The Geological and Tectonic Evolution of Feni, Papua New Guinea
Abstract
:1. Introduction
2. Geology and Tectonic Setting of Papua New Guinea
- (1)
- Stable Fly Platform
- (2)
- New Guinea Orogen
- (3)
- Accreted Terranes
- (4)
- Melanesian Arc
2.1. Melanesian Arc and New Guinea Islands Terrane
2.2. New Britain Trench and Manus Spreading Centre
2.3. Regional Tectonic Evolution of Tabar–Lihir–Tanga–Feni (TLTF) Chain
- (1)
- A 1000 km long arc starting from the north coast of New Britain and continuing on to the Schouten Island Group (Karkar, Manam, Bagabag, and the Umboi Islands);
- (2)
- The northwest-trending TLTF chain in the New Ireland Basin, renowned for high-K, shoshonitic magmatism and gold mineralization.
2.4. Isotopic Studies on Source and Evolution of TLTF
3. New Ireland Geology and Major Structures
- (1)
- The older calc-alkaline Melanesian Arc on the western side (i.e., New Ireland, New Hanover, Mussau, and Djaul);
- (2)
- The younger, alkaline Tabar–Lihir–Tanga–Feni arc on the eastern side.
Geology of Feni Island Group According to Previous Researchers
4. Babase and Ambitle Geology and Structure
- Feldspathoid-bearing clinopyroxene > olivine basalt;
- Feldspathoid-bearing clinopyroxene > olivine trachybasalt;
- Clinopyroxene–amphibole phonotephrite;
- Hornblende trachyandesite;
- Quartz trachyte or biotite trachydacite.
5. Discussion
- The formation of the OJP in the Cretaceous (~122–120 Ma) from a mantle plume in the Pacific Oceanic Plate [36].
- The formation of the Eocene-to-Oligocene (~43–26 Ma) Melanesian Arc along the S-SW subduction of the Pacific Plate beneath the Australian Plate at the Manus–Kilinailau Trench. The island arcs formed include New Ireland, Manus, Bougainville, New Britain, and part of the Solomon Islands [36].
- The Oligocene–early Miocene (~26–20 Ma) disruption of the subduction zone as the OJP collided with the Manus–Kilinailau trench.
- Plate fragmentation leading to the formation of the Bismarck and Solomon microplates or sea plates.
- The New Britain Trench began around ~10–5 Ma as the Solomon sea plate started to subduct northwards beneath the Bismarck sea plate [36].
- The opening of the Manus Basin began around 3.5 Ma as the crust thinned in response to subduction at the New Britain Trench. Simberi’s age of 3.6 Ma [48] along with the isotopic signatures of TLTF lavas being similar to the Manus back-arc basin basalts suggests that the TLTF volcanics are closely linked to the extensional tectonics of the Manus Spreading Centre.
- Lihir being farther away implies that it is not influenced by the NBT; however, Feni shows geothermal isotopic signatures similar to that of the Rabaul Volcano, indicating that the NBT has some effect on Feni geothermal fluid chemistry.
- The Pacific MORB slab (with sediments) subducted and underwent dehydration and subsequent hydrous metasomatism of the overlying mantle in the Eocene. This led to the arc magmatism along the Kilinailau or Melanesian Trench forming the Jaulu Volcanics on New Ireland (and Baining Volcanics on New Britain).
- During the late Oligocene, the OJP arrived at the Kilinailau Trench. Subduction, and hence, magmatism completely ceased in the Miocene. Oolitic limestone was deposited on Feni in the late Oligocene. Lelet Limestone was deposited on New Ireland during the Miocene. These limestone units can serve as marker beds of the change in tectonism.
- Earlier structural grains were formed as ground preparation and plumbing for later magmas (due to earlier subduction and OJP collision).
- Following the onset of the NBT and the Manus Spreading Centre, deep lithospheric faults formed in the TLTF as a result of extensional tectonics [57].
- Adiabatic decompression melting of the subduction-modified upper mantle wedge formed the TLTF alkaline melts, which used the plumbing of deep extensional faults to form the TLTF volcanics and volcaniclastics from 3.6 Ma (Tabar age) to 2.1 ka (Feni age) [61].
