Multiple Sources of Indosinian Granites and Constraints on the Tectonic Evolution of the Paleo-Tethys Ocean in East Kunlun Orogen
Abstract
:1. Introduction
2. Geological Setting and Field Characteristics
3. Petrography
4. Whole-Rock Geochemistry
4.1. Major Elements
4.2. Trace Elements
5. Magma Source and Petrogenesis
5.1. Granite Type
5.2. Magma Source
5.3. Petrogenesis
6. Tectonic Setting of the Granitoids
7. Conclusions
- (1)
- Most early Indosinian to late Indosinian granitoids occur in the eastern EKO, consisting of granodiorite, monzogranite, porphyry monzogranite, and syenogranite. The granitoids geochemically evolved from medium– to high–K calc–alkaline in composition.
- (2)
- In the early Indosinian, the break–off of the northern Paleo–Tethys Ocean resulted in the rapid upwelling of the mantle and decompression–related formation of mafic magma. At the same time, a large amount of water entered the lower crust, reducing the melting temperature of the source rocks, and forming a large volume of granitic rocks.
- (3)
- During the middle Indosinian, the collision of the Bayan Har and East Kunlun blocks was an unfavorable environment for the development of fissures and, consequently, the movement of fluids into the crust in the EKO. The formation of magma could be attributed to dehydration partial melting of hydrous minerals.
- (4)
- In the late Indosinian, the delamination of the thickened lower crust resulted in the upwelling of the asthenosphere, providing heat for the partial melting of rocks, but also provided a channel for the migration of fluids, which led to magmatic flare–ups during the post–collision stage.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mo, X.X.; Luo, Z.H.; Deng, J.F.; Yu, X.G.; Liu, C.D.; Shen, H.W.; Yuan, W.M.; Liu, Y.H. Granitoids and Crustal Growth in the East–Kunlun Orogenic Belt. J. China Univ. Geosci. 2007, 13, 403–414. [Google Scholar]
- Clemens, J.D.; Stevens, G. What controls chemical variation in granitic magmas? Lithos 2012, 134–135, 317–329. [Google Scholar] [CrossRef]
- Brown, M. Granite: From genesis to emplacement. Bull. Geol. Soc. Am. 2013, 125, 1079–1113. [Google Scholar] [CrossRef] [Green Version]
- Wu, F.Y.; Liu, X.C.; Ji, W.Q.; Wang, J.M.; Yang, L. Highly fractionated granites: Recognition and research. Sci. China Ser. D. 2017, 47, 745–765. [Google Scholar] [CrossRef]
- Clemens, J.D. Granitic magmas with I–type affinities, from mainly metasedimentary sources: The Harcourt batholith of southeastern Australia. Contrib. Mineral. Petrol. 2018, 173, 93–113. [Google Scholar] [CrossRef]
- Davidson, J.; Turner, S.; Handley, H.; Macpherson, C.; Dosseto, A. Amphibole ''sponge'' in arc crust? Geology 2007, 35, 787–790. [Google Scholar] [CrossRef]
- Weinberg, R.F.; Hasalová, P. Water–fluxed melting of the continental crust: A review. Lithos 2015, 212–215, 158–188. [Google Scholar] [CrossRef]
- Gao, P.; Zheng, Y.F.; Zhao, Z.F. Experimental melts from crustal rocks: A lithochemical constrainton granite petrogenesis. Lithos 2016, 266–267, 133–157. [Google Scholar] [CrossRef]
- Li, X.H.; Li, Z.X.; Li, W.X.; Liu, Y.; Yuan, C.; Wei, G.J.; Qi, C.S. U–Pb zircon, geochemical and Sr–Nd–Hf isotopic constraints on age Guangdong, SE China: A major igneous event in response to foundering of a subducted flat–slab? Lithos 2007, 96, 186–204. [Google Scholar] [CrossRef]
- Xiao, Q.H.; Deng, J.F.; Qiu, R.Z.; Liu, Y.; Feng, Y.F. A preliminary study of the relationship between granitoids and the growth of continental crust: A case study of the formation of key orogen granitoids in China. Geol. China 2009, 36, 594–622. [Google Scholar]
- Wang, T.; Wang, X.X.; Guo, L.; Zhang, L.; Tong, Y.; Li, S.; Huang, H.; Zhang, J.J. Granitoid and tectonics. Acta. Petrol. Sin. 2017, 35, 1459–1478. [Google Scholar]
- Zhu, D.C.; Zhao, Z.D.; Niu, Y.L.; Mo, X.X.; Chung, S.L.; Hou, Z.Q.; Wang, L.Q.; Wu, F.Y. The Lhasa Terrane: Record of a microcontinent and Its histories of drift and growth. Earth Planet. Sci. Lett. 2011, 301, 241–255. [Google Scholar] [CrossRef]
