Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (65)

Search Parameters:
Keywords = decarbonisation investment

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 3062 KiB  
Article
Green Hydrogen in Jordan: Stakeholder Perspectives on Technological, Infrastructure, and Economic Barriers
by Hussam J. Khasawneh, Rawan A. Maaitah and Ahmad AlShdaifat
Energies 2025, 18(15), 3929; https://doi.org/10.3390/en18153929 - 23 Jul 2025
Viewed by 316
Abstract
Green hydrogen, produced via renewable-powered electrolysis, offers a promising path toward deep decarbonisation in energy systems. This study investigates the major technological, infrastructural, and economic challenges facing green hydrogen production in Jordan—a resource-constrained yet renewable-rich country. Key barriers were identified through a structured [...] Read more.
Green hydrogen, produced via renewable-powered electrolysis, offers a promising path toward deep decarbonisation in energy systems. This study investigates the major technological, infrastructural, and economic challenges facing green hydrogen production in Jordan—a resource-constrained yet renewable-rich country. Key barriers were identified through a structured survey of 52 national stakeholders, including water scarcity, low electrolysis efficiency, limited grid compatibility, and underdeveloped transport infrastructure. Respondents emphasised that overcoming these challenges requires investment in smart grid technologies, seawater desalination, advanced electrolysers, and policy instruments such as subsidies and public–private partnerships. These findings are consistent with global assessments, which recognise similar structural and financial obstacles in scaling up green hydrogen across emerging economies. Despite the constraints, over 50% of surveyed stakeholders expressed optimism about Jordan’s potential to develop a competitive green hydrogen sector, especially for industrial and power generation uses. This paper provides empirical, context-specific insights into the conditions required to scale green hydrogen in developing economies. It proposes an integrated roadmap focusing on infrastructure modernisation, targeted financial mechanisms, and enabling policy frameworks. Full article
(This article belongs to the Special Issue Green Hydrogen Energy Production)
Show Figures

Figure 1

27 pages, 6102 KiB  
Article
The Impact of Wind Speed on Electricity Prices in the Polish Day-Ahead Market Since 2016, and Its Applicability to Machine-Learning-Powered Price Prediction
by Rafał Sowiński and Aleksandra Komorowska
Energies 2025, 18(14), 3749; https://doi.org/10.3390/en18143749 - 15 Jul 2025
Viewed by 261
Abstract
The rising share of wind generation in power systems, driven by the need to decarbonise the energy sector, is changing the relationship between wind speed and electricity prices. In the case of Poland, this relationship has not been thoroughly investigated, particularly in the [...] Read more.
The rising share of wind generation in power systems, driven by the need to decarbonise the energy sector, is changing the relationship between wind speed and electricity prices. In the case of Poland, this relationship has not been thoroughly investigated, particularly in the aftermath of the restrictive legal changes introduced in 2016, which halted numerous onshore wind investments. Studying this relationship remains necessary to understand the broader market effects of wind speed on electricity prices, especially considering evolving policies and growing interest in renewable energy integration. In this context, this paper analyses wind speed, wind generation, and other relevant datasets in relation to electricity prices using multiple statistical methods, including correlation analysis, regression modelling, and artificial neural networks. The results show that wind speed is a significant factor in setting electricity prices (with a correlation coefficient reaching up to −0.7). The findings indicate that not only is it important to include wind speed as an electricity price indicator, but it is also worth investing in wind generation, since higher wind output can be translated into lower electricity prices. This study contributes to a better understanding of how natural variability in renewable resources translates into electricity market outcomes under policy-constrained conditions. Its innovative aspect lies in combining statistical and machine learning techniques to quantify the influence of wind speed on electricity prices, using updated data from a period of regulatory stagnation. Full article
Show Figures

