Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (60)

Search Parameters:
Keywords = cysteine mutagenesis

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
34 pages, 5396 KB  
Article
Comparative Proteomic Analysis of Acremonium chrysogenum Strains: Key Changes Converting the Wild-Type Strain into Antibiotic Cephalosporin C Biofactory
by Alexander A. Zhgun, Maria V. Dumina, Alexey V. Beletsky, Arthur T. Kopylov and Viktor G. Zgoda
J. Fungi 2025, 11(11), 822; https://doi.org/10.3390/jof11110822 - 20 Nov 2025
Viewed by 727
Abstract
Acremonium chrysogenum is the only industrial producer of the antibiotic cephalosporin C (CPC), the starting substance for manufacturing cephalosporins of the first to fifth generations. Strains produced for industrial use are significantly improved by multiple rounds of random mutagenesis; however, the molecular basis [...] Read more.
Acremonium chrysogenum is the only industrial producer of the antibiotic cephalosporin C (CPC), the starting substance for manufacturing cephalosporins of the first to fifth generations. Strains produced for industrial use are significantly improved by multiple rounds of random mutagenesis; however, the molecular basis for such changes is not fully understood. In this study, we attempt to elucidate key changes that occurred at the proteome level in the CSI program of A. chrysogenum HY (RNCM F-4081D), with CPC production 300-fold higher than that in the parental A. chrysogenum WT strain (ATCC 11550). Our work reveals that more than 30% of proteins are differentially expressed at different stages of fermentation. Among the identified changes, the most critical appears to be upregulation of beta-lactam biosynthetic enzymes. The data also suggest shifts in the primary metabolic pathways, providing building blocks for beta-lactam synthesis reactions, including the amino acid precursors cysteine and valine and the substrate for the expandase reaction, α-ketoglutarate. Changes in energy flows in favor of targeted metabolic pathways are also revealed. High-yielding CPC production appears to be accompanied by oxidative stress, as key oxidative stress enzymes are upregulated. Our findings are consistent with previous investigations describing changes that occurred in other fungal strains improved by classical methods. This points to general key changes leading to high-yield production. A deeper understanding of these features is important for predicting the target effects of improved industrial producers of secondary metabolites. Full article
Show Figures

Figure 1

16 pages, 4287 KB  
Article
Rolling Leaf 2 Controls Leaf Rolling by Regulating Adaxial-Side Bulliform Cell Number and Size in Rice
by Yu-Jia Leng, Shi-Yu Qiang, Wen-Yu Zhou, Shuai Lu, Tao Tao, Hao-Cheng Zhang, Wen-Xiang Cui, Ya-Fan Zheng, Hong-Bo Liu, Qing-Qing Yang, Ming-Qiu Zhang, Zhi-Di Yang, Fu-Xiang Xu, Hai-Dong Huan, Xu Wei, Xiu-Ling Cai, Su-Kui Jin and Ji-Ping Gao
Plants 2025, 14(21), 3373; https://doi.org/10.3390/plants14213373 - 4 Nov 2025
Viewed by 554
Abstract
Leaves represent an important organ in plant photosynthesis, and moderately rolled leaves would be beneficial in establishing an ideal plant architecture and thereby increasing rice yields. In this study, a stable inherited rolled leaf mutant was obtained via ethyl methanesulfonate (EMS) mutagenesis from [...] Read more.
Leaves represent an important organ in plant photosynthesis, and moderately rolled leaves would be beneficial in establishing an ideal plant architecture and thereby increasing rice yields. In this study, a stable inherited rolled leaf mutant was obtained via ethyl methanesulfonate (EMS) mutagenesis from japonica variety WYJ27, which was named rll2 (rolling leaf 2). rll2 showed a leaf-rolling phenotype at the seedling stage, which increased with growth. Compared with the wild type, the leaves at all levels of rll2 were significantly shorter and narrower, and the leaf-rolling index gradually decreased from the highest leaf to the third-highest leaf. Semi-thin sections showed that the bulliform cells of rll2 were significantly larger than those of the wild type, and the number of cells was significantly higher than that of the wild type. Genetic analysis showed that rll2 is controlled by a pair of recessive nuclear genes. Map-based cloning revealed that RLL2 encodes a conserved and plant-specific calpain-like cysteine proteinase. RLL2 was mainly expressed in young roots, shoots, spikelets, and panicles. Transcriptome sequencing showed that a total of 104 genes were differentially expressed in the wild type and rll2. Moreover, several transcription factor genes were significantly altered in the rll2 mutant. Taken together, our findings indicate that RLL2 plays an important role in leaf rolling by regulating bulliform cells, which may be useful in breeding rice with an ideal plant architecture. Full article
(This article belongs to the Special Issue Recent Advances in Plant Genetics and Genomics)
Show Figures

