Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (70)

Search Parameters:
Keywords = dam overtopping

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 16378 KiB  
Article
Ice Avalanche-Triggered Glacier Lake Outburst Flood: Hazard Assessment at Jiongpuco, Southeastern Tibet
by Shuwu Li, Changhu Li, Zhengzheng Li, Lei Li and Wei Wang
Water 2025, 17(14), 2102; https://doi.org/10.3390/w17142102 - 15 Jul 2025
Viewed by 506
Abstract
With ongoing global warming, glacier lake outburst floods (GLOFs) and associated debris flows pose increasing threats to downstream communities and infrastructure. Glacial lakes differ in their triggering factors and breach mechanisms, necessitating event-specific analysis. This study investigates the GLOF risk of Jiongpuco Lake, [...] Read more.
With ongoing global warming, glacier lake outburst floods (GLOFs) and associated debris flows pose increasing threats to downstream communities and infrastructure. Glacial lakes differ in their triggering factors and breach mechanisms, necessitating event-specific analysis. This study investigates the GLOF risk of Jiongpuco Lake, located in the southeastern part of the Tibetan Plateau, using an integrated approach combining remote sensing, field surveys, and numerical modeling. Results show that the lake has expanded significantly—from 2.08 km2 in 1990 to 5.43 km2 in 2021—with the most rapid increase observed between 2015 and 2016. InSAR data and optical imagery indicate that surrounding moraine deposits remain generally stable. However, ice avalanches from the glacier terminus are identified as the primary trigger for lake outburst via wave-induced overtopping. Mechanical and geomorphological analyses suggest that the moraine dam is resistant to downcutting erosion, reinforcing overtopping as the dominant failure mode. To assess potential impacts, three numerical simulation scenarios were conducted based on different avalanche volumes. Under the extreme scenario involving a 5-million m3 ice avalanche, the modeled peak discharge at the dam site reaches approximately 19,000 m3/s. Despite the high flood magnitude, the broad and gently sloped downstream terrain facilitates rapid attenuation of flood peaks, resulting in limited impact on downstream settlements. These findings offer critical insights for GLOF hazard assessment, disaster preparedness, and risk mitigation under a changing climate. Full article
(This article belongs to the Special Issue Water-Related Landslide Hazard Process and Its Triggering Events)
Show Figures

Figure 1

18 pages, 6970 KiB  
Article
Study on Lateral Erosion Failure Behavior of Reinforced Fine-Grained Tailings Dam Due to Overtopping Breach
by Yun Luo, Mingjun Zhou, Menglai Wang, Yan Feng, Hongwei Luo, Jian Ou, Shangwei Wu and Xiaofei Jing
Water 2025, 17(14), 2088; https://doi.org/10.3390/w17142088 - 12 Jul 2025
Viewed by 333
Abstract
The overtopping-induced lateral erosion breaching of tailings dams represents a critical disaster mechanism threatening structural safety, particularly in reinforced fine-grained tailings dams where erosion behaviors demonstrate pronounced water–soil coupling characteristics and material anisotropy. Through physical model tests and numerical simulations, this study systematically [...] Read more.
The overtopping-induced lateral erosion breaching of tailings dams represents a critical disaster mechanism threatening structural safety, particularly in reinforced fine-grained tailings dams where erosion behaviors demonstrate pronounced water–soil coupling characteristics and material anisotropy. Through physical model tests and numerical simulations, this study systematically investigates lateral erosion failure patterns of reinforced fine-grained tailings under overtopping flow conditions. Utilizing a self-developed hydraulic initiation test apparatus, with aperture sizes of reinforced geogrids (2–3 mm) and flow rates (4–16 cm/s) as key control variables, the research elucidates the interaction mechanisms of “hydraulic scouring-particle migration-geogrid anti-sliding” during lateral erosion processes. The study revealed that compared to unreinforced specimens, reinforced specimens with varying aperture sizes (2–3 mm) demonstrated systematic reductions in final lateral erosion depths across flow rates (4–16 cm/s): 3.3–5.8 mm (15.6−27.4% reduction), 3.1–7.2 mm (12.8–29.6% reduction), 2.3–11 mm (6.9–32.8% reduction), and 2.5–11.4 mm (6.2–28.2% reduction). Smaller-aperture geogrids (2 mm × 2 mm) significantly enhanced anti-erosion performance through superior particle migration inhibition. Concurrently, a pronounced positive correlation between flow rate and lateral erosion depth was confirmed, where increased flow rates weakened particle erosion resistance and exacerbated lateral erosion severity. The numerical simulation results are in basic agreement with the lateral erosion failure process observed in model tests, revealing the dynamic process of lateral erosion in the overtopping breach of a reinforced tailings dam. These findings provide critical theoretical foundations for optimizing reinforced tailings dam design, construction quality control, and operational maintenance, while offering substantial engineering applications for advancing green mine construction. Full article
Show Figures