Figure 1

22 pages, 2254 KiB  
Article
Future Energy Consumption and Economic Implications of Transport Policies: A Scenario-Based Analysis for 2030 and 2050
by Ammar Al-lami, Adám Török, Anas Alatawneh and Mohammed Alrubaye
Energies 2025, 18(12), 3012; https://doi.org/10.3390/en18123012 - 6 Jun 2025
Viewed by 806
Abstract
The transition to sustainable transport poses significant challenges for urban mobility, requiring shifts in fuel consumption, emissions reductions, and economic adjustments. This study conducts a scenario-based analysis of Budapest’s transport energy consumption, emissions, and monetary implications for 2020, 2030, and 2050 using the [...] Read more.
The transition to sustainable transport poses significant challenges for urban mobility, requiring shifts in fuel consumption, emissions reductions, and economic adjustments. This study conducts a scenario-based analysis of Budapest’s transport energy consumption, emissions, and monetary implications for 2020, 2030, and 2050 using the Budapest Transport Model (EFM), which integrates COPERT and HBEFA within PTV VISUM. This research examines the evolution of diesel, gasoline, and electric vehicle (EV) energy use alongside forecasted fuel prices, using the ARIMA model to assess the economic impact of transport decarbonisation. The findings reveal a 32.8% decline in diesel consumption and a 64.7% drop in gasoline usage by 2050, despite increasing vehicle kilometres travelled (VKT). Electricity consumption surged 97-fold, highlighting fleet electrification trends, while CO2 emissions decreased by 48%, demonstrating the effectiveness of policies, improved vehicle efficiency, and alternative energy adoption. However, fuel price forecasts indicate significant cost escalations, with diesel and gasoline prices doubling and CO2 pricing increasing sevenfold by 2050, presenting financial challenges in the transition. This study highlights the need for EV incentives, electricity price regulation, public transport investments, and carbon pricing adjustments. Future research should explore energy grid resilience, mobility trends, and alternative fuel adoption to support Budapest’s sustainable transport goals. Full article
(This article belongs to the Special Issue New Challenges in Economic Development and Energy Policy)
Show Figures

Figure 1

17 pages, 1010 KiB  
Article
National Energy and Climate Plan—Polish Participation in the Implementation of European Climate Policy in the 2040 Perspective and Its Implications for Energy Sustainability
by Stanisław Tokarski, Beata Urych and Adam Smolinski
Sustainability 2025, 17(11), 5035; https://doi.org/10.3390/su17115035 - 30 May 2025
Viewed by 859
Abstract
This paper analyses Poland’s participation in implementing European climate policy within the framework of the National Energy and Climate Plan (NECP), looking toward 2040. It assesses the feasibility of Poland’s commitments to the European Union’s decarbonisation targets, particularly with regard to transitioning from [...] Read more.
This paper analyses Poland’s participation in implementing European climate policy within the framework of the National Energy and Climate Plan (NECP), looking toward 2040. It assesses the feasibility of Poland’s commitments to the European Union’s decarbonisation targets, particularly with regard to transitioning from fossil fuels to renewable energy sources and nuclear power. The study highlights the challenges related to the speed of the energy transition, the security of electricity supply, and the competitiveness of the national economy. The study also assesses the energy mix scenarios proposed in the NECP, taking into account historical energy consumption data, economic and demographic projections, and expert analyses of energy security. It also critically examines the risks of delayed investment in nuclear and offshore wind, the potential shortfall in renewable energy infrastructure, and the need for transitional solutions, including coal and gas generation. An alternative scenario is proposed to mitigate potential energy supply shortfalls between 2035 and 2040, highlighting the role of energy storage, strategic reserves, and the maintenance of certain fossil fuel capacities. Poland’s energy policy should prioritize flexibility and synchronization with EU objectives, while ensuring economic stability and technological feasibility. The analysis underlines that the sustainable development of the national energy system requires not only alignment with European climate goals, but also a long-term balance between environmental responsibility, energy affordability, and security. Strengthening the sustainability dimension in energy policy decisions—by integrating resilience, renewability, and social acceptance—is essential to ensure a just and enduring energy transition. Full article
Show Figures