Figure 1

19 pages, 3244 KB  
Article
Palmitoylation Code and Endosomal Sorting Regulate ABHD17A Plasma Membrane Targeting and Activity
by Byeol-I Kim, Jun-Hee Yeon and Byung-Chang Suh
Int. J. Mol. Sci. 2025, 26(20), 10190; https://doi.org/10.3390/ijms262010190 - 20 Oct 2025
Viewed by 666
Abstract
Protein S-palmitoylation is a reversible lipid modification that regulates various aspects of protein function, including membrane association, subcellular localization, trafficking, stability, and activity. The depalmitoylase ABHD17A removes palmitate from multiple substrates, but its cellular positioning and the role of its own palmitoylation in [...] Read more.
Protein S-palmitoylation is a reversible lipid modification that regulates various aspects of protein function, including membrane association, subcellular localization, trafficking, stability, and activity. The depalmitoylase ABHD17A removes palmitate from multiple substrates, but its cellular positioning and the role of its own palmitoylation in regulating its function remain unclear. This study identifies a palmitoylation code within the conserved N-terminal cysteine cluster of ABHD17A, which governs its intracellular distribution and plasma membrane (PM) targeting. N-terminal palmitoylation is essential for PM localization. Through the use of code-restricted mutants, we found that modifications in the middle region (C14, C15) are critical for PM targeting and catalytic activity, while modifications at the front (C10, C11) and rear (C18) influence endosomal routing and delivery to the PM. Alanine scanning revealed that adjacent hydrophobic residues, particularly L9 and F13, are crucial for initial engagement with endomembranes. Sequence analysis and mutagenesis identified two tyrosine-based YXXØ motifs within the alpha/beta hydrolase fold; disruption of the proximal motif (L115A) decreased surface abundance and redirected ABHD17A to autophagosomes, indicating a need for YXXØ-dependent endosomal sorting, likely at the trans-Golgi network. Biochemical assays demonstrated a continuum of acylation states influenced by the palmitoylation code. This requirement for the middle region was conserved in ABHD17B and ABHD17C. Overall, our findings suggest a stepwise mechanism for ABHD17A delivery to the PM, enabling its depalmitoylase activity on membrane-bound substrates. Full article
(This article belongs to the Section Biochemistry)
Show Figures

Figure 1

18 pages, 7501 KB  
Article
Probing the Active Site of Class 3 L-Asparaginase by Mutagenesis: Mutations of the Ser-Lys Tandems of ReAV
by Kinga Pokrywka, Marta Grzechowiak, Joanna Sliwiak, Paulina Worsztynowicz, Joanna I. Loch, Milosz Ruszkowski, Miroslaw Gilski and Mariusz Jaskolski
Biomolecules 2025, 15(7), 944; https://doi.org/10.3390/biom15070944 - 29 Jun 2025
Cited by 1 | Viewed by 885
Abstract
The ReAV enzyme from Rhizobium etli, a representative of Class 3 L-asparaginases, is sequentially and structurally different from other known L-asparaginases. This distinctiveness makes ReAV a candidate for novel antileukemic therapies. ReAV is a homodimeric protein, with each subunit containing a highly [...] Read more.
The ReAV enzyme from Rhizobium etli, a representative of Class 3 L-asparaginases, is sequentially and structurally different from other known L-asparaginases. This distinctiveness makes ReAV a candidate for novel antileukemic therapies. ReAV is a homodimeric protein, with each subunit containing a highly specific zinc-binding site created by two cysteines, a lysine, and a water molecule. Two Ser-Lys tandems (Ser48-Lys51, Ser80-Lys263) are located in the close proximity of the metal binding site, with Ser48 hypothesized to be the catalytic nucleophile. To further investigate the catalytic process of ReAV, site-directed mutagenesis was employed to introduce alanine substitutions at residues from the Ser-Lys tandems and at Arg47, located near the Ser48-Lys51 tandem. These mutational studies, along with enzymatic assays and X-ray structure determinations, demonstrated that substitution of each of these highly conserved residues abolished the catalytic activity, confirming their essential role in enzyme mechanism. Full article
(This article belongs to the Special Issue State-of-the-Art Protein X-Ray Crystallography)
Show Figures