- Luo, Z.H.; Ke, S.; Cao, Y.Q.; Deng, J.F.; Shen, H.W. Indosinian mantle–derived magmatism in the East Kunlun. Geol. Bull. China 2002, 21, 292–297. [Google Scholar]
- Ma, C.Q.; Xiong, F.H.; Zhang, J.Y.; Liu, B.; Huang, J.; Jiang, H.A. The Effects of Subduction Plate of Magmatism in the Stage of Plate Subduction to Post–Tectonic: Evidence of Mafic Dike of Early Permian–Late Triassic East Kunlun. Acta Geol. Sin. 2013, 87, 79–81. [Google Scholar]
- Ma, C.Q.; Xiong, F.H.; Yin, S.; Wang, L.X.; Gao, K. Intensity and cyclicity of orogenic magmatism: An example form a Paleo–Tethyan granitoid batholith, Eastern Kunlun, northern Qinghai–Tibetan Plateau. Acta Geol. Sin. 2015, 31, 3555–3568. [Google Scholar]
- Meng, F.C.; Zhang, J.X.; Cui, M.H. Discovery of Early Paleozoic eclogite from the East Kunlun, Western China and its tectonic significance. Gondwana Res. 2013, 23, 825–836. [Google Scholar] [CrossRef]
- Yu, M.; Feng, C.Y.; Santosh, M.; Mao, J.W.; Zhu, Y.F.; Zhao, Y.M.; Li, D.X.; Li, B. The Qiman Tagh Orogen as awindowto the crustal evolution in northern Qinghai–Tibet Plateau. Earth–Sci. Rev. 2017, 167, 103–123. [Google Scholar] [CrossRef]
- Dong, Y.P.; He, D.F.; Sun, S.S.; Liu, X.M.; Zhou, X.H.; Zhang, F.F.; Yang, Z.; Cheng, B.; Zhao, G.C.; Li, J.H. Subduction and Accretionary Tectonics of the East Kunlun Orogen, Western Segment of the Central China Orogenic System. Earth–Sci. Rev. 2018, 186, 231–261. [Google Scholar] [CrossRef]
- Li, R.B.; Pei, X.Z.; Pei, L.; Li, Z.C.; Chen, G.C.; Chen, Y.X.; Liu, C.J.; Wang, M. The Early Triassic Andean–type Halagatu granitoids pluton in the East Kunlun orogen, northern Tibet Plateau: Response to the northward subduction of the Paleo–Tethys Ocean. Gondwana Res. 2018, 62, 212–226. [Google Scholar] [CrossRef]
- Chen, G.C.; Pei, X.Z.; Li, R.B.; Li, Z.C.; Pei, L.; Liu, C.H.; Chen, Y.X.; Li, X.B. Triassic magma mixing and mingling at the the eastern section of Eastern Kunlun: A case study from Xiangjiananshan granitic batholith. Acta Petrol. Sin. 2018, 34, 2441–2480. [Google Scholar]
- Li, R.B.; Pei, X.Z.; Li, Z.C.; Pei, L.; Chen, G.C.; Chen, Y.X.; Liu, C.J.; Wang, M. Paleo–Tethys Ocean subduction ineastern section of East Kunlun Orogen: Evidence from the geochronology and geochemistry of the Wutuo pluton. Acta Petrol. Sin. 2018, 34, 3399–3421. [Google Scholar]
- Chen, G.C.; Pei, X.Z.; Li, R.B.; Li, Z.C.; Liu, C.J.; Chen, Y.X.; Pei, L.; Wang, M.; Li, X.B. Paleo–Tethyan Oceanic Crust Subduction in the Eastern Section of the East Kunlun Orogenic Belt: Geochronology and Petrogenesis of the Qushi’ang Granodiorite. Acta Geol. Sin–Engl. 2017, 91, 565–580. [Google Scholar] [CrossRef]
- Chen, G.; Pei, X.Z.; Li, Z.C.; Li, R.B.; Chen, Y.X.; Liu, C.J.; Chen, G.C.; Wang, X.B.; Sang, J.Z.; Yang, S.; et al. Zircon U–Pb geochronology, geochemical characteristics and geological significance of Chaohuolutaolegai granodiorite in Balong area, EastKunlun Mountains. Geol. Bull. China 2016, 35, 1990–2005. [Google Scholar]
- Deng, W.B.; Pei, X.Z.; Liu, C.J.; Li, Z.C.; Li, R.B.; Chen, Y.X.; Chen, G.C.; Yang, S.; Chen, G.; Sang, J.Z.; et al. LA–ICP–MS zircon U–Pb dating of the Chahantaolegai syenogranites in Xiangride area of East Kunlun and its geological significance. Geol. Bull. China 2016, 35, 687–699. [Google Scholar]
- Chen, G.C.; Pei, X.Z.; Li, R.B.; Li, Z.C.; Liu, C.J.; Chen, Y.X.; Pei, L.; Li, X.B. Age and lithogenesis of Keri syenogranite form eastern part of East Kunlun Orogenic Belt: Constraint on the Middle Triassic tectonic evolution of East Kunlun. Acta Petrol. Sin. 2018, 34, 567–585. [Google Scholar]
- Chen, G.C.; Pei, X.Z.; Li, R.B.; Li, Z.C.; Pei, L.; Liu, Z.Q.; Chen, Y.X.; Liu, C.J.; Gao, J.M.; Wei, F.H. Zircon U–Pb Geochronology Geochemical Characteristics and Geological Sinificance of Cocoe A'Long Quartz Diorites Body from the Hongshuichuan Area in East Kunlun. Acta Geol. Sin. 2013, 87, 178–196. [Google Scholar]
- Chen, G.C.; Pei, X.Z.; Li, R.B.; Li, Z.C.; Pei, L.; Liu, Z.Q.; Chen, Y.X.; Liu, C.J. Late Triassic magma mixing in the East Kunlun orogenic belt: A case study of Helegang Xilikete granodiorites. Geol. China 2013, 40, 1044–1065. [Google Scholar]