Figure 1

29 pages, 5473 KiB  
Article
The Global Renewable Energy and Sectoral Electrification (GREaSE) Model for Rapid Energy Transition Scenarios
by James Hopeward, Richard Davis, Shannon O’Connor and Peter Akiki
Energies 2025, 18(9), 2205; https://doi.org/10.3390/en18092205 - 26 Apr 2025
Viewed by 945
Abstract
Achieving the Paris Agreement’s 1.5 °C target requires a global-scale energy transition, reaching net-zero emissions by 2050. This transition demands not only a rapid expansion of renewable energy but also significant upfront energy investment, presenting potential trade-offs between near-term energy security and long-term [...] Read more.
Achieving the Paris Agreement’s 1.5 °C target requires a global-scale energy transition, reaching net-zero emissions by 2050. This transition demands not only a rapid expansion of renewable energy but also significant upfront energy investment, presenting potential trade-offs between near-term energy security and long-term sustainability. Assuming we cannot rely on as yet unproven negative emissions technology, reductions must be achieved directly, requiring fossil fuel phase-out, accelerated electrification, and substantial renewable infrastructure development. This study presents a detailed, transparent methodology for the creation of a simplified global energy system model designed to rapidly evaluate trade-offs between energy and climate policy, integrating energy investment, depletion, and saturation dynamics into energy transition scenarios. The model simulates energy supply and demand across major sectors, accounting for the upfront energy costs of deploying new renewable infrastructure and the dynamics of electrification in different demand sectors. Its transparent, user-controllable framework allows for rapid scenario adjustments based on variables such as population growth, per capita energy demand, rate and extent of electrification, and strength of climate policy. The primary purpose of this paper is to present the system modelling framework. However, we also present preliminary results from scenario analysis that point to two emergent risks: (1) prioritising energy security increases the likelihood of exceeding carbon budgets, while (2) stringent emissions reductions heighten the risk of energy shortages. Even under non-existent climate policy, fossil fuel depletion makes both the renewable transition and electrification of demand inevitable, though delayed transition leads to more severe emissions overshoot. These findings underscore the urgent need for demand reduction strategies and a more nuanced understanding of the energy investment required for decarbonisation. By offering a flexible scenario tool, this study contributes to informed public discourse and policy decisions on balancing energy security, emissions reduction, and climate resilience. Full article
Show Figures

Figure 1

24 pages, 1996 KiB  
Article
Techno-Economic Analysis on Implementing Hydrogen in a Combined Heat and Power Plant in Luxembourg to Reduce Carbon Emissions
by Claudia Ribeiro, Branca Delmonte, John Sliepen and Stefan Maas
Sustainability 2025, 17(8), 3369; https://doi.org/10.3390/su17083369 - 10 Apr 2025
Cited by 1 | Viewed by 2279
Abstract
In 2021, the global electricity and heat sector recorded the highest increase in carbon dioxide (CO2) emissions in comparison with the previous year, highlighting the ongoing challenges in reducing emissions within the sector. Therefore, combined heat and power (CHP) plants running [...] Read more.
In 2021, the global electricity and heat sector recorded the highest increase in carbon dioxide (CO2) emissions in comparison with the previous year, highlighting the ongoing challenges in reducing emissions within the sector. Therefore, combined heat and power (CHP) plants running on renewable fuels can play an important role in the energy transition by decarbonising a process, increasing the efficiency and capacity factor. Since 2003, Luxembourgish CHP plants have been transitioning from natural gas to biomass, mainly wood pellets. However, even though wood pellets are a renewable alternative, the market volatility in 2022 highlighted the vulnerability of a system reliant solely on one type of fuel. This study assesses the feasibility of using hydrogen to decarbonise a cogeneration plant powered by a natural gas-fuelled internal combustion engine. Although the technology to use hydrogen as a fuel for such systems already exists, a technical and economic analysis of implementing a hydrogen-ready plant is still lacking. Our results show that, from a technical perspective, retrofitting an existing power plant to operate with hydrogen is feasible, either by adapting or replacing the engine to accommodate hydrogen blends from 0 up to 100%. The costs of making the CHP plant hydrogen-ready vary depending on the scenario, ranging from a 20% increase for retrofitting to a 60% increase for engine replacement in the best-case scenarios. However, these values remain highly variable due to uncertainties associated with the ongoing technology development. From an economic standpoint, as of 2024, running the plant on hydrogen remains more expensive due to significant initial investments and higher fuel costs. Nevertheless, projections indicate that rising climate concerns, CO2 taxes, geopolitical factors, and the development of the hydrogen framework in the region—through projects such as MosaHYc and HY4Link—could accelerate the competitiveness of hydrogen, making it a more viable alternative to fossil-based solutions in the near future. Full article
(This article belongs to the Section Energy Sustainability)
Show Figures