Figure 1

20 pages, 4712 KB  
Article
Identification of a Selective Inhibitor of Human NFS1, a Cysteine Desulfurase Involved in Fe-S Cluster Assembly, via Structure-Based Virtual Screening
by Zhilong Zhu, Haisheng Gan, Yanxiong Wang, Guanya Jia, Heng Li, Zhiwei Ma, Jun Wang, Xiaoya Shang and Weining Niu
Int. J. Mol. Sci. 2025, 26(6), 2782; https://doi.org/10.3390/ijms26062782 - 19 Mar 2025
Viewed by 1611
Abstract
Human cysteine desulfurase (NFS1) participates in numerous critical cellular processes, including iron–sulfur (Fe-S) cluster biosynthesis and tRNA thiolation. NFS1 overexpression has been observed in a variety of cancers, and thus it has been considered a promising anti-tumor therapeutic target. To date, however, no [...] Read more.
Human cysteine desulfurase (NFS1) participates in numerous critical cellular processes, including iron–sulfur (Fe-S) cluster biosynthesis and tRNA thiolation. NFS1 overexpression has been observed in a variety of cancers, and thus it has been considered a promising anti-tumor therapeutic target. To date, however, no inhibitors targeting NFS1 have been identified. Here, we report the identification of the first potent small-molecule inhibitor (Compound 53, PubChem CID 136847320) of NFS1 through a combination of virtual screening and biological validation. Compound 53 exhibited good selectivity against two other pyridoxal phosphate (PLP)-dependent enzymes. Treatment with Compound 53 inhibited the proliferation of lung cancer (A549) cells (IC50 = 16.3 ± 1.92 μM) and caused an increase in cellular iron levels due to the disruption of Fe-S cluster biogenesis. Furthermore, Compound 53, in combination with 2-AAPA, an inhibitor of glutathione reductase (GR) that elevates cellular reactive oxygen species (ROS) levels, further suppressed the proliferation of A549 cells by triggering ferroptotic cell death. Additionally, the key residues involved in the binding of the inhibitor to the active center of NFS1 were identified through a combination of molecular docking and site-directed mutagenesis. Taken together, we describe the identification of the first selective small-molecule inhibitor of human NFS1. Full article
(This article belongs to the Section Biochemistry)
Show Figures

Figure 1

18 pages, 3815 KB  
Article
Persulfidation of Human Cystathionine γ-Lyase Inhibits Its Activity: A Negative Feedback Regulation Mechanism for H2S Production
by Guanya Jia, Heng Li, Haisheng Gan, Jun Wang, Zhilong Zhu, Yanxiong Wang, Yongyi Ye, Xiaoya Shang and Weining Niu
Antioxidants 2024, 13(11), 1402; https://doi.org/10.3390/antiox13111402 - 15 Nov 2024
Cited by 3 | Viewed by 2619
Abstract
Cystathionine γ-lyase (CSE) is the second enzyme in the trans-sulfuration pathway that converts cystathionine to cysteine. It is also one of three major enzymes responsible for the biosynthesis of hydrogen sulfide (H2S). CSE is believed to be the major source of [...] Read more.
Cystathionine γ-lyase (CSE) is the second enzyme in the trans-sulfuration pathway that converts cystathionine to cysteine. It is also one of three major enzymes responsible for the biosynthesis of hydrogen sulfide (H2S). CSE is believed to be the major source of endogenous H2S in the cardiovascular system, and the CSE/H2S system plays a crucial role in a variety of physiological and pathological processes. However, the regulatory mechanism of the CSE/H2S system is less well understood, especially at the post-translational level. Here, we demonstrated that the persulfidation of CSE inhibits its activity by ~2-fold in vitro. The loss of this post-translational modification in the presence of dithiothreitol (DTT) results in a reversal of basal activity. Cys137 was identified as the site for persulfidation by combining mass spectrometry, mutagenesis, activity analysis and streptavidin–biotin pull-down assays. To test the physiological relevance of the persulfidation regulation of CSE, human aortic vascular smooth muscle cells (HA-VSMCs) were incubated with vascular endothelial growth factor (VEGF), which is known to enhance endogenous H2S levels. Under these conditions, consistent with the change tendency of the cellular H2S level, the CSE persulfidation levels increased transiently and then gradually decreased to the basal level. Collectively, our study revealed a negative feedback regulation mechanism of the CSE/H2S system via the persulfidation of CSE and demonstrated the potential for maintaining cellular H2S homeostasis under oxidative stress conditions, particularly in tissues where CSE is a major source of H2S. Full article
Show Figures

