Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (166)

Search Parameters:
Keywords = cylindrical interfaces

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 8897 KiB  
Article
Numerical Study of Wave-Induced Longshore Current Generation Zones on a Circular Sandy Sloping Topography
by Mohammad Shaiful Islam, Tomoaki Nakamura, Yong-Hwan Cho and Norimi Mizutani
Water 2025, 17(15), 2263; https://doi.org/10.3390/w17152263 - 29 Jul 2025
Viewed by 326
Abstract
Wave deformation and sediment transport nearest the shoreside are among the main reasons for sand erosion and beach profile changes. In particular, identifying the areas of incident-wave breaking and longshore current generation parallel to the shoreline is important for understanding the morphological changes [...] Read more.
Wave deformation and sediment transport nearest the shoreside are among the main reasons for sand erosion and beach profile changes. In particular, identifying the areas of incident-wave breaking and longshore current generation parallel to the shoreline is important for understanding the morphological changes of coastal beaches. In this study, a two-phase incompressible flow model along with a sandy sloping topography was employed to investigate the wave deformation and longshore current generation areas in a circular wave basin model. The finite volume method (FVM) was implemented to discretize the governing equations in cylindrical coordinates, the volume-of-fluid method (VOF) was adopted to differentiate the air–water interfaces in the control cells, and the zonal embedded grid technique was employed for grid generation in the cylindrical computational domain. The water surface elevations and velocity profiles were measured in different wave conditions, and the measurements showed that the maximum water levels per wave were high and varied between cases, as well as between cross-sections in a single case. Additionally, the mean water levels were lower in the adjacent positions of the approximated wave-breaking zones. The wave-breaking positions varied between cross-sections in a single case, with the incident-wave height, mean water level, and wave-breaking position measurements indicating the influence of downstream flow variation in each cross-section on the sloping topography. The cross-shore velocity profiles became relatively stable over time, while the longshore velocity profiles predominantly moved in the alongshore direction, with smaller fluctuations, particularly during the same time period and in measurement positions near the wave-breaking zone. The computed velocity profiles also varied between cross-sections, and for the velocity profiles along the cross-shore and longshore directions nearest the wave-breaking areas where the downstream flow had minimal influence, it was presumed that there was longshore-current generation in the sloping topography nearest the shoreside. The computed results were compared with the experimental results and we observed similar characteristics for wave profiles in the same wave period case in both models. In the future, further investigations can be conducted using the presented circular wave basin model to investigate the oblique wave deformation and longshore current generation in different sloping and wave conditions. Full article
(This article belongs to the Special Issue Numerical Modeling of Hydrodynamics and Sediment Transport)
Show Figures

Figure 1

38 pages, 9839 KiB  
Article
Numerical Study of the Late-Stage Flow Features and Stripping in Shock Liquid Drop Interaction
by Solomon Onwuegbu, Zhiyin Yang and Jianfei Xie
Aerospace 2025, 12(8), 648; https://doi.org/10.3390/aerospace12080648 - 22 Jul 2025
Viewed by 332
Abstract
Three-dimensional (3D) computational fluid dynamic (CFD) simulations have been performed to investigate the complex flow features and stripping of fluid materials from a cylindrical water drop at the late-stage in a Shock Liquid Drop Interaction (SLDI) process when the drop’s downstream end experiences [...] Read more.
Three-dimensional (3D) computational fluid dynamic (CFD) simulations have been performed to investigate the complex flow features and stripping of fluid materials from a cylindrical water drop at the late-stage in a Shock Liquid Drop Interaction (SLDI) process when the drop’s downstream end experiences compression after it is impacted by a supersonic shock wave (Ma = 1.47). The drop trajectory/breakup has been simulated using a Lagrangian model and the unsteady Reynolds-averaged Navier–Stokes (URANS) approach has been employed for simulating the ambient airflow. The Kelvin–Helmholtz Rayleigh–Taylor (KHRT) breakup model has been used to capture the liquid drop fragmentation process and a coupled level-set volume of fluid (CLSVOF) method has been applied to investigate the topological transformations at the air/water interface. The predicted changes of the drop length/width/area with time have been compared against experimental measurements, and a very good agreement has been obtained. The complex flow features and the qualitative characteristics of the material stripping process in the compression phase, as well as disintegration and flattening of the drop are analyzed via comprehensive flow visualization. Characteristics of the drop distortion and fragmentation in the stripping breakup mode, and the development of turbulence at the later stage of the shock drop interaction process are also examined. Finally, this study investigated the effect of increasing Ma on the breakup of a water drop by shear stripping. The results show that the shed fluid materials and micro-drops are spread over a narrower distribution as Ma increases. It illustrates that the flattened area bounded by the downstream separation points experienced less compression, and the liquid sheet suffered a slower growth. Full article
(This article belongs to the Section Aeronautics)
Show Figures