Figure 1

19 pages, 5097 KiB  
Article
The Impact of Optimised Set Values in Educational Buildings to Reduce Energy Consumption and Carbon Emissions
by Branca Delmonte and Stefan Maas
Sustainability 2025, 17(7), 2792; https://doi.org/10.3390/su17072792 - 21 Mar 2025
Viewed by 385
Abstract
Improving energy efficiency in post-primary-school buildings is crucial for decarbonisation, yet existing strategies often focus on costly renovations, rather than operational optimisations. This study addresses the research gap by investigating how targeted adjustments in building operation can achieve significant energy savings without major [...] Read more.
Improving energy efficiency in post-primary-school buildings is crucial for decarbonisation, yet existing strategies often focus on costly renovations, rather than operational optimisations. This study addresses the research gap by investigating how targeted adjustments in building operation can achieve significant energy savings without major renovations while maintaining user comfort. This research employs the interdisciplinary ENERGE Project framework and a five-step methodology that integrates technical and behavioural approaches to identify savings opportunities. Central to the approach is an energy audit, which analyses building performance, benchmarks consumption against local standards, and categorises energy use to prioritise interventions. The methodology involves planning, implementing, and evaluating savings strategies with stakeholder engagement. Educational buildings were selected as pilot sites due to their important building stock and potential for dissemination. The results of a case study with empirical validation in Luxembourg demonstrate significant energy-saving opportunities, particularly in baseload consumption. By adopting reduced operational modes during unoccupied periods, energy use was minimised without compromising comfort. Monitoring revealed substantial reductions in electricity consumption, with an additional 5% savings achieved by adjusting light levels in common areas to meet standard requirements. Moreover, adapting the operational schedules of pumps and ventilation systems in a swimming pool to actual usage patterns yielded estimated savings of 12 MWh/a. These findings highlight the potential to achieve meaningful energy savings without requiring high investments or deep renovations, which in many cases face performance gaps. Success relies on adaptable operational settings and active engagement of the entire stakeholder chain to realise sustainable and impactful energy-saving measures. Furthermore, the saving measures tested in educational buildings can be replicated in the residential sector. Full article
Show Figures