Figure 1

14 pages, 1579 KiB  
Article
Probability Analysis of Overtopping During Construction Period of Dam Based on Improved Interval Non-Probabilistic Reliability
by Xinyan Guo, Zongkun Li, Wei Ge, Fuheng Ma, Yadong Zhang, Heqiang Sun, Yutie Jiao and Jianyou Wang
Appl. Sci. 2025, 15(13), 7242; https://doi.org/10.3390/app15137242 - 27 Jun 2025
Viewed by 428
Abstract
Probabilistic analysis of overtopping is an important aspect of dam construction, and the uncertainty in the construction progress complicates the calculation of overtopping probabilities. Construction progress is significantly influenced by human factors, making it difficult to assign an accurate probability distribution. Although the [...] Read more.
Probabilistic analysis of overtopping is an important aspect of dam construction, and the uncertainty in the construction progress complicates the calculation of overtopping probabilities. Construction progress is significantly influenced by human factors, making it difficult to assign an accurate probability distribution. Although the interval non-probabilistic reliability (INPR) method can estimate the likelihood of events with unknown probability distributions, its calculation results for the overtopping probability have significant errors. To improve the rationality of the results, we developed a method that adopted flood frequency of the upstream flood level to correct the traditional INPR calculations, developing an improved model. Taking the Qianping Reservoir as an example, the overtopping probabilities for three construction schedules were calculated, and the results were compared with a flood routing calculation. The results indicated that the improved approach significantly improves the rationality of the calculations, and the results effectively reflected the impact of construction progress uncertainty on overtopping probabilities. Full article
Show Figures

Figure 1

20 pages, 3319 KiB  
Article
Calculation of Overtopping Risk Probability and Assessment of Risk Consequences of Cascade Reservoirs
by Meirong Jia, Xin Lu, Xiangyi Ding, Junying Chu, Xinyi Ma and Xiaojie Tang
Sustainability 2025, 17(11), 4839; https://doi.org/10.3390/su17114839 - 24 May 2025
Viewed by 512
Abstract
In the case of extreme disasters such as local rainstorm and excessive flood, the safety risk analysis and prevention and control of cascade reservoirs face new challenges. Therefore, this article conducted a risk analysis based on typical watersheds and proposed a method for [...] Read more.
In the case of extreme disasters such as local rainstorm and excessive flood, the safety risk analysis and prevention and control of cascade reservoirs face new challenges. Therefore, this article conducted a risk analysis based on typical watersheds and proposed a method for calculating the risk rate of overtopping in cascade reservoir groups, dynamically simulated the evolution process of overtopping floods in cascade reservoirs under different scenarios, delineated the scope of flood inundation, and evaluated the risk of overtopping of cascade reservoirs under different scenarios. Research has shown that dam failure floods in cascade reservoirs have both cumulative and cumulative effects, with scenario 3 being the most unfavorable. In scenario 3, the peak flow rates at the dam sites of each reservoir reached 24,500, 19,200, and 20,100 m3/s. According to the comprehensive risk assessment criteria, scenarios 1 and 2 are classified as moderate risks, while scenario 3 is classified as mild risk. Research has found that although the probability of dam overflow is extremely low, the high vulnerability calculated for each scenario indicates that a breach will cause significant social losses. This study can provide reference for the risk assessment of overtopping in cascade reservoirs and flood control and disaster reduction. Full article
Show Figures