- Feni magmatism was also possibly influenced by the NBT due to its proximity to the trench and the similarity in isotopic values to the Rabaul Volcano.
- Primitive and evolved magmas in the TLTF have similar isotopic signatures, signifying that they are closely related and have a common crystal fractionation trend [6].
- Olivine–feldspar mafic lavas initially formed at deeper parts of the upper mantle.
- Clinopyroxene-feldspathoid mafic lavas formed as the melt decompressed and travelled upwards.
- Hornblende-bearing intermediate lava formed at shallower depths, possibly when melting occurred in the hydrous, subduction-modified mantle wedge.
- Biotite–trachydacite porphyry formed from late crustal melts.
- Eruptive volcanism formed pyroclastic flows and ash falls.
- Present-day geothermal activity is associated with steep faults and craters within the Niffin Graben on Ambitle, possibly underlain by a cooling intrusive [60].
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Williamson, A.; Hancock, G. (Eds.) The Geology and Mineral Potential of Papua New Guinea/Compiled by Greg Corbett; Papua New Guinea Department of Mining: Port Moresby, Papua New Guinea, 2005.
- Van Wyck, N.; Williams, I.S. Age and provenance of basement metasediments from the Kubor and Bena Bena Blocks, central Highlands, Papua New Guinea: Constraints on the tectonic evolution of the northern Australian cratonic margin. Aust. J. Earth Sci. 2002, 49, 565–577. [Google Scholar] [CrossRef]
- Davies, H.L. The geology of New Guinea—The cordilleran margin of the Australian continent. Int. Union Geol. Sci. 2012, 35, 87–102. [Google Scholar] [CrossRef] [PubMed]
- Crowhurst, P.V.; Maas, R.; Hill, K.C.; Foster, D.A.; Fanning, C.M. Isotopic constraints on crustal architecture and Permo-Triassic tectonics in New Guinea: Possible links with eastern Australia. Aust. J. Earth Sci. 2004, 51, 107–124. [Google Scholar] [CrossRef]
- Ryburn, Talasea-Gasmata, New Britain—1: 250,000 Geological series Bureau of Mineral Resources, Geology and Geophysics of Australia, Explanatory Notes, sheet SB/56-5 and SB/56-9 1975; Australian Government Publishing Service for the Bureau of Mineral Resources, Geology, and Geophysics: Canberra, Australia, 1975. Available online: https://nla.gov.au/nla.obj-233559620/view (accessed on 27 September 2021).
- Wallace, D.A.; Johnson, R.W.; Chappell, B.W.; Arculus, R.J.; Perfit, M.R.; Crick, I.H. Cainozoic Volcanism of the Tabar, Lihir, Tanga and Feni Islands, Papua New Guinea: Geology, Whole-Rock Analyses and Rock-Forming Mineral Compositions; Australian Government Publishing Service for the Bureau of Mineral Resources: Canberra, Australia, 1983. Available online: https://nla.gov.au/nla.cat-vn1276195 (accessed on 27 September 2021).
- Petterson, M. Geo-Tectonics Geology and Geo-Resources of the Southwest Pacific: A Chapter within the Encyclopedia of Geology, 2nd ed.; Alderton, D., Elias, S.A., Eds.; Academic Press: Cambridge, MA, USA, 2021; pp. 724–741. [Google Scholar]
- DeMets, C.; Gordon, R.G.; Argus, D.F.; Stein, S. Effect of recent revisions to the geomagnetic reversal time scale on estimates of current plate motion. Geophys. Res. Lett. 1994, 21, 2191–2194. [Google Scholar] [CrossRef]
- Wallace, L.M.; Stevens, C.; Silver, E.; McCaffrey, R.; Loratung, W.; Hasiata, S.; Stanaway, R.; Curley, R.; Rosa, R.; Taugaloidi, J. GPS and seismological constraints on active tectonics and arc-continent collision in Papua New Guinea: Implications for mechanics of microplate rotations in a plate boundary zone. J. Geophys. Res. Solid Earth 2004, 109, B05404. [Google Scholar] [CrossRef]
- Davies, H.L. Tectonic setting of some mineral deposits of the New Guinea Region. In PNG Geology, Exploration and Mining Conference, Rabaul, June 1991; AusIMM: Carlton, Australia, 1991. [Google Scholar]
- Davies, H.L. New Guinea Geology. In The Encyclopedia of Islands; University of California Press: Berkeley, CA, USA, 2009; pp. 659–664. [Google Scholar]
- Sheppard, S.; Cranfield, L. Geological Framework and Mineralization of Papua New Guinea—An Update; Mineral Resources Authority: Port Moresby, Papua New Guinea, 2012.