Figure 1

12 pages, 19663 KiB  
Article
Growth of a Long Bone Section Based on Inorganic Hydroxyapatite Crystals as Cellular Automata
by César Renán Acosta, Irma Martín and Gabriela Rivadeneyra
AppliedMath 2025, 5(3), 85; https://doi.org/10.3390/appliedmath5030085 - 4 Jul 2025
Viewed by 222
Abstract
This work explores the morphogenesis of the skeletal mineral component, with a specific emphasis on hydroxyapatite (HAp) crystal assembly. Bone is fundamentally a triphasic biomaterial, consisting of an inorganic mineral phase, an organic matrix, and an aqueous component. The inorganic phase (hydroxyapatite), is [...] Read more.
This work explores the morphogenesis of the skeletal mineral component, with a specific emphasis on hydroxyapatite (HAp) crystal assembly. Bone is fundamentally a triphasic biomaterial, consisting of an inorganic mineral phase, an organic matrix, and an aqueous component. The inorganic phase (hydroxyapatite), is characterized by its hexagonal prismatic nanocrystalline structure. We leverage a cellular automata (CA) paradigm to computationally simulate the mineralization process, leading to the formation of the bone’s hydroxyapatite framework. This model exclusively considers the physicochemical aspects of bone formation, intentionally excluding the biological interactions that govern in vivo skeletal development. To optimize computational efficiency, a simplified anatomical segment of a long bone (e.g., the femur) is modeled. This geometric simplification encompasses an outer ellipsoidal cylindrical boundary (periosteal envelope), an inner ellipsoidal surface defining the interface between cortical and cancellous bone, and a central circular cylindrical lumen representing the medullary cavity, which accommodates the bone marrow and primary vasculature. The CA methodology is applied to generate the internal bone microarchitecture, while deliberately omitting the design of smaller, secondary vascular channels. Full article
Show Figures

Figure 1

20 pages, 3503 KiB  
Article
Finite Element Analysis Framework for Structural Safety Evaluation of Type IV Hydrogen Storage Vessel
by Gunwoo Kim, Hyewon Kim, Hanmin Park, Kyuhwan Park, Sujin Yoon, Hansu Lee, Seokjin Lee, Jonglyul Kim, Gyehyoung Yoo, Younggil Youn and Hansang Kim
Hydrogen 2025, 6(3), 44; https://doi.org/10.3390/hydrogen6030044 - 2 Jul 2025
Viewed by 353
Abstract
Type IV composite overwrapped pressure vessels (COPVs) store hydrogen at pressures up to 70 MPa and must meet stringent safety standards through physical testing. However, full-scale burst, plug torque, axial compression, impact, and drop tests are time-consuming and costly. This study proposes a [...] Read more.
Type IV composite overwrapped pressure vessels (COPVs) store hydrogen at pressures up to 70 MPa and must meet stringent safety standards through physical testing. However, full-scale burst, plug torque, axial compression, impact, and drop tests are time-consuming and costly. This study proposes a unified finite element analysis (FEA) workflow that replicates these mandatory tests and predicts failure behavior without physical prototypes. Axisymmetric and three-dimensional solid models with reduced-integration elements were constructed for the polyamide liner, aluminum boss, and carbon/epoxy composite. Burst simulations showed that increasing the hoop-to-axial stiffness ratio shifts peak stress to the cylindrical region, promoting a longitudinal rupture—considered structurally safer. Plug torque and axial load simulations revealed critical stresses at the boss–composite interface, which can be reduced through neck boss shaping and layup optimization. A localized impact with a 25 mm sphere generated significantly higher stress than a larger 180 mm impactor under equal energy. Drop tests confirmed that 45° oblique drops cause the most severe dome stresses due to thin walls and the lack of hoop support. The proposed workflow enables early-stage structural validation, supports cost-effective design optimization, and accelerates the development of safe hydrogen storage systems for automotive and aerospace applications. Full article
Show Figures