Figure 1

31 pages, 5534 KiB  
Article
Safety Assessment of Concrete Gravity Dams: Hydromechanical Coupling and Fracture Propagation
by Maria Luísa Braga Farinha, Nuno Monteiro Azevedo and Sérgio Oliveira
Geosciences 2025, 15(4), 149; https://doi.org/10.3390/geosciences15040149 - 15 Apr 2025
Viewed by 433
Abstract
For the safety assessment of concrete dam–foundation systems, this study used an explicit time-stepping small-displacement algorithm, which simulates the hydromechanical interaction and considers the discrete representation of the foundation discontinuities. The proposed innovative methodology allows for the definition of more reliable safety factors [...] Read more.
For the safety assessment of concrete dam–foundation systems, this study used an explicit time-stepping small-displacement algorithm, which simulates the hydromechanical interaction and considers the discrete representation of the foundation discontinuities. The proposed innovative methodology allows for the definition of more reliable safety factors and the identification of more realistic failure modes by integrating (i) softening-based constitutive laws that are closer to the real behavior identified experimentally in concrete–concrete and concrete–rock interfaces; (ii) a water height increase that can be considered in both hydraulic and mechanical models; and (iii) fracture propagation along the dam–foundation interface. Parametric studies were conducted to assess the impact of the mechanical properties on the global safety factors of three gravity dams with different heights. The results obtained using a coupled/fracture propagation model were compared with those from the strength reduction method and the overtopping scenario not considering the hydraulic pressure increase. The results show that the safety assessment should be conducted using the proposed methodology. It is shown that the concrete–rock interface should preferably have a high value of fracture energy or, ideally, higher tensile and cohesion strengths and high associated fracture energy. The results also indicate that with a brittle concrete–rock model, the predicted safety factors are always conservative when compared with those that consider the fracture energy. Full article
(This article belongs to the Special Issue Fracture Geomechanics—Obstacles and New Perspectives)
Show Figures

Figure 1

24 pages, 12892 KiB  
Article
The Impact of a Clay-Core Embankment Dam Break on the Flood Wave Characteristics
by Cristina-Sorana Ionescu, Daniela-Elena Gogoașe-Nistoran, Constantin Alexandru Baciu, Andrei Cozma, Iana Motovilnic and Livioara Brașovanu
Hydrology 2025, 12(3), 56; https://doi.org/10.3390/hydrology12030056 - 10 Mar 2025
Cited by 1 | Viewed by 1253
Abstract
Flood hazard studies for dam break cases are of utmost importance for understanding potential risks and minimizing the impact of such accidents. Siriu Dam, which has a clay core, is ranked as the third highest embankment dam in Romania. A fully dynamic 2D [...] Read more.
Flood hazard studies for dam break cases are of utmost importance for understanding potential risks and minimizing the impact of such accidents. Siriu Dam, which has a clay core, is ranked as the third highest embankment dam in Romania. A fully dynamic 2D hydraulic numerical model was developed using HEC-RAS software to simulate the routing of the flood waves formed by breaching this dam. Four different failure scenarios were considered: two for overtopping and two for piping. The breach parameters were chosen based on the dam characteristics in accordance with appropriate empirical relationships. The flood hazard was quantified and analyzed in terms of depths, velocities, depth x velocity values, and flooded areas. The results provide useful information concerning flood risk mitigation, such as the dam break wave routing, peak discharges, arrival time, travel velocity, and inundation boundary. The influence of the scenario and site characteristics (topography, river morphology, and constructions) on the results was analyzed. Depths and velocities over 10 m and 15 m/s, respectively, were obtained close to the dam, while those in Buzău City (90 km away) were under 1 m and 2 m/s, respectively. The city was flooded 7–8.5 h after the breach (depending on the scenario), and over 15 to 50% of its total area was affected. Moreover, the flood hazard parameters were compared for the different scenarios, providing the practical details necessary to develop flood risk management plans and the associated response measures for the inhabited areas. This is the first numerical study to simulate the impact of a potential break accident that can occur for this dam. Full article
(This article belongs to the Section Hydrological and Hydrodynamic Processes and Modelling)
Show Figures