Figure 1

11 pages, 1309 KB  
Article
Genes of Salmonella enterica Serovar Enteritidis Involved in Biofilm Formation
by Seulgi Lee and Jinru Chen
Appl. Microbiol. 2024, 4(2), 771-781; https://doi.org/10.3390/applmicrobiol4020053 - 10 May 2024
Cited by 4 | Viewed by 2827
Abstract
Although biofilms contribute to bacterial tolerance to desiccation and survival in low-moisture foods, the molecular mechanisms underlying biofilm formation have not been fully understood. This study created a mutant library from Salmonella Enteritidis using mini-Tn10 transposon mutagenesis. The biofilm-forming potential of acquired [...] Read more.
Although biofilms contribute to bacterial tolerance to desiccation and survival in low-moisture foods, the molecular mechanisms underlying biofilm formation have not been fully understood. This study created a mutant library from Salmonella Enteritidis using mini-Tn10 transposon mutagenesis. The biofilm-forming potential of acquired mutants was assessed before the genomic DNA of the mutants that formed significantly (p ≤ 0.05) less biofilm mass than their wildtype parent strain was extracted for deep DNA sequencing. The gene of each mutant interrupted by mini-Tn10 insertion was identified by aligning obtained sequencing data with the reference Genbank sequences using a BLAST search. Sixty-four mutant colonies were selected, and five mutants that formed the least amount of biofilm mass compared to the wildtype parent strain were selected for sequencing analysis. The results of the BLAST search revealed that the gene interrupted by mini-Tn10 in each mutant is responsible for the biosynthesis of aldehyde dehydrogenase (EutE), cysteine desulfurase (SufS or SufE), a transporter protein, porin OmpL, and a ribbon–helix–helix protein from the CopG family, respectively. Knock-off mutant construction is a possible approach to verify the potential of the identified genes to serve as targets of antimicrobial intervention to control Salmonella colonization on low-moisture foods and in their production environment. Full article
Show Figures