- Chen, G.C.; Pei, X.Z.; Li, R.B.; Li, Z.C.; Pei, L.; Liu, Z.Q.; Chen, Y.X.; Liu, C.J.; Gao, J.M.; Wei, F.H. Geochronology and genesis of Helegang Xilikete plutons from south margin of eastern part in East Kunlun Orogenic Belt and their geological significance. Acta Geol. Sin. 2013, 87, 1524–1541. [Google Scholar]
- Li, R.B.; Pei, X.Z.; Li, Z.C.; Sun, Y.; Feng, J.Y.; Pei, L.; Chen, G.C.; Liu, C.J.; Chen, Y.X. Geochemical features, age, and tectonic significance of the Kekekete mafic–ultramafic rocks, East Kunlun Orogen, China. Acta Geol. Sin. 2013, 87, 1319–1333. [Google Scholar]
- Li, R.B.; Pei, X.Z.; Li, Z.C.; Sun, Y.; Pei, L.; Chen, G.C.; Chen, Y.X.; Liu, C.J.; Wei, F.H. Regional tectonic transformation in East Kunlun orogenic belt in Early Paleozoic: Constraints from the geochronology and geochemistry of Helegangnaren alkali–feldspar granite. Acta Geol. Sin. 2013, 87, 333–345. [Google Scholar]
- Pei, X.Z.; Li, R.B.; Li, Z.C.; Liu, C.J.; Chen, Y.X.; Pei, L.; Liu, Z.Q.; Chen, G.C.; Li, X.B.; Wang, M. Composition Feature and Formation Process of Buqingshan Composite Accretionary Mélange Belt in Southern Margin of East Kunlun Orogen. Earth Sci. 2018, 43, 4498–4520. [Google Scholar]
- Song, S.G.; Bi, H.Z.; Qi, S.S.; Yang, L.M.; Allen, M.B.; Niu, Y.L.; Su, L.; Li, W.F. HP–UHP Metamorphic Belt in the East Kunlun Orogen: Final Closure of the Proto–Tethys Ocean and Formation of the Pan–North–China Continent. J. Petrol. 2018, 59, 2043–2060. [Google Scholar] [CrossRef]
- Pei, X.Z.; Hu, N.; Liu, C.J.; Li, R.B.; Li, Z.C.; Chen, Y.X.; Pei, L.; Liu, Z.Q.; Chen, G.C.; Yang, J. Detrital Compositon, Geochemical Characteristics and Provenance Analysis for the Maerzheng Formation Sandstone in Gerizhuotuo Area, Southern Margin of East Kunlun Region. Geol. Rev. 2015, 61, 307–323. [Google Scholar]
- Li, Z.C.; Pei, X.Z.; Li, R.B.; Pei, L.; Liu, C.J.; Chen, Y.X.; Zhang, Y.M.; Wang, M.; Xu, T. Early Ordovician island–arc–type Manite granodiorite pluton from the Buqingshan tectonic mélange belt in the southern margin of the East Kunlun Orogen: Constraints on subduction of the Proto–Tethyan Ocean. Geol. J. 2017, 52, 510–528. [Google Scholar] [CrossRef]
- Li, R.B.; Pei, X.Z.; Li, Z.C.; Pei, L.; Chen, G.C.; Li, X.B.; Chen, Y.X.; Liu, C.J.; Wei, B.; Wang, M. Geochemistry and tectonic setting of Qingquangou forearc basalts in central tectonic mélange of East Kunlun Orogen. Earth Sci. 2018, 43, 4251–4535. [Google Scholar]
- Zhao, X.; Fu, L.B.; Santosh, M.; Wei, J.H.; Chen, J.J. The growth and evolution of continental crust contributed by multiple sources in the East Kunlun Orogen during Early Paleozoic. Earth–Sci. Rev. 2022, 233, 104190. [Google Scholar] [CrossRef]
- Hu, Y.; Niu, Y.L.; Li, J.Y.; Ye, L.; Kong, J.J.; Chen, S.; Zhang, Y.; Zhang, G.R. Petrogenesis and tectonic significance of the late Triassic mafic dikes and felsic volcanic rocks in the East Kunlun Orogenic Belt, Northern Tibet Plateau. Lithos 2016, 254, 205–222. [Google Scholar] [CrossRef] [Green Version]
- Liu, B.; Ma, C.Q.; Huang, J.; Wang, L.X.; Zhao, S.Q.; Yan, R.; Sun, Y.; Xiong, F.H. Petrogenesis and tectonic implications of Upper Triassic appinite dykes in the East Kunlun orogenic belt, northern Tibetan Plateau. Lithos 2017, 284, 766–778. [Google Scholar] [CrossRef]
- Maniar, P.D.; Piccoli, P.M. Tectionic discrimination in of granitoids. Geol. Soc. Am. Bull. 1989, 01, 635–643. [Google Scholar] [CrossRef]
- Rollinson, H.R. Using Geochemical Data: Evaluation, Presentation, Interpreation; Longman: London, UK, 1993; pp. 1–352. [Google Scholar]
- Frost, B.R.; Barnes, C.G.; Collins, W.J.; Arculus, R.J.; Ellis, D.J.; Frost, C.D. A Geochemical Classification for Granitic Rocks. J. Petrol. 2001, 42, 2033–2048. [Google Scholar] [CrossRef] [Green Version]
- Wilson, M. Igneous Petrogenesis; Springer: London, UK, 1989; pp. 295–323. [Google Scholar]
- Boynton, W.V. Geochemistry of the rare earth elements: Meteorite studies. In Rare Earth Element Geochemistry; Henderson, P., Ed.; Elservier: Amsterdam, The Netherlands, 1984; pp. 63–114. [Google Scholar]
- Sun, S.S.; McDonough, W.F. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. Geol. Soc. Spec. Publ. 1989, 42, 313–345. [Google Scholar] [CrossRef]