Figure 1

21 pages, 7514 KiB  
Article
Research on Challenges and Strategies for Reservoir Flood Risk Prevention and Control Under Extreme Climate Conditions
by Wenang Hou, Shichen Zhang, Jiangshan Yin and Jianfeng Huang
Water 2024, 16(23), 3351; https://doi.org/10.3390/w16233351 - 22 Nov 2024
Cited by 3 | Viewed by 2254
Abstract
In recent years, reservoir flood control and dam safety have faced severe challenges due to changing environmental conditions and intense human activities. There has been a significant increase in the proportion of dam breaks caused by floods exceeding reservoir design levels. Dam breaks [...] Read more.
In recent years, reservoir flood control and dam safety have faced severe challenges due to changing environmental conditions and intense human activities. There has been a significant increase in the proportion of dam breaks caused by floods exceeding reservoir design levels. Dam breaks have periodically occurred due to flood overtopping, threatening people’s lives and properties. This highlights the importance of describing the challenges encountered in reservoir flood risk prevention and control under extreme climatic conditions and proposing strategies to safeguard reservoirs against floods and to protect downstream communities. This study conducts a statistical analysis of dam breaks resulting from floods exceeding reservoir design levels, revealing new risk indicators in these settings. The study examines recent representative engineering cases involving flood risks and reviews research findings pertaining to reservoir flood risks under extreme climatic conditions. By comparing flood prevention standards at typical reservoirs and investigating the problems and challenges associated with current standards, the study presents the challenges and strategies associated with managing flood risks in reservoirs under extreme climatic conditions. The findings show that the driving forces and their effects shaping flood risk characteristics in specific regions are influenced by atmospheric circulation and vegetative changes in underlying surfaces or land use. There is a clear increasing probability of dam breaks or accidents caused by floods exceeding design levels. Most dam breaks or accidents occur in small and medium-sized reservoirs, due to low flood control standards and poor management. Therefore, this paper recommends measures for improving the flood prevention capacity of these specific types of reservoirs. This paper proposes key measures to cope with floods exceeding reservoir design levels, to supplement the existing standard system. This includes implementing an improved flood standard based on dam risk level and the rapid reduction in the reservoir water level. To prevent breaks associated with overtopping, earth–rock dams should be designed to consider extreme rainfall events. More clarity is needed in the execution principles of flood prevention standards, and the effectiveness of flood calculations should be studied, adjusted, and validated. The research results provide better descriptions of flood risks in reservoirs under extreme climatic conditions, and the proposed strategies have both theoretical and practical implications for building resilience against flood risks and protecting people’s lives and properties. Full article
Show Figures

Figure 1

20 pages, 10464 KiB  
Article
Study on the Evolution Characteristics of Dam Failure Due to Flood Overtopping of Tailings Ponds
by Zhijie Duan, Jinglong Chen, Jing Xie, Quanming Li, Hong Zhang and Cheng Chen
Water 2024, 16(17), 2406; https://doi.org/10.3390/w16172406 - 27 Aug 2024
Viewed by 1660
Abstract
There has been a frequent occurrence of tailing dam failures in recent years, leading to severe repercussions. Flood overtopping is an important element contributing to these failures. Nevertheless, there is a scarcity of studies about the evolutionary mechanisms of dam breaches resulting from [...] Read more.
There has been a frequent occurrence of tailing dam failures in recent years, leading to severe repercussions. Flood overtopping is an important element contributing to these failures. Nevertheless, there is a scarcity of studies about the evolutionary mechanisms of dam breaches resulting from flood overtopping. In order to fill this knowledge vacuum, this study focused on the evolutionary characteristics and triggering mechanisms of overtopping failures, utilizing the Heshangyu tailings pond as a prototype. The process of overtopping breach evolution was revealed by the conduction of small-scale model testing. A scaled-down replica of the tailings pond was constructed at a ratio of 1:150, and a controlled experiment was conducted to simulate a breach in the dam caused by water overflowing. Based on the results, the following conclusions were drawn: (1) The rise in water level in the pond caused the tailings to become saturated, leading to liquefaction flow and local slope sliding at the initial dam. If the sediment-carrying capacity of the overflowing water exceeded the shear strength of the tailings, water erosion would accelerate landslides on the slope, generating a sand-laden water flow. (2) The breach was primarily influenced by water erosion, which subsequently resulted in both laterally widened and longitudinally deepened breach. As the breach expanded, the sand-carrying capacity of the water flow increased, leading to a faster rate of failure. The breach process of overtopping can be categorized into four distinct stages: gully formation stage, lateral broadening stage of gully, cracks and collapse on the slope surface, and stable stage of collapse. (3) The tailings from the outflow spread downstream in a radial pattern, forming an alluvial fan. Additionally, the depth of the deposited mud first increased and subsequently declined as the distance from the breach grew. The findings of this research provide an important basis for the prevention and control of tailings dam breach disasters due to overtopping. Full article
Show Figures