Figure 1

35 pages, 3142 KiB  
Review
Decarbonisation of Natural Gas Grid: A Review of GIS-Based Approaches on Spatial Biomass Assessment, Plant Siting and Biomethane Grid Injection
by Thanuja Gelanigama Mesthrige and Prasad Kaparaju
Energies 2025, 18(3), 734; https://doi.org/10.3390/en18030734 - 5 Feb 2025
Cited by 3 | Viewed by 1140
Abstract
Most nations are shifting towards renewable energy sources to reduce energy-related emissions and achieve their net zero emissions targets by mid-century. Consequently, many attempts have been made to invest in clean, accessible, inexpensive, sustainable and reliable renewable energy sources while reducing dependency on [...] Read more.
Most nations are shifting towards renewable energy sources to reduce energy-related emissions and achieve their net zero emissions targets by mid-century. Consequently, many attempts have been made to invest in clean, accessible, inexpensive, sustainable and reliable renewable energy sources while reducing dependency on fossil fuels. Recently, the production of biogas and upgrading it to produce biomethane is considered a sustainable way to reduce emissions from natural gas consumption. However, uncertainties in the biomass supply chain and less attention to decarbonising the natural gas grid have led to fewer investors in biomethane injection projects. Thus, researchers have applied Geographic Information System (GIS) as the best decision-making tool with spatial analytical and optimisation capabilities to address this issue. This study aims to review GIS-based applications on planning and optimising the biomass supply chain. Accordingly, this review covers different GIS-based biomass assessment methods with the evaluation of feedstock types, GIS-based approaches on selecting and optimising bioenergy plant locations and GIS-based applications on facilitating biomethane injection projects. This review identified four major biomass assessment approaches: Administrative division-based, location-based, cluster-based and grid-based. Sustainability criteria involved in site selection were also discussed, along with suitability and optimality techniques. Most of the optimising studies investigated cost optimisation based on a single objective. However, optimising the whole supply chain, including all operational components of the biomass supply chain, is still seldom investigated. Furthermore, it was found that most studies focus on site selection and logistics, neglecting biomethane process optimisation. Full article
(This article belongs to the Section A4: Bio-Energy)
Show Figures

Graphical abstract

21 pages, 1712 KiB  
Article
Economic Analysis of Renewable Energy Generation from a Multi-Energy Installation in a Single-Family House
by Jakub Stolarski, Ewelina Olba-Zięty and Mariusz Jerzy Stolarski
Energies 2024, 17(24), 6213; https://doi.org/10.3390/en17246213 - 10 Dec 2024
Viewed by 1015
Abstract
The promotion of Renewable Energy Sources RES installations in single-family houses is an element of the broadly understood decarbonisation strategy. Investments in photovoltaic installations and pellet boilers have a direct effect on decreasing CO2 emissions, thereby contributing to the improvement in air [...] Read more.
The promotion of Renewable Energy Sources RES installations in single-family houses is an element of the broadly understood decarbonisation strategy. Investments in photovoltaic installations and pellet boilers have a direct effect on decreasing CO2 emissions, thereby contributing to the improvement in air quality and mitigation of climate change, but the question remains of whether they are economically viable. High energy consumption by households results in a significant burden on their budgets. The purpose of this study was to conduct an economic analysis of the renewable electricity (photovoltaic microinstallation—PV) and heat (a pellet boiler) produced in three consecutive years by a single family situated in North-Eastern Poland. The economic analysis was based on the determination of the electricity and heat production costs for renewable energy sources and selected fossil fuels. Profitability metrics such as net present value, internal rate of return and discounted payback period were used for the assessment. For the comparison of electricity costs, the costs of electricity from the power grid were confronted with the costs of electricity generation from a PV microinstallation. For the comparison of heat production costs, the following scenarios were analysed: (i) eco-pea coal vs. pellet, (ii) natural gas vs. pellet and (iii) heating oil vs. pellet. Next, comparisons were made and analysed for multi-energy systems. When comparing the PV microinstallation investment with the variant of using electricity from the power grid, a positive NPV equal to EUR 5959 was obtained for the former, which proved it was profitable. Among the heat generation variants, the lowest total costs were related to eco-pea coal (EUR 29,527), followed by pellet (EUR 33,151) and then natural gas (EUR 39,802), while the highest costs of heat generation were attributed to burning heating oil (EUR 63,445), being nearly twice as high as the cost of burning pellets. This analysis of multi-energy systems showed that the RES system composed of a PV microinstallation for electricity production and a pellet-fired boiler for heat generation was most advantageous because it yielded the lowest total costs (EUR 41,265) among all the analysed variants. A properly selected PV microinstallation and an automatic pellet-fired boiler can make a single-family house economical and provide it with sufficient amounts of renewable electric and heat power throughout the year. Full article
(This article belongs to the Section A: Sustainable Energy)
Show Figures