- Whalen, J.B.; Currie, K.L.; Chappell, B.W. A–type granites: Geochemical characteristics discrimination and petrogeneisis. Contrib. Mineral. Petrol. 1987, 95, 407–419. [Google Scholar] [CrossRef]
- Wu, F.Y.; Li, X.H.; Yang, J.G.; Zheng, Y.F. Discussions on the petrogenesis of granite. Acta Petrol. Sin. 2007, 23, 1217–1238. [Google Scholar]
- King, P.L.; White, A.J.R.; Chappell, B.W.; Allen, C.M. Characterization and origin of aluminous A–type granites from the Lachlan Fold Belt, Southeastern Australia. J. Petrol. 1997, 38, 371–391. [Google Scholar] [CrossRef]
- Chen, G.C.; Pei, X.Z.; Li, R.B.; Li, Z.C.; Pei, L.; Liu, C.J.; Chen, Y.X.; Wang, M.; Gao, F.; Li, X.B. Lithospheric extersion of the post–collision stage of the Paleo–Tethys oceanic system in the East Kunlun Orogenic Belt: Insights from Late Triassic plutons. Earth Sci. Front. 2019, 26, 191–208. [Google Scholar] [CrossRef]
- Rudnick, R.L.; Gao, S. Composition of the continental crust. Treatise Geochem. 2003, 3, 1–64. [Google Scholar]
- Chappell, B.W.; Bryant, C.J.; Wyborn, D. Peraluminous I–type granites. Lithos 2012, 153, 142–153. [Google Scholar] [CrossRef]
- Sisson, T.W.; Ratajeski, K.; Hankins, W.B.; Glazner, A.F. Voluminous granitic magmas from common basaltic sources. Contrib. Mineral. Petrol. 2005, 148, 635–661. [Google Scholar] [CrossRef]
- Sylvester, P.J. Post–collisional strongly peraluminous granites. Lithos 1998, 45, 29–44. [Google Scholar] [CrossRef]
- Huang, H.; Niu, Y.L.; Nowell, G.; Zhao, Z.D.; Yu, X.H.; Zhu, D.C.; Mo, X.X.; Ding, S. Geochemical constraints on the petrogenesis of granitoids in the East Kunlun Orogenic belt, northern Tibetan Plateau:Implications for continental crust growth through syn–collisional felsic magmatism. Chem. Geol. 2014, 370, 1–18. [Google Scholar] [CrossRef]
- Guo, A.L.; Zhang, G.W.; Sun, Y.G.; Cheng, S.Y.; Qiang, J. Sr–Nd–Pb isotopic geochemistry of late –Paleozoic mafic volcanic rocks in the surrounding areas of the Gonghe basin, Qinghai Province and geological implications. Acta Petrol. Sin. 2007, 23, 747–754. [Google Scholar]
- Yu, N.; Jin, W.; Ge, W.C.; Long, X.P. Geochemical study on peraluminous granite from Jinshuikou in East Kunlun. Glob. Geol. 2005, 24, 123–128. [Google Scholar]
- Shao, F.L.; Niu, Y.L.; Liu, Y.; Chen, S.; Kong, J.J.; Duan, M. Petrogenesis of Triassic granitoids in the East Kunlun Orogenic Belt, northern Tibetan Plateau and their tectonic implications. Lithos 2017, 282–283, 33–44. [Google Scholar] [CrossRef]
- Patiño–Douce, A.E. What do experiments tell us about the relative contributions of crust and mantle to the origin of the granitic magmas? In Understanding Granites: Integrating New and Classical Techniques; Castro, A., Fernandez, C., Vigneresse, J.L., Eds.; Geological Society: London, UK, 1999; Volume 168, pp. 55–75. [Google Scholar]
- Altherr, R.; Holl, A.; Hegner, E.; Langer, C.; Kreuzer, H. High–potassium, calcalkaline I–type plutonismin the European Variscides: Northern Vosges (France) and northern Schwarzwald (Germany). Lithos 2000, 50, 51–73. [Google Scholar] [CrossRef]
- Rapp, R.P.; Watson, E.B. Dehydration melting of metabasalt an 8–32 kbar:implications for continental growth and crust–mantle recycling. J. Petrol. 1995, 36, 891–931. [Google Scholar] [CrossRef]
- Rapp, R.P.; Shimizu, N.; Norman, M.D.; Applegate, G.S. Reaction between slabderived lelts and peridotite in the mantle wedge:experimental constraints at 3.8Gpa. Chem. Geol. 1999, 160, 335–356. [Google Scholar] [CrossRef]
- Stevens, G.; Villaros, A.; Moyen, J.F. Selective peritectic garnet entrainment as the origin of geochemical diversity in S–type granites. Geology 2007, 35, 9–12. [Google Scholar] [CrossRef]
- Castro, A. Tonalite–granodiorite suites as cotectic systems: A review of experimental studies with applications to granitoid petrogenesis. Earth–Sci. Rev. 2013, 124, 68–95. [Google Scholar] [CrossRef]
- Chen, G.C.; Pei, X.Z.; Li, R.B.; Li, Z.C.; Liu, C.J.; Chen, Y.X.; Xu, T.; Zhang, Y.M. Genesis of magma mixing and mingling of Xiangjiananshan granite batholith in the eastern section of East Kunlun Orogen. Earth Sci. Front. 2016, 23, 226–240. [Google Scholar]