- Bulois, C.; Pubellier, M.; Chamot-Rooke, N.; Delescluse, M. Successive Rifting Events in Marginal Basins: The Example of the Coral Sea Region (Papua New Guinea). Tectonics 2018, 37, 3–29. [Google Scholar] [CrossRef]
- Tcherepanov, E.N.; Droxler, A.W.; Lapointe, P.; Dickens, G.; Bentley, S.J.; Beaufort, L.; Peterson, L.; Daniell, J.; Opdyke, B.N. Neogene evolution of the mixed carbonate-siliciclastic system in the Gulf of Papua, Papua New Guinea. J. Geophys. Res. Earth Surf. 2008, 113, F01S21. [Google Scholar] [CrossRef]
- Willmott, W. Daru-Maer, Papua and Queensland—1: 250,000 Geological Series Explanatory Note; Bureau of Mineral Resources: Canberra, Australia, 1972.
- Dow, D.B.; Smit, J.A.J.; Bain, J.H.; Ryburn, J. Geology of the South Sepik Region, New Guinea; Australian Government Publishing Service: Canberra, Australia, 1972.
- Pigram, C.J.; Davies, H.L. Terranes and the accretion history of the New Guinea orogen. BMR J. Aust. Geol. Geophys. 1987, 10, 193–211. [Google Scholar]
- Page, R.W. Geochronology of igneous and metamorphic rocks in the New Guinea Highland. Bull. Aust. Bu Miner. Resou 1976, 162, 10–15. [Google Scholar]
- Tingey, R.; Grainger, D. Markham–Papua New Guinea, 1: 250,000 Geological Series with Explanatory Notes; International Index Sheet Sb/55-10; Geological Survey of Papua New Guinea: Port Moresby, Papua New Guinea, 1976.
- Bodorkos, S.; Sheppard, S.; Saroa, D.; Tsiperau, C.U.; Sircombe, K. New SHRIMP U-Pb zircon ages from the Wau-Bulolo region, Papua New Guinea. Geosci. Aust. Rec. 2013, 25. [Google Scholar] [CrossRef]
- Davies, H.; Perembo, B.; Winn, D.; Kengemar, P. Terranes of the New Guinea Orogen. In Proceedings of the PNG Geology, Exploration and Mining Conference 1997, Madang, Papua New Guinea, 10–12 October 1997; pp. 61–66. [Google Scholar]
- Lus, W.Y.; McDougall, I.; Davies, H.L. Age of the metamorphic sole of the Papuan Ultramafic Belt ophiolite, Papua New Guinea. Tectonophysics 2004, 392, 85–101. [Google Scholar] [CrossRef]
- Petterson, M.G.; Babbs, T.; Neal, C.R.; Mahoney, J.J.; Saunders, A.D.; Duncan, R.A.; Tolia, D.; Magu, R.; Qopoto, C.; Mahoa, H.; et al. Geological-tectonic framework of Solomon Islands, SW Pacific: Crustal accretion and growth within an intra-oceanic setting. Tectonophysics 1999, 301, 35–60. [Google Scholar] [CrossRef]
- Johnson, W. Geotectonics and volcanism in Papua New Guinea: A review of the late Cainozoic. BMR J. Aust. Geol. Geophys. 1979, 4, 181–207. [Google Scholar]
- Audley-Charles, M.G. Tectonics of the New Guinea Area. Annu. Rev. Earth Planet. Sci. 1991, 19, 17–41. [Google Scholar] [CrossRef]
- Yan, C.; Kroenke, L. A plate tectonic reconstruction of the southwest Pacific, 0–100 Ma. In Proceedings of the Ocean Drilling Program, Scientific Results; 1993; Volume 130. Available online: http://www-odp.tamu.edu/publications/130_SR/VOLUME/CHAPTERS/sr130_43.pdf (accessed on 27 September 2021).