Figure 1

1 pages, 158 KB  
Abstract
The Role of the Charged Residues in the C-Gate of the Yeast Mitochondrial NAD+ Transporter Ndt1p
by Daniela Valeria Miniero, Magnus Monné, Maria Antonietta Di Noia, Luigi Palmieri and Ferdinando Palmieri
Proceedings 2024, 103(1), 51; https://doi.org/10.3390/proceedings2024103051 - 12 Apr 2024
Viewed by 630
Abstract
The mitochondrial carrier family (MCF) consists of nuclear-encoded proteins which catalyze the transport of a wide variety of compounds across the mitochondrial inner membrane. These proteins present common structural features, which consist of three repeats of two transmembrane helices enclosing a translocation pore [...] Read more.
The mitochondrial carrier family (MCF) consists of nuclear-encoded proteins which catalyze the transport of a wide variety of compounds across the mitochondrial inner membrane. These proteins present common structural features, which consist of three repeats of two transmembrane helices enclosing a translocation pore with a single substrate binding site. Access to the pore from the matrix side is controlled by a network of salt bridges formed by conserved charged residues of the signature motifs PX[D/E]XX[R/K] (M-gate) on the transmembrane helices H1, H3, and H5. On the cytosolic side, a less-conserved network is formed by the residues of the motifs [F/Y][D/E]XX[R/K] (C-gate) on H2, H4, and H6. In this work, to test the role of the charged residues of the C-gate in transport, we analyzed the charged residues of the cytoplasmic motifs of the yeast mitochondrial NAD+ transporter (Ndt1p). Single cysteine mutations of the negatively and positively charged residues were introduced by site-directed mutagenesis and only three of them (H4:E258, H4:K261, and H6:E359) completely inactivated the carrier. The double cysteine salt-bridge pair mutant H4-H6:K261C/E359C exhibited a higher transport rate than the corresponding single mutants as well as when the charged residues were swapped in these positions (H4-H6:K261E/E359K). The double mutant H2-H4:K164C/E258C and the swapped H2-H4:K164E/E258K exhibited transport rates at similar levels to the single K164C. The sextuple mutant with all the charged residues inverted was inactive. These preliminary results suggest that not all the charged C-gate residues are essential for transport and that some of them may have additional roles in transport besides forming salt-bridges. Full article
(This article belongs to the Proceedings of The 3rd International Electronic Conference on Biomolecules)
15 pages, 2624 KB  
Communication
Functional Integrity of Radical SAM Enzyme Dph1•Dph2 Requires Non-Canonical Cofactor Motifs with Tandem Cysteines
by Koray Ütkür, Klaus Mayer, Shihui Liu, Ulrich Brinkmann and Raffael Schaffrath
Biomolecules 2024, 14(4), 470; https://doi.org/10.3390/biom14040470 - 11 Apr 2024
Viewed by 2148
Abstract
The Dph1•Dph2 heterodimer from yeast is a radical SAM (RS) enzyme that generates the 3-amino-3-carboxy-propyl (ACP) precursor for diphthamide, a clinically relevant modification on eukaryotic elongation factor 2 (eEF2). ACP formation requires SAM cleavage and atypical Cys-bound Fe-S clusters in each Dph1 and [...] Read more.
The Dph1•Dph2 heterodimer from yeast is a radical SAM (RS) enzyme that generates the 3-amino-3-carboxy-propyl (ACP) precursor for diphthamide, a clinically relevant modification on eukaryotic elongation factor 2 (eEF2). ACP formation requires SAM cleavage and atypical Cys-bound Fe-S clusters in each Dph1 and Dph2 subunit. Intriguingly, the first Cys residue in each motif is found next to another ill-defined cysteine that we show is conserved across eukaryotes. As judged from structural modeling, the orientation of these tandem cysteine motifs (TCMs) suggests a candidate Fe-S cluster ligand role. Hence, we generated, by site-directed DPH1 and DPH2 mutagenesis, Dph1•Dph2 variants with cysteines from each TCM replaced individually or in combination by serines. Assays diagnostic for diphthamide formation in vivo reveal that while single substitutions in the TCM of Dph2 cause mild defects, double mutations almost entirely inactivate the RS enzyme. Based on enhanced Dph1 and Dph2 subunit instability in response to cycloheximide chases, the variants with Cys substitutions in their cofactor motifs are particularly prone to protein degradation. In sum, we identify a fourth functionally cooperative Cys residue within the Fe-S motif of Dph2 and show that the Cys-based cofactor binding motifs in Dph1 and Dph2 are critical for the structural integrity of the dimeric RS enzyme in vivo. Full article
(This article belongs to the Section Biomacromolecules: Proteins, Nucleic Acids and Carbohydrates)
Show Figures

Figure 1

20 pages, 2697 KB  
Article
8-OxoG-Dependent Regulation of Global Protein Responses Leads to Mutagenesis and Stress Survival in Bacillus subtilis
by Lissett E. Martínez, Gerardo Gómez, Norma Ramírez, Bernardo Franco, Eduardo A. Robleto and Mario Pedraza-Reyes
Antioxidants 2024, 13(3), 332; https://doi.org/10.3390/antiox13030332 - 8 Mar 2024
Cited by 2 | Viewed by 2500
Abstract
The guanine oxidized (GO) system of Bacillus subtilis, composed of the YtkD (MutT), MutM and MutY proteins, counteracts the cytotoxic and genotoxic effects of the oxidized nucleobase 8-OxoG. Here, we report that in growing B. subtilis cells, the genetic inactivation of GO [...] Read more.
The guanine oxidized (GO) system of Bacillus subtilis, composed of the YtkD (MutT), MutM and MutY proteins, counteracts the cytotoxic and genotoxic effects of the oxidized nucleobase 8-OxoG. Here, we report that in growing B. subtilis cells, the genetic inactivation of GO system potentiated mutagenesis (HPM), and subsequent hyperresistance, contributes to the damaging effects of hydrogen peroxide (H2O2) (HPHR). The mechanism(s) that connect the accumulation of the mutagenic lesion 8-OxoG with the ability of B. subtilis to evolve and survive the noxious effects of oxidative stress were dissected. Genetic and biochemical evidence indicated that the synthesis of KatA was exacerbated, in a PerR-independent manner, and the transcriptional coupling repair factor, Mfd, contributed to HPHR and HPM of the ΔGO strain. Moreover, these phenotypes are associated with wider pleiotropic effects, as revealed by a global proteome analysis. The inactivation of the GO system results in the upregulated production of KatA, and it reprograms the synthesis of the proteins involved in distinct types of cellular stress; this has a direct impact on (i) cysteine catabolism, (ii) the synthesis of iron–sulfur clusters, (iii) the reorganization of cell wall architecture, (iv) the activation of AhpC/AhpF-independent organic peroxide resistance, and (v) increased resistance to transcription-acting antibiotics. Therefore, to contend with the cytotoxic and genotoxic effects derived from the accumulation of 8-OxoG, B. subtilis activates the synthesis of proteins belonging to transcriptional regulons that respond to a wide, diverse range of cell stressors. Full article
Show Figures