Figure 1

17 pages, 2835 KiB  
Article
A Preliminary Economic Analysis of the Process of Decarbonising an Oil-Exporting Country: The Case of Libya
by Abdulwahab Rawesat and Pericles Pilidis
Wind 2024, 4(4), 395-411; https://doi.org/10.3390/wind4040020 - 6 Dec 2024
Cited by 1 | Viewed by 944
Abstract
This paper offers a basic analysis for strategic decision-makers of the process when an economy shifts from oil to non-carbon energy exports and zero carbon emissions. The fundamental concept is how to offer environmental performance without causing an economic contraction. The costs and [...] Read more.
This paper offers a basic analysis for strategic decision-makers of the process when an economy shifts from oil to non-carbon energy exports and zero carbon emissions. The fundamental concept is how to offer environmental performance without causing an economic contraction. The costs and feasibility of solar, wind, and helium closed-cycle technologies are thoroughly and independently compared. Solar panels make up 0.67% of the USD 1.14 trillion total cost of solar energy, which is the capital investment, with panels accounting for 0.51%. Future technical developments are expected to bring down the cost of such solar farms to USD 0.74 trillion. Turbines comprise 66% of the estimated USD 0.67 trillion wind energy costs. At USD 0.36 trillion, helium closed-cycle gas turbines—which account for 0.78% of the overall cost—are essential for stabilising energy output. With a focus on cost viability, this analysis offers direction for Libya’s transition to energy self-sufficiency and export, in support of global carbon reduction targets. It also offers unique insights into areas not previously covered by other studies. This paper’s unique contribution is its economic analysis of the decarbonisation of an entire oil-exporting nation. Full article
Show Figures

Figure 1

16 pages, 4349 KiB  
Article
District Heating Deployment and Energy-Saving Measures to Decarbonise the Building Stock in 100% Renewable Energy Systems
by Lorenzo Mario Pastore, Daniele Groppi and Felipe Feijoo
Buildings 2024, 14(8), 2267; https://doi.org/10.3390/buildings14082267 - 23 Jul 2024
Cited by 2 | Viewed by 1314
Abstract
Achieving a zero-emission building heating sector requires numerous strategies and detailed energy planning, in order to identify the optimal decarbonisation pathway. This work aims to assess the impact of district heating expansion and the implementation of energy-saving measures on the decarbonisation of the [...] Read more.
Achieving a zero-emission building heating sector requires numerous strategies and detailed energy planning, in order to identify the optimal decarbonisation pathway. This work aims to assess the impact of district heating expansion and the implementation of energy-saving measures on the decarbonisation of the Italian building stock by 2050, analysing their combined impact, reciprocal effects, and technical–economic implications on the entire national energy system. The scenarios have been implemented and simulated with the H2RES software, a long-term energy planning optimisation model, built for the Italian national energy system. Results indicate that it is possible to decarbonise the heating system in an efficient and cost-effective manner by the year 2040. Heat pumps represent the optimal technology at both centralised and decentralised levels. District heating expansion is a priority for the decarbonisation of the building stock, allowing us to reduce costs, exploit thermal storage systems and provide system flexibility. In the best scenario, 40% of the Italian heat demand can be supplied by fourth-generation district heating. Energy-saving measures can reduce heat demand and primary energy but at higher annual costs and with a significant increase in investment. The combined simulation of the strategies within an optimisation model of the entire energy system enables the accurate assessment of the real impact of the various measures, considering their reciprocal effects and technical–economic implications. Full article
(This article belongs to the Special Issue Sustainable and Smart Energy Systems in the Built Environment)
Show Figures