- Defant, M.J.; Drummond, M.S. Derivation of some modern magmas by melting of young subducted lithosphere. Nature 1990, 347, 662–665. [Google Scholar] [CrossRef]
- Atherton, M.P.; Petford, N. Generation of sodium–rich magmas from newly underplated basaltic crust. Nature 1993, 362, 144–146. [Google Scholar] [CrossRef]
- Yan, Z.; Bian, Q.G.; Korchagin, O.A.; Pospelov, I.I.; Li, J.L.; Wang, Z.Q. Provenance of Early Triassic Hongshuichuan Formantion in the southern margin of the East Kunlun Mountains: Constrains from detrial framework, heavy mineral analysis and geochemistry. Acta Petrol. Sin. 2008, 24, 1068–1078. [Google Scholar]
- Chen, G.C.; Pei, X.Z.; Li, R.B.; Li, Z.C.; Liu, C.J.; Chen, Y.X.; Pei, L.; Ding, S.P. Geological Characteristics and Tectonic Significance of Jurassic Yangqu Formation from Alake Lake in the Eastern Part of East Kunlun Orogenic Belt. Northwestern Geology 2017, 50, 113–125. [Google Scholar]
- Petford, N.; Atherton, M. Na–rich partial Melts form Newly Underplated Basaltic Crust: The Cordillera Blanca Batholith, Peru. J. Petrol. 1996, 37, 1491–1521. [Google Scholar] [CrossRef] [Green Version]
- Castillo, P.R. An overview of adakites petrogenesis. China Sci. Bull. 2006, 51, 257–268. [Google Scholar] [CrossRef]
- Zhang, L.Y.; Li, S.S.; Zhao, Q.Y. A review of research on adakites. Int. Geol. Rev. 2021, 63, 47–64. [Google Scholar] [CrossRef]
- Castillo, P.R. Adakite petrogenesis. Lithos 2012, 134–135, 304–316. [Google Scholar] [CrossRef]
- Watson, E.B.; Harrison, T.M. Zircon saturation revisited: Temperature and composition effects in a variety of crustal magma types. Earth Planet. Sci. Lett. 1983, 64, 295–304. [Google Scholar] [CrossRef]
- Lieu, W.H.; Stern, R.J. The robustness of Sr/Y and La/Yb as proxies for crust thickness in modern arcs. Geosphere 2019, 15, 621–641. [Google Scholar] [CrossRef] [Green Version]
- Chen, B.; Jahn, B.M.; Arakawa, Y.; Zhai, M.G. Petrogenesis of Mesozoic intrusive complexes from the southern Taihang Orogen, North China Cration: Elemental and Sr–Nd–Pb isotopic constraints. Contrib. Mineral. Petrol. 2004, 148, 489–501. [Google Scholar] [CrossRef]
- Wang, Q.; Xu, J.F.; Jian, P.; Bao, Z.W.; Zhao, Z.H.; Li, C.F.; Xiong, X.L.; Ma, J.L. Petrogenesis of adakitic porphyries in an extensional tectonic setting, Dexing, South China: Implications for the genesis of porphyry copper mineralization. J. Petrol. 2006, 47, 119–144. [Google Scholar] [CrossRef]
- Wang, X.L. Some new research progresses and main scientific problems of granitic rocks. Acta Petrol. Sin. 2017, 35, 1445–1458. [Google Scholar]
- Gao, S.; Rudnick, R.L.; Yuan, H.L.; Liu, X.M.; Liu, Y.S.; Xu, W.L.; Ling, W.L.; Ayers, J.; Wang, X.C.; Wang, Q.H. Recycling lower continental crust in the North China Craton. Nature 2004, 432, 892–897. [Google Scholar] [CrossRef] [PubMed]
- Patiňo–Douce, A.E.; Johnston, A.D. Phase equilibria and melt productivity in the pelitic system: Implications for the origin of peraluminous granitoids and aluminous granulites. Contrib. Mineral. Petrol. 1991, 107, 202–218. [Google Scholar] [CrossRef]
- Patiño–Douce, A.E.; Harris, N. Experimental constraints on Himalayan anatexis. J. Petrol. 1998, 39, 689–710. [Google Scholar] [CrossRef]
- Rushmer, T. Granulites as residues of partial melting: Experimental constrains. Terra Abstr. 1989, 1, 302. [Google Scholar]
- Collins, W.J.; Huang, H.Q.; Jiang, X.Y. Water–fluxed crustal melting produces Cordilleran batholiths. Geology 2016, 44, 143–146. [Google Scholar] [CrossRef]
- Moyen, J.F.; Stevens, G.; Kisters, A. Record of mid–Archaean subduction from metamorphism in the Barberton terrain, South Africa. Nature 2006, 442, 559–562. [Google Scholar] [CrossRef]
- Li, S.; Chung, S.L.; Wang, T.; Wilde, S.A.; Chu, M.F.; Pang, C.J.; Guo, Q.Q. Water–fluxed crustal melting and petrogenesis of largescale Early Cretaceous intracontinental granitoids in the southern Great Xing’an Range, North China. Geol. Soc. Am. Bull. 2018, 130, 580–597. [Google Scholar] [CrossRef]