Figure 1

12 pages, 7134 KiB  
Article
Methodology for the Identification of Moisture Content in Tailings Dam Walls Based on Electrical Resistivity Tomography Technique
by Leopoldo Córdova, Aaron Moya, Diana Comte and Igor Bravo
Minerals 2024, 14(8), 760; https://doi.org/10.3390/min14080760 - 27 Jul 2024
Viewed by 1404
Abstract
The design of tailings dams has improved significantly in recent decades due to experience and advances in applied research. However, there are still several environmental and geomechanical uncertainties associated with the response of these structures. Failures on the wall of tailings dams are [...] Read more.
The design of tailings dams has improved significantly in recent decades due to experience and advances in applied research. However, there are still several environmental and geomechanical uncertainties associated with the response of these structures. Failures on the wall of tailings dams are well documented, where the most common causes are related to the action of water overtopping, slope instability, seepage, and foundation failure. Measuring the humidity or the saturation level at tailings dam walls has become a must do in the recent years. Resistivity monitoring using electrical resistivity tomography (ERT) techniques has proven to be one of the tools that provide good subsurface characterization for internal erosion detection and seepage assessment to evaluate potential environmental risks and the physical stability of tailings dams. Also, the integrated techniques of geotechnical, geophysical, and geochemical data have been used to correlate, coordinate, and improve the characterization. In this research, a procedure to guide us to a new methodology of acquiring and monitoring humidity content is presented, in which 2D electrical resistivity tomography (ERT) profiles are linked to the degree of soil saturation, using moisture sensors installed in a nearby well. The ERT profiles provide a 2D resistivity profile, and the moisture sensors can measure resistivity and volumetric water content (VWC) at a given installation depth. This second measure (VWC), with a defined total porosity, can be combined with Archie’s empirical law to obtain the degree of saturation, allowing the possibility to create remote monitoring suitable for mining operations without excessive laboratory testing. Full article
(This article belongs to the Section Mineral Processing and Extractive Metallurgy)
Show Figures

Figure 1

16 pages, 4472 KiB  
Article
Supplementary Dam Site Selection Using a Geospatial Approach: A Case Study of Wivenhoe Dam
by Aseel Zytoon, Zahra Gharineiat and Omar Alajarmeh
ISPRS Int. J. Geo-Inf. 2024, 13(6), 180; https://doi.org/10.3390/ijgi13060180 - 29 May 2024
Viewed by 1409
Abstract
Flooding, exacerbated by climate change, poses a significant threat to certain areas, increasing in frequency and severity. In response, the construction of supplementary dams has emerged as a reliable solution for flood management. This study employs a geospatial approach to assess the feasibility [...] Read more.
Flooding, exacerbated by climate change, poses a significant threat to certain areas, increasing in frequency and severity. In response, the construction of supplementary dams has emerged as a reliable solution for flood management. This study employs a geospatial approach to assess the feasibility of constructing a supplementary dam near Linville, Brisbane, Australia, with the aim of mitigating floods and preventing overtopping failure at Wivenhoe Dam. Using QGIS software and a 25 m resolution DEM from the Queensland Spatial Catalogue ‘QSpatial’ website, four potential dam sites were analysed, considering cross-sections, watershed characteristics, and water volume calculations. Systematic selection criteria were applied on several dam wall options to identify the cost-effective and optimal one based on the dam wall dimensions, volume-to-area, and volume-to-cost ratios. The selected option was further assessed against predefined criteria yielding the optimal choice. The study provides insights into the feasibility and effectiveness of supplementary dam construction for flood mitigation in the region, with recommendations for future research and implementation plans for the asset owners. Full article
Show Figures