Figure 1

26 pages, 1452 KiB  
Review
Charting the Course: Navigating Decarbonisation Pathways in Greece, Germany, The Netherlands, and Spain’s Industrial Sectors
by Alessandro A. Carmona-Martínez, Anatoli Rontogianni, Myrto Zeneli, Panagiotis Grammelis, Olgu Birgi, Rainer Janssen, Benedetta Di Costanzo, Martijn Vis, Bas Davidis, Patrick Reumerman, Asier Rueda and Clara Jarauta-Córdoba
Sustainability 2024, 16(14), 6176; https://doi.org/10.3390/su16146176 - 19 Jul 2024
Cited by 5 | Viewed by 3017
Abstract
In the quest for a sustainable future, energy-intensive industries (EIIs) stand at the forefront of Europe’s decarbonisation mission. Despite their significant emissions footprint, the path to comprehensive decarbonisation remains elusive at EU and national levels. This study scrutinises key sectors such as non-ferrous [...] Read more.
In the quest for a sustainable future, energy-intensive industries (EIIs) stand at the forefront of Europe’s decarbonisation mission. Despite their significant emissions footprint, the path to comprehensive decarbonisation remains elusive at EU and national levels. This study scrutinises key sectors such as non-ferrous metals, steel, cement, lime, chemicals, fertilisers, ceramics, and glass. It maps out their current environmental impact and potential for mitigation through innovative strategies. The analysis spans across Spain, Greece, Germany, and the Netherlands, highlighting sector-specific ecosystems and the technological breakthroughs shaping them. It addresses the urgency for the industry-wide adoption of electrification, the utilisation of green hydrogen, biomass, bio-based or synthetic fuels, and the deployment of carbon capture utilisation and storage to ensure a smooth transition. Investment decisions in EIIs will depend on predictable economic and regulatory landscapes. This analysis discusses the risks associated with continued investment in high-emission technologies, which may lead to premature decommissioning and significant economic repercussions. It presents a dichotomy: invest in climate-neutral technologies now or face the closure and offshoring of operations later, with consequences for employment. This open discussion concludes that while the technology for near-complete climate neutrality in EIIs exists and is rapidly advancing, the higher costs compared to conventional methods pose a significant barrier. Without the ability to pass these costs to consumers, the adoption of such technologies is stifled. Therefore, it calls for decisive political commitment to support the industry’s transition, ensuring a greener, more resilient future for Europe’s industrial backbone. Full article
Show Figures

Graphical abstract

18 pages, 2209 KiB  
Article
A Resource-Bound Critical Analysis of the Decarbonisation Roadmaps for the UK Foundation Industries by 2050
by Hisham Hafez, Michal P. Drewniok, Anne P. M. Velenturf and Phil Purnell
Environments 2024, 11(7), 153; https://doi.org/10.3390/environments11070153 - 18 Jul 2024
Cited by 2 | Viewed by 2001
Abstract
The foundation industries in the UK were responsible for emitting 42 Mt CO2eq in 2020, which is approximately 10% of the yearly territorial greenhouse gas emissions. The UK government decarbonisation roadmap issued in 2015 predicted that high-tech strategies such as carbon capture [...] Read more.
The foundation industries in the UK were responsible for emitting 42 Mt CO2eq in 2020, which is approximately 10% of the yearly territorial greenhouse gas emissions. The UK government decarbonisation roadmap issued in 2015 predicted that high-tech strategies such as carbon capture and utilisation, hydrogen and biofuels, as well as electrification of processes are key for achieving the climate mitigating targets by 2050. In this study, a critical assessment was performed on the limitations to achieve these high-tech strategies such as biomass availability, capital investment, and technology readiness. The study is the first to use the UK carbon budget values as the resource limit for the high-tech decarbonisation strategies. The findings show that the significant uncertainty associated with the high-tech scenarios limits their decarbonisation potential by 2050. More importantly, to stay within the mid-century carbon budget for the foundation industries, 20–40% reduction in production, through circular economic strategies such as material efficiency and/or changes in product specifications, is required in order to achieve the decarbonisation targets. Full article
(This article belongs to the Special Issue Greenhouse Gas Emission Reduction and Green Energy Utilization)
Show Figures