- Storre, B.; Karotke, E. Experimental data onmelting reactions of muscovite+ quartz in the system K2O–Al2O3–SiO2–H2O to 20 kbarwater pressure. Contrib. Mineral. Petrol. 1972, 36, 343–345. [Google Scholar] [CrossRef]
- Long, L.; Sial, A.; Nekvasil, H.; Borba, G. Origin of granite at Cabo de Santo Agostinho, northeast Brazil. Contrib. Mineral. Petrol. 1986, 92, 341–350. [Google Scholar] [CrossRef]
- Anderson, J.L.; Bender, E.E. Nature and origin of Proterozoic A–type granitic magmatism in the southwestern United States of America. Lithos 1989, 23, 19–52. [Google Scholar] [CrossRef]
- Chen, J.; Wang, B.Z.; Li, B.; Zhang, Z.Q.; Qiao, B.X.; Jin, T.T. Zircon U–Pb ages, geochemistry and Sr–Nd–Pb isotopic compositions of Middle Triassic granodiorites from the Kaimuqi area, East Kunlun, Northwest China: Implications for slab breakoff. Int. Geol. Rev. 2015, 57, 257–270. [Google Scholar] [CrossRef]
- Chen, G.C.; Pei, X.Z.; Li, R.B.; Li, Z.C.; Liu, C.J.; Chen, Y.X.; Pei, L.; Li, X.B.; Wang, M. Magma Mixing and Mingling for Xiangjiananshan Granitic batholith at eastern area of the East Kunlun Orogenic Belt. Acta Geol. Sin–Engl. 2017, 91, 63. [Google Scholar] [CrossRef] [Green Version]
- Chen, G.C.; Pei, X.Z.; Li, R.B.; Li, Z.C.; Liu, C.J.; Chen, Y.X.; Pei, L.; Wang, M.; Li, X.B.; Zhang, Y. Age and Petrogenesis of Jialuhe Basic–Intermediate Pluton in Xiangjia’nanshan Granite Batholith in the Eastern Part of East Kunlun Orogenic Belt and its Geological Significance. Geotecton. Metallog. 2017, 41, 1097–1115. [Google Scholar]
- Chen, J.J.; Wei, J.H.; Fu, L.N.; Li, H.; Zhou, H.Z.; Zhao, X.; Zhan, X.F.; Tan, J. Multiple sources of the Early Mesozoic Gouli batholith, Eastern Kunlun Orogenic Belt, northern Tibetan Plateau: Linking continental crustal growth with oceanic subduction. Lithos 2017, 292, 161–178. [Google Scholar] [CrossRef] [Green Version]
- Xin, W.; Sun, F.Y.; Zhang, Y.T.; Fan, X.Z.; Wang, Y.C.; Li, L. Mafic–intermediate igneous rocks in the East Kunlun Orogenic Belt, northwestern China: Petrogenesis and implications for regional geodynamic evolution during the Triassic. Lithos 2019, 346–347, 105159. [Google Scholar] [CrossRef]
- Pearce, J.A.; Harris, B.W.; Tindie, A.G. Trace element discrimination diagram s for the tectonic interpretations of granitic rocks. J. Petrol. 1984, 25, 956–983. [Google Scholar] [CrossRef] [Green Version]
- Batchelor, R.A.; Bowden, P. Petrogenetic interpretation of granitoid rock series using multicationic parameters. Chem. Geol. 1985, 48, 43–45. [Google Scholar] [CrossRef]
- Whalen, J.B.; Hildebrand, R.S. Trace element discrimination of arc, slab failure, and A–type granitic rocks. Liths 2019, 348–349, 105179. [Google Scholar] [CrossRef]
- Zhang, J.Y.; Ma, C.Q.; Xiong, F.H.; Liu, B. Petrogenesis and tectonic significance of the Late Permian–Midele Triassic calc–alkaline granites in the Balong region, eastern Kunlun Orogen, China. Geol. Mag. 2012, 149, 892–908. [Google Scholar] [CrossRef]
- Xiong, F.H.; Ma, C.Q.; Zhang, J.Y.; Liu, B.; Jiang, H.A. Rweorking of old continental lithosphere: An important crustal evolution mechanism in orogenic belts, as evidenced by Triassic I–type granitoids in the East Kunlun orogen, Northern Tibetan Plateau. J. Geol. Soc. Lond. 2014, 171, 847–863. [Google Scholar] [CrossRef]
- Xiong, F.H.; Ma, C.Q.; Chen, B.; Ducea, M.N.; Hou, M.C.; Ni, S.J. Intermediate–mafic dikes in the East Kunlun Orogen, Northern Tibetan Plateau: A window into paleo–arc magma feeding system. Lithos 2019, 340–341, 152–165. [Google Scholar] [CrossRef]
- Liegeois, G.P. Preface–some words on the post–collisional magmatism. Lithos 1998, 45, 1–14. [Google Scholar]
- Yu, M.; Feng, C.Y.; Zhao, Y.M.; Li, D.X. Genesis of post–collisional calc–alkaline and alkaline granitoids in Qiman Tagh, East Kunlun, China. Lithos 2015, 239, 45–59. [Google Scholar] [CrossRef]
- Ding, S.; Huang, H.; Niu, Y.L.; Zhao, Z.D.; Yu, X.H.; Mo, X.X. Geochemistry, geochronology and petrogenesis of East Kunlun high Nb–Ta rhyolites. Acta Petrol. Sin. 2011, 27, 3603–3614. [Google Scholar]
