholar] [CrossRef]
- Dasgupta, R.; Hirschmann, M.M.; McDonough, W.F.; Spiegelman, M.; Withers, A.C. Trace element partitioning between garnet lherzolite and carbonatite at 6.6 and 8.6 GPa with applications to the geochemistry of the mantle and of mantle-derived melts. Chem. Geol. 2009, 262, 57–77. [Google Scholar] [CrossRef]
Sample | Type Sampling | Latitude (°N) | Longitude (°E) | Sea Depth, m |
---|---|---|---|---|
15D266 | Dredging | 17.019914 | 154.426390 | 1414 |
15D21 | Dredging | 17.0104830 | 154.2580171 | 1202 |
15D18 | Dredging | 17.0256170 | 154.3648169 | 922 |
15B13 | Drilling | 17.0281988 | 154.4403234 | 1148 |
15B17 | Drilling | 16.9563422 | 145.4331726 | 1409 |
Pseudoemiliania lacunosa (Kamptner) Gartner (CN11b–CN14a) | Syracosphaera pulchra Lohmann (CN10–CN15) | aff. Umbilicosphaera sibogae Gaarder (CN5–CN15) |
Gephyrocapsa sp. cf. G. oceanica Kamptner (CN14a–CN15) | Coccolithus sp. cf. C. doronicoides (CN12–CN14) | Taxonomically uncertain nannoplankton fossils |
Discoaster brouweri Tan (CN7a–CN12d) | Discoaster surculus Martini & Bramlette (CN9a–CN12b) | |
Discoaster cf. D. challengeri Bramlette & Riedel (CN6–CN12a) | Discoaster variabilis Martini & Bramlette (CN3–CN12a) | Discoaster bollii Martini & Bramlette (CN5b–CN8a) |
Calcidiscus macintyrei Loeblich & Tappan (CN3–CN12a) | Scyphosphaera sp. cf. S. aranta Kampter (Middle Miocene–Early Pliocene) | Scyphosphaera sp. (Transient species) |
Umbilicosphaera sibogae Gaarder (CN5–CN15) | Emiliania huxleyi (Lohmann) Hay & Mohler (CN15) | aff. Rhabdosphaera claviger Murray & Blackman (CN10–CN15) |
Discoaster brouweri Tan (CN7a–CN12d) | Discoaster variabilis Martini & Bramlette (CN3–CN12a) | Discoaster surculus Martini & Bramlette (CN9a–CN12b) |
Discoaster quinqueramus Gartner (CN9) | Discoaster berggrenii Bukry (CN9) | Discoaster pentaradiatus Bramlette & Riedel (CN7–CN12c) |
Calcidiscus macintyrei Loeblich & Tappan (CN3–CN12a) | Scyphoshaera sp. (Transient species) | Cyclococcolithus macintyrei Loeblich & Tappan (left), Scyphoshaera globulata Bukry & Percival (right) (Miocene–Pleistocene) |
Discoaster deflandrei Bramlette & Riedel (CP16c–CN5b) | Discoaster druggii Bramlette & Wilcoxon (CN1c–CN4) | |
Discoaster adamanteus Bramlette & Wilcoxon (NP19a–CN2) | Discoaster adamanteus Bramlette & Wilcoxon (left), Discoaster formosus Martini & Worsley (CN4) | Sphenolithus heteromorhus Deflandre (CN3–CN4) |
Dictyococcites bisectus (Hay, Mohler, & Wade) Bukry & Percival (CP14a–CP19b) | Reticulofenestra umbilica Martini (CP14a–CP16c) | |
Cyclicargolithus floridanus Bukry (CP16a–CN5a) | Coccolithus pelagicus Bukry (Transient species, Paleocene–Pleistocene) |