- Horz, H.K.; Worthington, J.T.; Winn, K.; Stoffers, P. Late Quaternary tephra in the New Ireland Basin, Papua New Guinea. J. Volcanol. Geotherm. Res. 2004, 132, 73–95. [Google Scholar] [CrossRef]
- Crook, K.; Belbin, L. The southwest Pacific area during the last 90 million year. J. Geol. Soc. Aust. 1978, 25, 23–40. [Google Scholar] [CrossRef]
- Gaina, C.; Müller, R.D.; Royer, J.Y.; Symonds, P. Evolution of the Louisiade triple Junction. J. Geophys. Res. 1999, 104, 12927–12939. [Google Scholar] [CrossRef]
- Hall, R. Cenozoic geological and plate tectonic evolution of SE Asia and the SW Pacific: Computer-based reconstructions, model, and animation. J. Southeast Asian Sci. 2002, 20, 353–434. [Google Scholar] [CrossRef]
- Hall, R.; Spakman, W. Subducted slabs beneath the eastern Indonesia–Tonga region: Insights from tomography. Earth Planet. Sci. Lett. 2002, 201, 321–336. [Google Scholar] [CrossRef]
- Mann, P.; Taira, A. Global tectonic significance of the Solomon Islands and Ontong Java Plateau convergent zone. Tectonophysics 2004, 389, 137–190. [Google Scholar] [CrossRef]
- Exon, N.F.; Marlow, M.S. The New Ireland Basin: A frontier basin in Papua New Guinea. In Proceedings of the First Petroleum Convention, Port Moresby, Papua New Guinea, 12–14 February 1990. [Google Scholar]
- Furumoto, A.; Webb, J.; Odegard, M.E.; Hussong, D. Seismic studies on the Ontong Java Plateau, 1970. Tectonophysics 1976, 34, 71–90. [Google Scholar] [CrossRef]
- Fitton, J.G.; Mahoney John, J.; Wallace Paul, J.; Saunders Andrew, D. Origin and evolution of the Ontong Java Plateau: Introduction. Geol. Soc. Lond. Spec. Publ. 2004, 229, 1–8. [Google Scholar] [CrossRef]
- Holm, R.J.; Spandler, C.; Richards, S.W. Melanesian arc far-field response to collision of the Ontong Java Plateau: Geochronology and petrogenesis of the Simuku Igneous Complex, New Britain, Papua New Guinea. Tectonophysics 2013, 603, 189–212. [Google Scholar] [CrossRef]
- Coleman, P.; Kroenke, L. Subduction without volcanism in the Solomon Islands arc. Geo-Mar. Lett. 1981, 1, 129–134. [Google Scholar] [CrossRef]
- Martinez, F.; Taylor, B. Backarc spreading, rifting, and microplate rotation between transform faults in the Manus Basin. Mar. Geophys. Res. 1996, 18, 203–224. [Google Scholar] [CrossRef]
- Tregoning, P.; Lambeck, K.; Stolz, A.; Morgan, P.; McClusky, S.; van der Beek, P.; McQueen, H.; Jackson, J.; Little, P.; Laing, A.; et al. Estimation of current plate motions in Papua New Guinea from Global Positioning System observation. J. Geophys. Res. 1998, 103, 12181–12203. [Google Scholar] [CrossRef]
- Woodhead, J.D.; Eggins, S.M.; Johnson, W. Magma Genesis in the New Britain Island Arc: Further Insights into Melting and Mass Transfer Processes. J. Petrol. 1998, 39, 1641–1668. [Google Scholar] [CrossRef]
- Lindley, I.D. New Britain Trench, Papua New Guinea: An extensional element in a regional sinistral strike-slip system. New Concepts Glob. Tecton. Newsl. 2006, 41, 16–28. [Google Scholar]
- Lindley, I.D. Early Cainozoic stratigraphy and structure of the Gazelle Peninsula, East New Britain: An example of extensional tectonics in the New Britain arc-trench complex. Aust. J. Earth Sci. 1988, 35, 231–244. [Google Scholar] [CrossRef]
- Rogerson, R.J.; Hilyard, D.; Silver, E. Excursion Guide to the Papua New Guinea Collision Zone; Papua New Guinea Geological Survey Report 88/17; PNG Geological Survey: Port Moresby, Papua New Guinea, 1988.