Figure 1

14 pages, 5936 KiB  
Article
Experimental and Seepage Analysis of Gabion Retaining Wall Structure for Preventing Overtopping in Reservoir Dams
by Dal-Won Lee, Ji-Sang Han, Cheol-Han Kim, Jung-Hyun Ryu, Hyo-Sung Song and Young-Hak Lee
Appl. Sci. 2024, 14(10), 4041; https://doi.org/10.3390/app14104041 - 9 May 2024
Cited by 1 | Viewed by 3132
Abstract
Recently, heavy rains caused by climate change have resulted in dam failures due to overtopping. This study presents a design method aiming to prevent overtopping failures by applying gabion retaining walls at the dam crest. Simulations, experiments, and measurements were conducted to evaluate [...] Read more.
Recently, heavy rains caused by climate change have resulted in dam failures due to overtopping. This study presents a design method aiming to prevent overtopping failures by applying gabion retaining walls at the dam crest. Simulations, experiments, and measurements were conducted to evaluate the effectiveness of this design. The design framework aims to establish a system in which gabion retaining walls prevent overtopping when water levels exceed the crest of the dam, efficiently draining seepage water into the dam body through vertical filters. Research findings indicate that implementing dam crest core and geomembrane design effectively prevents seepage and saturation of the downstream slope during overtopping events. Notably, the reservoir dam operates in a stable manner, as seepage water passing through the dam body is directed solely to the toe drain. Overall, this design approach suggests its potential as a practical solution by significantly reducing hazards resulting from heavy rainfall. Full article
Show Figures

Figure 1

14 pages, 1510 KiB  
Article
Analysis of Uncertainty in Internal Erosion Simulations for DLBreach and WinDAM C
by Anthony Atkinson and Mitchell Neilsen
GeoHazards 2024, 5(2), 350-363; https://doi.org/10.3390/geohazards5020018 - 16 Apr 2024
Viewed by 1491
Abstract
The work detailed here is part of an international initiative on the evaluation of dam safety simulation software for internal erosion performance and best practices. The primary experiments involve simulating uncertainty in the failure events of two dams with two different models: DLBreach [...] Read more.
The work detailed here is part of an international initiative on the evaluation of dam safety simulation software for internal erosion performance and best practices. The primary experiments involve simulating uncertainty in the failure events of two dams with two different models: DLBreach and WinDAM C. DLBreach is a physically-based dam/levee breach model developed by Wu. WinDAM C is also a physically based dam breach model capable of analyzing both dam overtopping and internal erosion. The dams selected for the analysis include a 1.3 m high dam tested in the lab and a larger 15.56 m high dam, which suffered a failure in the field. The findings from these experiments are extended with a further analysis on variance, sensitivity, and optimization. Finally, a regression model is trained using the results of these simulators as an inquiry into how well such a system can be captured using machine learning techniques. The results of these experiments, together with the results of the other members of the initiative, improve our understanding of the influences that users bring to using these tools. Full article
Show Figures

Figure 1

14 pages, 5944 KiB  
Article
Prediction of Soil Erosion Using 3D Point Scans and Acoustic Emissions
by Jarrett Wise and Mohammed F. Al Dushaishi
Water 2024, 16(7), 1009; https://doi.org/10.3390/w16071009 - 30 Mar 2024
Cited by 1 | Viewed by 1204
Abstract
Over half of the approximately 12,000 earthen watershed dams sponsored by the USDA have exceeded their planned 50-year service life. Age, land use changes, extreme weather events, structural deterioration, and sedimentation filling flood pools pose increased risks of dam incidents and potential failures. [...] Read more.
Over half of the approximately 12,000 earthen watershed dams sponsored by the USDA have exceeded their planned 50-year service life. Age, land use changes, extreme weather events, structural deterioration, and sedimentation filling flood pools pose increased risks of dam incidents and potential failures. Among various mechanisms leading to integrity issues, soil erosion is of particular concern due to its potential to occur with little warning. The objective of this research is to determine if soil erosion can be predicted using acoustic emissions. A simulated dam overtopping experiment was replicated in a test flume with dimensions of 0.61 m by 4.27 m (2 ft. by 14 ft.) with a 13.7% slope and a 0.15 m (6 in) layer of inorganic clay (USCS CL) compacted at 17.4% moisture content. A constant flow discharge of 0.07 m3/s (2.37 cfs) was applied to induce erosion. The test was performed until complete failure of the test section occurred. Throughout the experiment, a sonar radar, a 3D scanning total station, and an accelerometer were used to monitor the water level, erosion levels, and vibrations, respectively. The frequency analysis of the water-induced vibrations was compared to measured erosion volumes to determine if in situ vibrations can predict erosion. The results revealed a linear relationship between erosion volume and time, with noticeable changes in the frequency domains as erosion progressed. The outcomes of this research have the potential to provide real-time insights into the integrity of earthen dams concerning erosion, offering a valuable tool for monitoring and maintenance. Full article
Show Figures