- Luo, M.F.; Mo, X.X.; Yu, X.H.; Li, X.W.; Huang, X.F.; Yu, J.C. Zircon LA–ICP–MS U–Pb age dating, petrogenesis and tectonic implications of the Late Triassic granites from Xiangride area, East Kunlun. Acta Petrol. Sin. 2014, 30, 3229–3241. [Google Scholar]
- Xia, R.; Wang, C.M.; Deng, J.; Carranza, E.J.M.; Li, W.L.; Qing, M. Crustal thickening prior to 220Ma in the East Kunlun Orogenic Belt: Insights form the Late Triassic granitoids in the Xiao–Nuomuhong pluton. J. Asian Earth Sci. 2014, 93, 193–210. [Google Scholar] [CrossRef]
Locality | Rock | Texture | Structure | MMEs | Host rock | Method | Age (Ma) | Tectonic Unit | Reference |
---|---|---|---|---|---|---|---|---|---|
Halagatu | granodiorite | medium | massive | inclusion | basement | LA-ICP-MS | 247.2 ± 1.5 | SKB | [19] |
255.6 ± 1.9 | |||||||||
porphyritic monzogranite | medium to coarse | porphyritic | inclusion | granodiorite | LA-ICP-MS | 244.3 ± 2.2 | |||
monzogranite | coarse | massive | inclusion | granodiorite | |||||
syenogranite | medium to coarse | massive | no | granodiorite | |||||
Wutuo | granodiorite | medium to fine | massive | inclusion | basement | LA-ICP-MS | 249 ± 1 | CKB | [21] |
porphyritic monzogranite | medium to coarse | porphyritic | inclusion | granodiorite | LA-ICP-MS | 247 ± 1 | [21] | ||
syenogranite | medium to coarse | massive | inclusion | granodiorite | LA-ICP-MS | 245 ± 1 | [21] | ||
Xiangjiananshan | granodiorite | medium to coarse | massive | inclusion | basement | LA-ICP-MS | 251 ± 1.9 | CKB | [20] |
porphyritic monzogranite | medium to coarse | massive | inclusion | granodiorite | [20] | ||||
monzogranite | medium to coarse | massive | inclusion | granodiorite | LA-ICP-MS | 246.4 ± 3.9 | [20] | ||
syenogranite | coarse | massive | inclusion | granodiorite | [20] | ||||
Qushiang | granodiorite | medium to coarse | gneissic | inclusion | basement | LA-ICP-MS | 246.61 ± 0.62 | CKB | [22] |
Chaohuolutaogai | granodiorite | medium to coarse | massive | inclusion | basement and Early Triassic magmatic rocks | LA-ICP-MS | 241.2 ± 0.8 | CKB | [23] |
Chahantaolegai | syenogranite | medium to coarse | massive | no | basement and Early Triassic magmatic rocks | LA-ICP-MS | 239.9 ± 0.7 | CKB | [24] |
Keri | syenogranite | medium to coarse | massive | inclusion | basement | LA-ICP-MS | 231.58±0.49 | CKB | [25] |
Helegangxilikete | granodiorite | medium to fine | massive | inclusion | Middle Triassic Naocangjiangou Formation | LA-ICP-MS | 225 ± 2 | SKB | [27,28] |
Kekeealong | quartz diorite | medium to fine | massive | no | Middle Triassic Naocangjiangou Formation | LA-ICP-MS | 218.3 ± 1.4 | SKB | [26] |
Locality | Rock | SiO2 (wt.%) | Sr (ppm) | Y (ppm) | Sr/Y | Rb/Sr | La/Yb | Yb/Lu | 10,000 × Ga/Al | Nb/Ta | A/CNK | δEu | Mg# | T (°C) |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Halagatu | granodiorite | 65.31–68.45 (67.19) | 224–353 (268) | 17.10–25.10 (21.38) | 10.42–20.47 (12.84) | 0.25–0.53 (0.42) | 5.99–15.77 (11.59) | 5.74–6.63 (6.24) | 1.85–2.21 (2.01) | 8.79–12.31 (10.34) | 0.93–1.02 (0.98) | 0.82–1.00 (0.89) | 32–39 (36) | 699–755 (714) |
monzogranite | 72.63–73.01 (72.88) | 172–179 (176) | 15.00–19.30 (16.47) | 9.27–11.79 (10.84) | 0.82–0.91 (0.87) | 12.23–17.18 (14.75) | 5.33–6.20 (5.70) | 1.91–2.01 (1.96) | 9.03–10.90 (10.11) | 1.03–1.05 (1.04) | 0.64–0.72 (0.68) | 21–26 (23) | 772–784 (36) | |
porphyritic monzogranite | 69.87–73.46 (71.47) | 172–234 (195) | 12.50–21.80 (17.68) | 8.41–15.70 (11.36) | 0.53–0.74 (0.63) | 11.44–18.46 (14.55) | 6.14–6.97 (6.42) | 1.90–2.09 (2.01) | 8.05–12.12 (10.63) | 1.00–1.05 (1.03) | 0.88–1.09 (0.97) | 21–28 (25) | 744–769 (760) | |
syenogranite | 74.02–74.87 (74.53) | 74.2–93.3 (83.77) | 70.60–80.60 (76.20) | 0.96–1.32 (1.11) | 1.84–2.01 (1.97) | 4.82–5.28 (5.12) | 6.61–6.76 (6.67) | 2.88–3.08 (2.95) | 11.72–12.89 (12.23) | 0.99–1.01 (1.00) | 0.48–0.50 (0.48) | 4–11 (6) | 805–827 (816) | |
Wutuo | granodiorite | 64.52–68.59 (66.88) | 164–332 (256) | 16.30–25.00 (19.26) | 8.96–19.64 (13.59) | 0.35–0.55 (0.42) | 4.97–21.31 (12.05) | 5.58–6.67 (6.11) | 1.91–2.54 (2.21) | 6.02–13.33 (10.16) | 0.96–1.03 (0.98) | 0.74–1.13 (0.85) | 30–42 (39) | 688–784 (746) |