Figure 1

33 pages, 4714 KiB  
Article
Development of a Small CNC Machining Center for Physical Implementation and a Digital Twin
by Claudiu-Damian Petru, Fineas Morariu, Radu-Eugen Breaz, Mihai Crenganiș, Sever-Gabriel Racz, Claudia-Emilia Gîrjob, Alexandru Bârsan and Cristina-Maria Biriș
Appl. Sci. 2025, 15(10), 5549; https://doi.org/10.3390/app15105549 - 15 May 2025
Cited by 1 | Viewed by 705
Abstract
This work aimed to develop both a real implementation and a digital twin for a small CNC machining center. The X-, Y-, and Z-axes feed systems were realized as closed-loop motion loops with DC servo motors and encoders. Motion control was provided by [...] Read more.
This work aimed to develop both a real implementation and a digital twin for a small CNC machining center. The X-, Y-, and Z-axes feed systems were realized as closed-loop motion loops with DC servo motors and encoders. Motion control was provided by Arduino boards and Pololu motor drivers. A simulation study of the step response parameters was carried out, and then the positioning regime was studied, followed by the two-axis simultaneous motion regime (circular interpolation). This study, based on a hybrid simulation diagram realized in Simulink–Simscape, allowed a preliminary tuning of the PID (proportional integral derivative) controllers. Next, the CAE (computer-aided engineering) simulation diagram was complemented with the CAM (computer-aided manufacturing) simulation interface, the two together forming an integrated digital twin system. To validate the contouring performance of the proposed CNC system, a circular groove with an outer diameter of 31 mm and an inner diameter of 29 mm was machined using a 1 mm cylindrical end mill. The trajectory followed the simulated 30 mm circular path. Two sets of controller parameters were applied. Dimensional accuracy was verified using a GOM Atos Core 200 optical scanner and evaluated in GOM Inspect Suite 2020. The results demonstrated good agreement between simulation and physical execution, validating the PID tuning and system accuracy. Full article
(This article belongs to the Special Issue Advanced Digital Design and Intelligent Manufacturing)
Show Figures

Figure 1

17 pages, 2863 KiB  
Article
General Response Modes of Cylindrical Thermal Contact Conductance to Bidirectional Heat Flux and Temperature Variations
by Fanli Liu, Mingyang Ma, Yang Zhang, Qilin Xie and Wenfeng Liang
Energies 2025, 18(10), 2454; https://doi.org/10.3390/en18102454 - 10 May 2025
Viewed by 367
Abstract
Cylindrical joints serve as critical pathways for heat flow in various applications, including heat pipes, electronic devices, and fin-tube heat exchangers. Despite their significance, research has predominantly focused on flat joints, with limited investigation into cylindrical joints, especially on how cylindrical thermal contact [...] Read more.
Cylindrical joints serve as critical pathways for heat flow in various applications, including heat pipes, electronic devices, and fin-tube heat exchangers. Despite their significance, research has predominantly focused on flat joints, with limited investigation into cylindrical joints, especially on how cylindrical thermal contact conductance (TCC) changes in response to temperature and heat flux, a feature distinctive to cylindrical joints. This study provides a comprehensive theoretical and numerical investigation of cylindrical TCC behavior across various material combinations and heat flux directions. We identified three response modes for outward heat flux and six for inward heat flux, classified by the relative thermal expansion coefficients and heat flux direction. Notably, under inward heat flux, we discovered a previously unreported phenomenon: two possible contact states occurring at identical interfacial temperature, heat flux, and material conditions, with TCC values differing by more than an order of magnitude. The study covers a wide range of conditions (temperatures from 293 K to 1400 K and heat fluxes from 104 to 106 W/m2), confirming that the identified response patterns are broadly applicable and governed by general principles rather than specific material properties or geometric parameters. These findings provide new insights into cylindrical joint behavior and offer valuable guidelines for optimizing the design and performance of thermal systems involving cylindrical interfaces. Full article
(This article belongs to the Section J1: Heat and Mass Transfer)
Show Figures