Figure 1

17 pages, 9692 KiB  
Article
The Impacts of River Channel Blockages Caused by Sliding Embankment Collapses during Earthquakes
by Norio Harada, Yoshifumi Satofuka and Takahisa Mizuyama
Water 2024, 16(6), 822; https://doi.org/10.3390/w16060822 - 12 Mar 2024
Cited by 2 | Viewed by 2272
Abstract
New Japanese regulations governing earth embankment construction were introduced after a debris flow in Atami City, Shizuoka Prefecture, caused significant damage. Slope failures block river channels during earthquakes, triggering flooding, inundation, and debris flows. Appropriate risk assessments are crucial for residential areas potentially [...] Read more.
New Japanese regulations governing earth embankment construction were introduced after a debris flow in Atami City, Shizuoka Prefecture, caused significant damage. Slope failures block river channels during earthquakes, triggering flooding, inundation, and debris flows. Appropriate risk assessments are crucial for residential areas potentially impacted by earthen embankment landslides during seismic events. This study evaluates the methods used to assess the potential damage caused by such landslides and previous research on the harm caused by embankment failures during earthquakes. We derived predictive equations based on statistical analyses of historical dam landslides that triggered river channel blockages when residential earth embankments failed in the Nigawa Yurino area. The equations describe the morphologies of landslide dams in river channels. The results indicated that the predictive equations were reasonably accurate. We built and validated a two-dimensional model of landslide dam overtopping and breaching using experimental data on a gently sloping dam. We derived the outflow volumes associated with residential earth embankment failures when full reservoirs breached in the Nigawa Yurino area. Our findings suggest that the peak outflow volumes after such embankments breach are generally lower than those associated with dam landslides or deep-seated dam failures, but higher than those of glacial lake outburst floods. Full article
(This article belongs to the Section Hydrogeology)
Show Figures

Figure 1

18 pages, 24397 KiB  
Article
Estimating the Peak Outflow and Maximum Erosion Rate during the Breach of Embankment Dam
by Mahmoud T. Ghonim, Ashraf Jatwary, Magdy H. Mowafy, Martina Zelenakova, Hany F. Abd-Elhamid, H. Omara and Hazem M. Eldeeb
Water 2024, 16(3), 399; https://doi.org/10.3390/w16030399 - 25 Jan 2024
Cited by 2 | Viewed by 2144
Abstract
Understanding and modeling a dam breaching process is an essential investigation, because it aims to minimize the flood’s hazards, and its impact on people and structures, using suitable mitigation plans. In the current study, three-dimensional numerical modeling is carried out using the FLOW-3D [...] Read more.
Understanding and modeling a dam breaching process is an essential investigation, because it aims to minimize the flood’s hazards, and its impact on people and structures, using suitable mitigation plans. In the current study, three-dimensional numerical modeling is carried out using the FLOW-3D HYDRO program to investigate the impact of various factors, including the dam grain size materials, crest width, inflow discharge, and tail water depth on the dam breach process, particularly the peak outflow, and the erosion rate. The results show that changing the grain size of the dam material from fine sand to medium and coarse sand leads to an increase in the peak outflow discharge by 16.0% and the maximum erosion rate by 20.0%. Furthermore, increasing the dam crest width by 40% leads to a decrease in the peak outflow by 3.0% and the maximum erosion rates by 4.50%. Moreover, increasing the inflow discharge by 25.0% increases the peak outflow by 23.0% and the maximum erosion rates by 21.0%. Finally, increasing the tail water depth by 50.0% leads to decreasing the peak outflow by 4.50% and the maximum erosion rate by 43.0%. The study findings are considered of high importance for dam design and operation control. Moreover, the results can be applied for the optimum determination of the crest width and tail water depth that leads to improving the dam stability. Full article
(This article belongs to the Special Issue Rainfall-Runoff and Extreme Event Modelling. Novel Database Systems)
Show Figures

Figure 1

Back to TopTop