porphyritic monzogranite | 70.60–72.58 (71.85) | 183–205 (195) | 24.70–27.50 (25.77) | 6.65–8.30 (7.60) | 0.82–1.01 (0.93) | 11.11–11.83 (11.44) | 5.98–6.06 (6.01) | 2.49–2.60 (2.56) | 7.50–10.27 (9.28) | 0.99–1.02 (1.00) | 0.49–0.53 (0.52) | 28–30 (29) | 790–801 (797) | |
syenogranite | 75.38–76.27 (75.59) | 18.2–30.8 (26.13) | 21.50–28.00 (24.70) | 0.85–1.25 (1.05) | 7.28–10.88 (8.62) | 8.33–10.13 (9.09) | 6.16–6.53 (6.33) | 2.70–2.94 (2.79) | 10.84–12.69 (11.53) | 1.01–1.08 (1.04) | 0.14–0.23 (0.18) | 11–13 (12) | 803–812 (808) | |
Xiangjiananshan | syenogranite | 66.60–72.86 (69.73) | 102–140 (121) | 14.00–18.00 (16.00) | 7.29–7.78 (7.53) | 1.65–2.58 (2.11) | 40.85–59.24 (50.05) | 6.88–7.08 (6.98) | 1.81–2.70 (2.26) | 14.43–19.75 (17.09) | 0.98–1.07 (1.03) | 0.21–0.23 (0.22) | 19–35 (27) | 773–815 (794) |
monzogranite | 67.58–73.19 (69.16) | 392–496 (448) | 8.96–12.30 (11.07) | 35.64–50.33 (40.78) | 0.18–0.27 (0.24) | 15.97–24.32 (20.46) | 5.77–7.00 (6.61) | 2.25–2.92 (2.46) | 9.40–13.00 (11.16) | 0.98–1.05 (1.00) | 0.95–1.30 (1.07) | 17–40 (33) | 701–756 (728) | |
porphyritic monzogranite | 68.72–72.16 (70.23) | 359–436 (393) | 9.76–13.40 (11.52) | 28.13–41.09 (34.63) | 0.25–0.35 (0.3) | 14.27–33.4 (26.41) | 5.89–6.87 (6.46) | 2.34–2.55 (2.45) | 9.52–14.52 (11.70) | 0.98–1.02 (1.01) | 0.92–1.05 (0.98) | 25–33 (29) | 722–742 (736) | |
Qushiang | granodiorite | 60.26–65.88 (63.19) | 350–518 (421) | 17.51–21.12 (19.50) | 18.87–25.52 (21.53) | 0.17–0.95 (0.11) | 13.51–34.02 (18.93) | 5.40–6.37 (6.18) | 2.29–2.65 (2.50) | 13.38–26.88 (18.81) | 0.92–0.99 (0.94) | 0.47–0.50 (0.49) | 40–44 (43) | 562–790 (749) |
Chaohuolutaogai | granodiorite | 65.27–74.25 (67.51) | 103–293 (203) | 9.27–26.10 (17.81) | 4.79–22.65 (13.21) | 0.12–1.60 (0.59) | 11.10–49.43 (23.77) | 6.28–6.69 (6.52) | 1.66–1.94 (1.91) | 9.40–19.17 (14.46) | 0.91–1.06 (1.00) | 0.51–1.02 (0.77) | 20–28 (25) | 740–788 (772) |
Chahantaolegai | syenogranite | 71.52–74.90 (73.75) | 33.6–127 (77.13) | 3.95–9.39 (7.44) | 3.58–32.10 (12.84) | 0.77–5.51 (2.03) | 23.48–40.22 (31.80) | 5.29–6.58 (6.08) | 9.36–18.22 (15.37) | 1.05–1.13 (1.10) | 0.27–0.52 (0.40) | 10–36 (19) | 743–786 (771) | |
Keri | syenogranite | 72.06–74.49 (73.39) | 71–211 (141) | 7.45–14.83 (11.12) | 8.10–18.44 (12.68) | 0.35–1.24 (0.75) | 10.68–39.71 (21.72) | 5.55–6.46 (6.04) | 0.85–2.67 (2.04) | 15.43–27.85 (18.84) | 1.00–1.13 (1.06) | 0.29–0.51 (0.38) | 15–33 (26) | 689–818 (785) |
Helegangxilikete | granodiorite | 67.12–69.28 (68.04) | 348–434 (390) | 8.94–11.60 (10.17) | 34.46–43.40 (38.41) | 0.27–0.39 (0.32) | 21.91–36.02 (27.15) | 5.68–7.00 (6.22) | 2.03–2.46 (2.26) | 10.29–13.82 (12.21) | 0.95–0.98 (0.96) | 0.95–1.08 (1.00) | 52–55 (54) | 747–758 (754) |
Kekeealong | quartz diorite | 60.08–62.69 (62.04) | 395–485 (435) | 12.50–15.60 (13.90) | 27.30–38.80 (31.58) | 0.14–0.19 (0.16) | 17.59–27.43 (23.51) | 6.94–7.64 (7.32) | 2.21–2.43 (2.35) | 16.19–21.84 (19.03) | 0.92–0.98 (0.94) | 0.93–1.01 (0.97) | 46–51 (49) | 753–764 (758) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, G.; Pei, X.; Li, R.; Li, Z.; Chen, Y.; Liu, C.; Pei, L. Multiple Sources of Indosinian Granites and Constraints on the Tectonic Evolution of the Paleo-Tethys Ocean in East Kunlun Orogen. Minerals 2022, 12, 1604. https://doi.org/10.3390/min12121604
Chen G, Pei X, Li R, Li Z, Chen Y, Liu C, Pei L. Multiple Sources of Indosinian Granites and Constraints on the Tectonic Evolution of the Paleo-Tethys Ocean in East Kunlun Orogen. Minerals. 2022; 12(12):1604. https://doi.org/10.3390/min12121604
Chicago/Turabian StyleChen, Guochao, Xianzhi Pei, Ruibao Li, Zuochen Li, Youxin Chen, Chengjun Liu, and Lei Pei. 2022. "Multiple Sources of Indosinian Granites and Constraints on the Tectonic Evolution of the Paleo-Tethys Ocean in East Kunlun Orogen" Minerals 12, no. 12: 1604. https://doi.org/10.3390/min12121604
APA StyleChen, G., Pei, X., Li, R., Li, Z., Chen, Y., Liu, C., & Pei, L. (2022). Multiple Sources of Indosinian Granites and Constraints on the Tectonic Evolution of the Paleo-Tethys Ocean in East Kunlun Orogen. Minerals, 12(12), 1604. https://doi.org/10.3390/min12121604