Graphical abstract

15 pages, 5933 KB  
Article
Benzophenanthridine Alkaloid Chelerythrine Elicits Necroptosis of Gastric Cancer Cells via Selective Conjugation at the Redox Hyperreactive C-Terminal Sec498 Residue of Cytosolic Selenoprotein Thioredoxin Reductase
by Minghui Liu, Shibo Sun, Yao Meng, Ling Wang, Haowen Liu, Wuyang Shi, Qiuyu Zhang, Weiping Xu, Bingbing Sun and Jianqiang Xu
Molecules 2023, 28(19), 6842; https://doi.org/10.3390/molecules28196842 - 28 Sep 2023
Cited by 16 | Viewed by 2946
Abstract
Targeting thioredoxin reductase (TXNRD) with low-weight molecules is emerging as a high-efficacy anti-cancer strategy in chemotherapy. Sanguinarine has been reported to inhibit the activity of TXNRD1, indicating that benzophenanthridine alkaloid is a fascinating chemical entity in the field of TXNRD1 inhibitors. In this [...] Read more.
Targeting thioredoxin reductase (TXNRD) with low-weight molecules is emerging as a high-efficacy anti-cancer strategy in chemotherapy. Sanguinarine has been reported to inhibit the activity of TXNRD1, indicating that benzophenanthridine alkaloid is a fascinating chemical entity in the field of TXNRD1 inhibitors. In this study, the inhibition of three benzophenanthridine alkaloids, including chelerythrine, sanguinarine, and nitidine, on recombinant TXNRD1 was investigated, and their anti-cancer mechanisms were revealed using three gastric cancer cell lines. Chelerythrine and sanguinarine are more potent inhibitors of TXNRD1 than nitidine, and the inhibitory effects take place in a dose- and time-dependent manner. Site-directed mutagenesis of TXNRD1 and in vitro inhibition analysis proved that chelerythrine or sanguinarine is primarily bound to the Sec498 residue of the enzyme, but the neighboring Cys497 and remaining N-terminal redox-active cysteines could also be modified after the conjugation of Sec498. With high similarity to sanguinarine, chelerythrine exhibited cytotoxic effects on multiple gastric cancer cell lines and suppressed the proliferation of tumor spheroids derived from NCI-N87 cells. Chelerythrine elevated cellular levels of reactive oxygen species (ROS) and induced endoplasmic reticulum (ER) stress. Moreover, the ROS induced by chelerythrine could be completely suppressed by the addition of N-acetyl-L-cysteine (NAC), and the same is true for sanguinarine. Notably, Nec-1, an RIPK1 inhibitor, rescued the chelerythrine-induced rapid cell death, indicating that chelerythrine triggers necroptosis in gastric cancer cells. Taken together, this study demonstrates that chelerythrine is a novel inhibitor of TXNRD1 by targeting Sec498 and possessing high anti-tumor properties on multiple gastric cancer cell lines by eliciting necroptosis. Full article
(This article belongs to the Section Applied Chemistry)
Show Figures