- McInnes, B.I.A.; Cameron, E.M. Carbonated, alkaline hybridizing melts from a sub-arc environment: Mantle wedge samples from the Tabar-Lihir-Tanga-Feni arc, Papua New Guinea. Earth Planet. Sci. Lett. 1994, 122, 125–141. [Google Scholar] [CrossRef]
- O’Kane, T.P. 3-D Structure and Tectonic Evolution of the Papua New Guinea and Solomons Island Region and Its Relationship to Cu-Au Mineralisation. Unpublished B.Sc. Honours Thesis, Research School of Earth Sciences, Australian National University, Canberra, Australia, 2008. [Google Scholar]
- Holwell, D.A.; Fiorentini, M.; McDonald, I.; Lu, Y.; Giuliani, A.; Smith, D.J.; Keith, M.; Locmelis, M. A metasomatized lithospheric mantle control on the metallogenic signature of post-subduction magmatism. Nat. Commun. 2019, 10, 3511. [Google Scholar] [CrossRef] [PubMed]
- Taylor, B. Bismarck Sea: Evolution of a back-arc basin. Geology 1979, 7, 171–174. [Google Scholar] [CrossRef]
- Rytuba, J.J.; McKee, E.H.; Cox, D.P. Geochronology and geochemistry of the Ladolam gold deposit, Lihir Island, and gold deposits and volcanoes of Tabar and Tatau, Papua New Guinea, U.S. Geol. Surv. Bull. 1993, 2039, 119–126. [Google Scholar]
- Licence, P.S.; Terrill, J.E.G.; Fergusson, L.J. Epithermal gold mineralisation, Ambitle Island, Papua New Guinea. In Pacific Rim Congress 87; The Australasian Institute of Mining and Metallurgy: Gold Coast, Australia, 1987; pp. 273–278. [Google Scholar]
- Patterson, D.B.; Farley, K.A.; McInnes, B.I.A. Helium isotopic composition of the Tabar-Lihir-Tanga-Feni island arc, Papua New Guinea. Geochim. Et Cosmochim. Acta 1997, 61, 2485–2496. [Google Scholar] [CrossRef]
- Kamenov, G.D.; Perfit, M.; Mueller, P.A.; Jonasson, I. Controls on magmatism in an island arc environment: Study of lavas and sub-arc xenoliths from the Tabar-Lihir-Tanga-Feni island chain, Papua New Guinea. Contrib. Mineral. Petrol. 2008, 155, 635–656. [Google Scholar] [CrossRef]
- Kennedy, A.K.; Hart, S.; Frey, F.A. Composition and isotopic constraints on the petrogenesis of alkaline arc lavas: Lihir Island, Papua New Guinea. J. Geophys. Res. 1990, 95, 6929–6942. [Google Scholar] [CrossRef]
- Farley, K.A.; Patterson, D.; McInnes, B. He-isotopic investigation of geothermal gases from the Tabar-Lihir-Tanga-Feni arc and Rabaul, Papua New Guinea. AIP Conf. Proc. 1995, 341, 81–90. [Google Scholar] [CrossRef]
- Hohnen, P.D. Geology of New Ireland, Papua New Guinea; Bulletin 194, PNG 12, Depart. National. Dev., Bureau of Mine. Resou Geol. and Geophysic.; Australian Government Publishing Service: Canberra, Australia, 1978; 46p.