15D266A | Ol | Cpx | Sp | Ti-Mag | Glass | ||
---|---|---|---|---|---|---|---|
1 | 2 (30) | 3 (17) | 4 (63) | 5 (33) | 6 (5) | 7 (62) | |
SiO2 | 40.15 | 38.78 | 39.97 | 48.96 | 0.69 | 1.96 | 50.74 |
TiO2 | 2.37 | 1.82 | 2.71 | 15.35 | 1.43 | ||
Al2O3 | 9.87 | 3.86 | 12.67 | 5.01 | 19.96 | ||
FeO | 5.76 | 13.73 | 9.18 | 3.15 | 20.54 | 42.43 | 5.05 * |
Fe2O3 | 5.97 | 3.73 | 14.58 | 30.94 | |||
MnO | 0.17 | 0.22 | 0.15 | 0.14 | 0.52 | 0.13 | |
MgO | 12.47 | 45.68 | 49.88 | 14.86 | 10.12 | 3.08 | 0.68 |
CaO | 12.47 | 0.34 | 0.10 | 22.00 | 0.37 | 0.55 | 2.43 |
Na2O | 2.19 | 0.49 | 7.31 | ||||
K2O | 1.28 | 5.33 | |||||
P2O5 | 2.27 | 1.44 | |||||
NiO | 0.27 | 0.37 | |||||
Cr2O3 | 0.58 | 37.53 | |||||
V2O3 | 0.19 | 0.36 | |||||
H2O− | 2.08 | ||||||
H2O+ | 2.82 | ||||||
Total | 100.42 | 99.02 | 99.65 | 99.58 | 99.39 | 100.21 | 95.58 |
Fo85.6 | Fo90.2 | Mg#80.2 | Cr#0.66 |
15D266B | Ol | Opx | Cpx | Sp | ||
---|---|---|---|---|---|---|
1 | 2 | 3 (37) | 4 (26) | 5 (38) | 6 (51) | |
SiO2 | 42.29 | 45.26 | 40.24 | 55.63 | 52.67 | |
TiO2 | 0.11 | 0.06 | 0.22 | |||
Al2O3 | 3.85 | 2.52 | 3.02 | 3.30 | 47.13 | |
FeO | 5.11 | 7.53 * | 9.09 | 5.73 | 1.15 | 11.28 |
Fe2O3 | 8.80 | 0.53 | 0.95 | 2.88 | ||
MnO | 0.23 | 0.12 | 0.10 | 0.12 | ||
MgO | 33.15 | 40.02 | 49.31 | 33.53 | 16.13 | 18.08 |
CaO | 3.78 | 3.38 | 0.38 | 23.16 | ||
Na2O | 0.59 | 0.12 | 0.76 | |||
K2O | 0.15 | |||||
P2O5 | 0.21 | |||||
NiO | 0.26 | 0.42 | 0.21 | |||
Cr2O3 | 0.74 | 0.39 | 0.76 | 18.79 | ||
V2O3 | 0.09 | |||||
ZnO | 0.25 | |||||
H2O− | 0.46 | |||||
H2O+ | 0.96 | |||||
Total | 99.94 | 100.00 | 99.16 | 99.34 | 99.12 | 99.61 |
Fo90.6 | Mg#90.5 | Mg#93.5 | Cr#0.22 |
15B13 | Ol | Cpx | Opx | Sp | Glass | ||
---|---|---|---|---|---|---|---|
1 | 2 (39) | 3 (46) | 4 (59) | 5 (84) | 6 (30) | 7 (121) | |
SiO2 | 44.28 | 39.48 | 40.62 | 50.38 | 55.14 | 0.60 | 46.34 |
TiO2 | 2.39 | 1.38 | 2.65 | 3.10 | |||
Al2O3 | 10.36 | 2.97 | 2.39 | 14.81 | 14.52 | ||
FeO | 14.39 | 9.34 | 3.90 | 5.73 | 21.43 | 10.47 ** | |
Fe2O3 | 12.84 * | 2.28 | 0.17 | 12.58 | |||
MnO | 0.18 | 0.22 | 0.14 | 0.08 | 0.15 | 0.16 | |
MgO | 11.94 | 44.73 | 49.09 | 15.27 | 33.33 | 9.72 | 4.14 |
CaO | 4.42 | 0.29 | 0.12 | 22.01 | 0.38 | 0.28 | 8.42 |
Na2O | 2.81 | 0.44 | 4.06 | ||||
K2O | 2.54 | 3.58 | |||||
P2O5 | 0.32 | 1.27 | |||||
LOI | 8.79 | ||||||
NiO | 0.31 | 0.40 | 0.14 | ||||
Cr2O3 | 0.54 | 35.73 | |||||
V2O3 | 0.16 | ||||||
Total | 100.95 | 99.42 | 99.71 | 99.26 | 97.63 | 98.10 | 96.42 |
Fo84.9 | Fo90.4 | Mg#81.9 | Mg#91.0 | Cr#0.62 |
T °C | 40Ar 10−9 cm3 STP | 40Ar/39Ar | 38Ar/39Ar | 37Ar/39Ar | 36Ar/39Ar | Ca/K | ∑39Ar (%) | 40Ar/39Ar Age, Ma |