Graphical abstract

12 pages, 3269 KB  
Article
Non-Structural Protein-W61 as a Novel Target in Severe Fever with Thrombocytopenia Syndrome Virus (SFTSV): An In-Vitro and In-Silico Study on Protein-Protein Interactions with Nucleoprotein and Viral Replication
by Ji-Young Park, Chandran Sivasankar, Perumalraja Kirthika, Dhamodharan Prabhu and John Hwa Lee
Viruses 2023, 15(9), 1963; https://doi.org/10.3390/v15091963 - 20 Sep 2023
Cited by 5 | Viewed by 2994
Abstract
The non-structural protein (NSs) and nucleoprotein (NP) of the severe fever with thrombocytopenia syndrome virus (SFTSV) encoded by the S segment are crucial for viral pathogenesis. They reside in viroplasm-like structures (VLS), but their interaction and their significance in viral propagation remain unclear. [...] Read more.
The non-structural protein (NSs) and nucleoprotein (NP) of the severe fever with thrombocytopenia syndrome virus (SFTSV) encoded by the S segment are crucial for viral pathogenesis. They reside in viroplasm-like structures (VLS), but their interaction and their significance in viral propagation remain unclear. Here, we investigated the significance of the association between NSs and NP during viral infection through in-silico and in-vitro analyses. Through in-silico analysis, three possible binding sites were predicted, at positions C6S (Cystein at 6th position to Serine), W61Y (Tryptophan 61st to Tyrosine), and S207T (Serine 207th to Threonine), three mutants of NSs were developed by site-directed mutagenesis and tested for NP interaction by co-immunoprecipitation. NSsW61Y failed to interact with the nucleoprotein, which was substantiated by the conformational changes observed in the structural analyses. Additionally, molecular docking analysis corroborated that the NSW61Y mutant protein does not interact well compared to wild-type NSs. Over-expression of wild-type NSs in HeLa cells increased the SFTSV replication by five folds, but NSsW61Y exhibited 1.9-folds less viral replication than wild-type. We demonstrated that the W61Y alteration was implicated in the reduction of NSs-NP interaction and viral replication. Thus, the present study identified a critical NSs site, which could be targeted for development of therapeutic regimens against SFTSV. Full article
(This article belongs to the Special Issue Severe Fever with Thrombocytopenia Syndrome Virus 3.0)
Show Figures

Figure 1

21 pages, 5489 KB  
Article
In the Alphaproteobacterium Hyphomicrobium denitrificans SoxR Serves a Sulfane Sulfur-Responsive Repressor of Sulfur Oxidation
by Jingjing Li, Kaya Törkel, Julian Koch, Tomohisa Sebastian Tanabe, Hsun Yun Hsu and Christiane Dahl
Antioxidants 2023, 12(8), 1620; https://doi.org/10.3390/antiox12081620 - 16 Aug 2023
Cited by 9 | Viewed by 2906
Abstract
In organisms that use reduced sulfur compounds as alternative or additional electron donors to organic compounds, transcriptional regulation of genes for enzymes involved in sulfur oxidation is needed to adjust metabolic flux to environmental conditions. However, little is known about the sensing and [...] Read more.
In organisms that use reduced sulfur compounds as alternative or additional electron donors to organic compounds, transcriptional regulation of genes for enzymes involved in sulfur oxidation is needed to adjust metabolic flux to environmental conditions. However, little is known about the sensing and response to inorganic sulfur compounds such as thiosulfate in sulfur-oxidizing bacteria. In the Alphaproteobacterium Hyphomicrobium denitrificans, one strategy is the use of the ArsR–SmtB-type transcriptional regulator SoxR. We show that this homodimeric repressor senses sulfane sulfur and that it is crucial for the expression not only of sox genes encoding the components of a truncated periplasmic thiosulfate-oxidizing enzyme system but also of several other sets of genes for enzymes of sulfur oxidation. DNA binding and transcriptional regulatory activity of SoxR are controlled by polysulfide-dependent cysteine modification. The repressor uses the formation of a sulfur bridge between two conserved cysteines as a trigger to bind and release DNA and can also form a vicinal disulfide bond to orchestrate a response to oxidizing conditions. The importance of the sulfur bridge forming cysteines was confirmed by site-directed mutagenesis, mass spectrometry, and gel shift assays. In vivo, SoxR interacts directly or indirectly with a second closely related repressor, sHdrR. Full article
(This article belongs to the Special Issue Reactive Sulfur Species in Microorganisms)
Show Figures