- Stewart, W.D.P.; Sandy, M.J. Geology of New Ireland and Djaul Islands, Northeastern Papua New Guinea. In Geology and Offshore Resources of Pacific Island Arcs—New Ireland and Manus Region, Papua New Guinea; Marlow, M.S., Dadisman, S.V., Exon, N.F., Eds.; Vol. Earth Science Series 9; Circum-Pacific Council for Energy and Mineral Resources: Houstin, TX, USA, 1988. [Google Scholar]
- Lindley, I.D. Plate flexure and volcanism: Late Cenozoic tectonics of the Tabar–Lihir–Tanga–Feni alkalic province, New Ireland Basin, Papua New Guinea. Tectonophysics 2016, 677–678, 312–323. [Google Scholar] [CrossRef]
- Brandl, P.; Hannington, M.; Geersen, J.; Petersen, S.; Gennerich, H. The submarine tectono-magmatic framework of Cu-Au endowment in the Tabar-to-Feni island chain, PNG. Ore Geol. Rev. 2020, 121, 103491. [Google Scholar] [CrossRef]
- Johnson, W.; Wallace, D.A.; Ellis, D.J. Feldspathoid-bearing potassic rocks and associated types from volcanic islands off the coast of New Ireland, Papua New Guinea: A preliminary account of geology and petrology. In Volcanism in Australasia; Elsevier: Amsterdam, The Netherlands, 1976; pp. 297–316. [Google Scholar]
- Heming, R.F. Undersaturated lavas from Ambittle Island, Papua New Guinea. Lithos 1979, 12, 173–186. [Google Scholar] [CrossRef]
- Mosusu, N. Structural Controls of the Feni Geothermal System: Insights from Magnetic and Radiometric Dataset Geological Survey of Papua New Guinea; Department of Mining: Port Moresby, Papua New Guinea, 2004. [Google Scholar]
- Scott, E. The Petrogenesis of Feni Islands Volcanoes, Papua New Guinea: Post Subduction Volcanic Rocks? University of Leicester: Leicester, UK, 2011. [Google Scholar]
- Ponyalou, L.K.O. The Volcanic Rocks & Sinters of Ambitle Island, Feni Island, New Ireland Province, Papua New Guinea. Honours Thesis, University of Papua New Guinea, Port Moresby, Papua New Guinea, 2013. [Google Scholar]
- Lindley, I.D. Late Quaternary geology of Ambitle Volcano, Feni Island Group, Papua New Guinea. Aust. J. Earth Sci. 2015, 62, 529–545. [Google Scholar] [CrossRef]
- Kumul, C. Preliminary Geothermal Investigation of Feni Island, New Ireland Province, Papua New Guinea; Technical Note 2017/01; Mineral Resources Authority: Port Moresby, Papua New Guinea, 2017.
- Lindley, I.D. Matangkaka manganese deposit, Ambitle Island, Feni Island Group, Papua New Guinea: A Quaternary epithermal stratabound manganese oxide deposit. Aust. J. Earth Sci. 2022, 69, 26–46. [Google Scholar] [CrossRef]
- Guo, F.; Wu, Y.; Zhang, B.; Zhang, X.; Zhao, L.; Liao, J. Magmatic responses to Cretaceous subduction and tearing of the paleo-Pacific Plate in SE China: An overview. Earth-Sci. Rev. 2021, 212, 103448. [Google Scholar] [CrossRef]
Age | Lithology |
---|---|
Holocene | Alluvium and beach deposits |
Holocene | Raised reefal limestone |
Holocene (0.002 Ma) | Volcanic tephra |
Mid Pleistocene (0.68 Ma) | Quartz + biotite trachyte, trachydacite |
Early Pleistocene (1.53 Ma) | Intermediate volcanic: hornblende trachyandesite |
Mafic volcanics: phonotephrite, basalt | |
Siltstone | |
Late Oligocene | Oolitic limestone |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ponyalou, O.L.; Petterson, M.G.; Espi, J.O. The Geological and Tectonic Evolution of Feni, Papua New Guinea. Geosciences 2023, 13, 257. https://doi.org/10.3390/geosciences13090257
Ponyalou OL, Petterson MG, Espi JO. The Geological and Tectonic Evolution of Feni, Papua New Guinea. Geosciences. 2023; 13(9):257. https://doi.org/10.3390/geosciences13090257
Chicago/Turabian StylePonyalou, Olive L., Michael G. Petterson, and Joseph O. Espi. 2023. "The Geological and Tectonic Evolution of Feni, Papua New Guinea" Geosciences 13, no. 9: 257. https://doi.org/10.3390/geosciences13090257
APA StylePonyalou, O. L., Petterson, M. G., & Espi, J. O. (2023). The Geological and Tectonic Evolution of Feni, Papua New Guinea. Geosciences, 13(9), 257. https://doi.org/10.3390/geosciences13090257