Graphical abstract

21 pages, 3735 KiB  
Article
Decarbonising the EU Buildings|Model-Based Insights from European Countries
by Theofano Fotiou, Panagiotis Fragkos and Eleftheria Zisarou
Climate 2024, 12(6), 85; https://doi.org/10.3390/cli12060085 - 7 Jun 2024
Cited by 8 | Viewed by 2046
Abstract
The European Union faces the pressing challenge of decarbonising the buildings sector to meet its climate neutrality goal by 2050. Buildings are significant contributors to greenhouse gas emissions, primarily through energy consumption for heating and cooling. This study uses the advanced PRIMES-BuiMo model [...] Read more.
The European Union faces the pressing challenge of decarbonising the buildings sector to meet its climate neutrality goal by 2050. Buildings are significant contributors to greenhouse gas emissions, primarily through energy consumption for heating and cooling. This study uses the advanced PRIMES-BuiMo model to develop state-of-the-art innovative pathways and strategies to decarbonise the EU buildings sector, providing insights into energy consumption patterns, renovation rates and equipment replacement dynamics in the EU and in two representative Member States, Sweden and Greece. The model-based analysis shows that the EU’s transition towards climate neutrality requires significant investment in energy efficiency of buildings combined with decarbonisation of the fuel mix, mostly through the uptake of electric heat pumps replacing the use of fossil fuels. The Use Case also demonstrates that targeted policy interventions considering the national context and specificities are required to ensure an efficient and sustainable transition to zero-emission buildings. The analysis of transformational strategies in Greece and Sweden provides an improved understanding of the role of country-specific characteristics on policy effectiveness so as to inform more targeted and contextually appropriate approaches to decarbonise the buildings sector across the EU. Full article
(This article belongs to the Section Climate and Economics)
Show Figures

Figure 1

15 pages, 1350 KiB  
Article
A Draft Design of a Zero-Power Experiment for Molten Salt Fast Reactor Studies
by Bruno Merk, Omid Noori-kalkhoran, Lakshay Jain, Daliya Aflyatunova, Andrew Jones, Lewis Powell, Anna Detkina, Michael Drury, Dzianis Litskevich, Marco Viebach and Carsten Lange
Energies 2024, 17(11), 2678; https://doi.org/10.3390/en17112678 - 31 May 2024
Cited by 2 | Viewed by 1214
Abstract
The UK government and many international experts have pointed out that nuclear energy has an important role to play in the transition towards a decarbonised energy system since it is the only freely manageable very low-carbon energy technology with 24/7 availability to complement [...] Read more.
The UK government and many international experts have pointed out that nuclear energy has an important role to play in the transition towards a decarbonised energy system since it is the only freely manageable very low-carbon energy technology with 24/7 availability to complement renewables. Besides current investments in light water reactor technologies, we need innovation for improved fuel usage and reduced waste creation, like that offered by iMAGINE, for the required broad success of nuclear technologies. To allow for quick progress in innovative technologies like iMAGINE and their regulation, a timely investment into urgently needed experimental infrastructure and expertise development will be required to assure the availability of capacities and capabilities. The initial steps to start the development of such a new reactor physics experimental facility to investigate molten salt fast reactor technology are discussed, and a stepwise approach for the development of the experimental facility is described. The down selection for the choice for a diverse control and shutdown system is described through manipulating the reflector (control) and splitting the core (shutdown). The developed innovative core design of having the two core parts in two different rooms opens completely new opportunities and will allow for the manifestation of the request for separated operational and experimental crews, as nowadays requested by regulators into the built environment. The proposed physical separation of safety-relevant operational systems from the experimental room should on the one hand help to ease the access to the facility for visiting experimental specialists. On the other hand, the location of all safety-relevant systems in a now separated access-controlled area for the operational team will limit the risk of misuse through third party access. The planned experimental programme is described with the major steps as follows: core criticality experiments, followed by experiments to determine the neutron flux, neutron spectrum and power distribution as well as experiments to understand the effect of changes in reactivity and flux as a function of salt density, temperature and composition change. Full article
(This article belongs to the Special Issue Energy, Electrical and Power Engineering 2024)
Show Figures

Figure 1

Back to TopTop