Figure 1

20 pages, 11088 KB  
Article
The Verticillium dahliae Small Cysteine-Rich Protein VdSCP23 Manipulates Host Immunity
by Jie Wang, Dan Wang, Xiaobin Ji, Jun Wang, Steven J. Klosterman, Xiaofeng Dai, Jieyin Chen, Krishna V. Subbarao, Xiaojuan Hao and Dandan Zhang
Int. J. Mol. Sci. 2023, 24(11), 9403; https://doi.org/10.3390/ijms24119403 - 28 May 2023
Cited by 7 | Viewed by 2872
Abstract
Verticillium wilt caused by Verticillium dahliae is a notorious soil-borne fungal disease and seriously threatens the yield of economic crops worldwide. During host infection, V. dahliae secretes many effectors that manipulate host immunity, among which small cysteine-rich proteins (SCPs) play an important role. [...] Read more.
Verticillium wilt caused by Verticillium dahliae is a notorious soil-borne fungal disease and seriously threatens the yield of economic crops worldwide. During host infection, V. dahliae secretes many effectors that manipulate host immunity, among which small cysteine-rich proteins (SCPs) play an important role. However, the exact roles of many SCPs from V. dahliae are unknown and varied. In this study, we show that the small cysteine-rich protein VdSCP23 inhibits cell necrosis in Nicotiana benthamiana leaves, as well as the reactive oxygen species (ROS) burst, electrolyte leakage and the expression of defense-related genes. VdSCP23 is mainly localized in the plant cell plasma membrane and nucleus, but its inhibition of immune responses was independent of its nuclear localization. Site-directed mutagenesis and peptide truncation showed that the inhibition function of VdSCP23 was independent of cysteine residues but was dependent on the N-glycosylation sites and the integrity of VdSCP23 protein structure. Deletion of VdSCP23 did not affect the growth and development of mycelia or conidial production in V. dahliae. Unexpectedly, VdSCP23 deletion strains still maintained their virulence for N. benthamiana, Gossypium hirsutum and Arabidopsis thaliana seedlings. This study demonstrates an important role for VdSCP23 in the inhibition of plant immune responses; however, it is not required for normal growth or virulence in V. dahliae. Full article
(This article belongs to the Section Molecular Plant Sciences)
Show Figures

Figure 1

19 pages, 3796 KB  
Article
Bacillus subtilis YtpP and Thioredoxin A Are New Players in the Coenzyme-A-Mediated Defense Mechanism against Cellular Stress
by Maria-Armineh Tossounian, Maria Baczynska, William Dalton, Sew Yeu Peak-Chew, Kipras Undzenas, George Korza, Valeriy Filonenko, Mark Skehel, Peter Setlow and Ivan Gout
Antioxidants 2023, 12(4), 938; https://doi.org/10.3390/antiox12040938 - 15 Apr 2023
Cited by 7 | Viewed by 4567
Abstract
Coenzyme A (CoA) is an important cellular metabolite that is critical for metabolic processes and the regulation of gene expression. Recent discovery of the antioxidant function of CoA has highlighted its protective role that leads to the formation of a mixed disulfide bond [...] Read more.
Coenzyme A (CoA) is an important cellular metabolite that is critical for metabolic processes and the regulation of gene expression. Recent discovery of the antioxidant function of CoA has highlighted its protective role that leads to the formation of a mixed disulfide bond with protein cysteines, which is termed protein CoAlation. To date, more than 2000 CoAlated bacterial and mammalian proteins have been identified in cellular responses to oxidative stress, with the majority being involved in metabolic pathways (60%). Studies have shown that protein CoAlation is a widespread post-translational modification which modulates the activity and conformation of the modified proteins. The induction of protein CoAlation by oxidative stress was found to be rapidly reversed after the removal of oxidizing agents from the medium of cultured cells. In this study, we developed an enzyme-linked immunosorbent assay (ELISA)-based deCoAlation assay to detect deCoAlation activity from Bacillus subtilis and Bacillus megaterium lysates. We then used a combination of ELISA-based assay and purification strategies to show that deCoAlation is an enzyme-driven mechanism. Using mass-spectrometry and deCoAlation assays, we identified B. subtilis YtpP (thioredoxin-like protein) and thioredoxin A (TrxA) as enzymes that can remove CoA from different substrates. With mutagenesis studies, we identified YtpP and TrxA catalytic cysteine residues and proposed a possible deCoAlation mechanism for CoAlated methionine sulfoxide reducatse A (MsrA) and peroxiredoxin 5 (PRDX5) proteins, which results in the release of both CoA and the reduced form of MsrA or PRDX5. Overall, this paper reveals the deCoAlation activity of YtpP and TrxA and opens doors to future studies on the CoA-mediated redox regulation of CoAlated proteins under various cellular stress conditions. Full article
(This article belongs to the Special Issue The Importance of Thioredoxin System for Redox Regulation and Health)
Show Figures

Graphical abstract

Back to TopTop