---|---|---|---|---|---|---|---|---|
197.51 mg; J = 0.005355 ± 0.000075 | ||||||||
850 | 24.5 | 3.0 ± 0.002 | 0.018 ± 0.00016 | 1.2345 ± 0.0052 | 0.0028 ± 0.00020 | 4.44 | 27.03 | 21.2 ± 0.6 |
1000 | 24.6 | 2.1 ± 0.002 | 0.017 ± 0.00013 | 2.8868 ± 0.0027 | 0.0009 ± 0.00028 | 10.39 | 66.35 | 17.5 ± 0.8 |
1150 | 17.6 | 1.7 ± 0.003 | 0.021 ± 0.00014 | 18.1577 ± 0.0208 | 0.00017 ± 0.00154 | 65.37 | 100.00 | 21.6 ± 4.3 |
246.34 mg; J = 0.004992 ± 0.000065 | ||||||||
500 | 85.4 | 3.2 ± 0.002 | 0.018 ± 0.00007 | 0.36 ± 0.02 | 0.0038 ± 0.00012 | 1.31 | 37.9 | 18.2 ± 0.4 |
600 | 33.8 | 3.1 ± 0.002 | 0.020 ± 0.00010 | 0.51 ± 0.03 | 0.0033 ± 0.00030 | 1.83 | 53.2 | 18.9 ± 0.8 |
675 | 9.2 | 5.2 ± 0.009 | 0.027 ± 0.00057 | 0.80 ± 0.14 | 0.0043 ± 0.00114 | 2.89 | 55.7 | 34.9 ± 3.0 |
750 | 30.8 | 5.4 ± 0.003 | 0.020 ± 0.00016 | 1.36 ± 0.03 | 0.0093 ± 0.00032 | 4.90 | 63.7 | 24.0 ± 0.9 |
800 | 21.1 | 6.2 ± 0.006 | 0.022 ± 0.00051 | 1.81 ± 0.11 | 0.0150 ± 0.00070 | 6.51 | 68.4 | 16.1 ± 1.9 |
850 | 15.5 | 6.0 ± 0.009 | 0.018 ± 0.00080 | 1.64 ± 0.12 | 0.0120 ± 0.00116 | 5.91 | 72.0 | 22.3 ± 3.1 |
925 | 29.8 | 5.0 ± 0.004 | 0.020 ± 0.00020 | 3.05 ± 0.06 | 0.0108 ± 0.00052 | 10.99 | 80.3 | 16.6 ± 1.4 |
975 | 23.5 | 5.3 ± 0.004 | 0.018 ± 0.00043 | 3.29 ± 0.07 | 0.0073 ± 0.00050 | 11.84 | 86.4 | 28.5 ± 1.4 |
1025 | 19.1 | 4.3 ± 0.005 | 0.018 ± 0.00047 | 8.07 ± 0.09 | 0.0021 ± 0.00088 | 29.06 | 92.7 | 32.3 ± 2.3 |
1075 | 14.0 | 6.6 ± 0.012 | 0.036 ± 0.00046 | 22.48 ± 0.16 | 0.0130 ± 0.00202 | 80.94 | 95.6 | 24.7 ± 5.3 |
1150 | 44.5 | 14.3 ± 0.070 | 0.035 ± 0.00086 | 78.75 ± 0.40 | 0.0133 ± 0.00668 | 283.50 | 100.0 | 90.7 ± 17.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peretyazhko, I.S.; Savina, E.A.; Pulyaeva, I.A. Miocene Petit-Spot Basanitic Volcanoes on Cretaceous Alba Guyot (Magellan Seamount Trail, Pacific Ocean). Geosciences 2024, 14, 252. https://doi.org/10.3390/geosciences14100252
Peretyazhko IS, Savina EA, Pulyaeva IA. Miocene Petit-Spot Basanitic Volcanoes on Cretaceous Alba Guyot (Magellan Seamount Trail, Pacific Ocean). Geosciences. 2024; 14(10):252. https://doi.org/10.3390/geosciences14100252
Chicago/Turabian StylePeretyazhko, Igor S., Elena A. Savina, and Irina A. Pulyaeva. 2024. "Miocene Petit-Spot Basanitic Volcanoes on Cretaceous Alba Guyot (Magellan Seamount Trail, Pacific Ocean)" Geosciences 14, no. 10: 252. https://doi.org/10.3390/geosciences14100252
APA StylePeretyazhko, I. S., Savina, E. A., & Pulyaeva, I. A. (2024). Miocene Petit-Spot Basanitic Volcanoes on Cretaceous Alba Guyot (Magellan Seamount Trail, Pacific Ocean). Geosciences, 14(10), 252. https://doi.org/10.3390/geosciences14100252