Figure 1

17 pages, 6209 KiB  
Article
Numerical Simulation of Blood Clot Extraction Process Using Aspiration-Based Mechanical Thrombectomy
by Sreenivas Venguru, Shyam Sunder Yadav, Tanmaya Mahapatra and Sanjay Kumar Kochar
Fluids 2025, 10(5), 124; https://doi.org/10.3390/fluids10050124 - 9 May 2025
Viewed by 543
Abstract
This paper simulates the blood clot extraction process inside an idealized cylindrical blood vessel model using the aspiration-based thrombectomy technique. A fully Eulerian technique is used within the finite volume method where incompressible Navier–Stokes equations are solved in the fluid region. In contrast, [...] Read more.
This paper simulates the blood clot extraction process inside an idealized cylindrical blood vessel model using the aspiration-based thrombectomy technique. A fully Eulerian technique is used within the finite volume method where incompressible Navier–Stokes equations are solved in the fluid region. In contrast, the Cauchy stress equation is solved in the clot region. Blood is assumed to be a Newtonian fluid, while the clot is either hyperelastic or viscoelastic material. In the hyperelastic formulation, the clot deformation is calculated based on the left Cauchy–Green deformation tensor, while the stresses are based on the linear Mooney–Rivlin model. In the viscoelastic formulation, the Oldroyd B model is used within the log conformation approach to calculate the viscoelastic stresses in the clot. The interface between the blood and the clot is tracked with the help of the geometric volume-of-fluid method. We focus on the role of flow variables like the pressure, velocity, and proximity between the clot and the catheter tip to successfully capture the clot under catheter suction. We observe that, once the clot is attracted to the catheter port due to pressure forces, the viscous stresses try to drag it inside the catheter. On the other hand, if the clot is not initially attracted, it is carried downstream by the viscous stresses. If the suction velocity is low (∼0.2 m/s), the clot cannot be sucked inside the catheter, even if it is touching the catheter. At a higher suction velocity of 0.4 m/s, the suction effect is strong enough to capture the clot despite the larger initial distance from the catheter. Hence, the pressure distribution and viscous stresses play essential roles in the suction or escape of the clot during the thrombectomy process. Also, the viscoelastic model predicts the rupture of the clot inside the catheter during suction. Full article
(This article belongs to the Special Issue Advances in Hemodynamics and Related Biological Flows)
Show Figures

Figure 1

26 pages, 4598 KiB  
Article
Investigation of Interface Behavior Between Offshore Pipe Pile and Sand Using a Newly Modified Shearing Apparatus
by Wenbo Du, Xuguang Chen, Shanshan Zhang and Bin Huang
Buildings 2025, 15(8), 1308; https://doi.org/10.3390/buildings15081308 - 16 Apr 2025
Viewed by 468
Abstract
With the rapid development of marine engineering, large−diameter steel pipe piles are increasingly used in infrastructure construction, such as bridges, docks, and offshore wind power projects. Therefore, studying the shear behavior of the sand–steel interface is of great importance. In this study, the [...] Read more.
With the rapid development of marine engineering, large−diameter steel pipe piles are increasingly used in infrastructure construction, such as bridges, docks, and offshore wind power projects. Therefore, studying the shear behavior of the sand–steel interface is of great importance. In this study, the traditional vane shear apparatus was improved by utilizing its torsional shear actuator, adding an overlying pressure fixing device, and applying lateral pressure through a compressive spring. The original cross plate was replaced with a cylindrical steel rod to simulate the shear behavior of the large−diameter pile–sand interface under different stress states. Experimental results show that this apparatus effectively solves the problem of soil loss due to the shear gap in both the ring shear and direct shear tests under smooth interface conditions. As the shear rate (2°/min, 4°/min, 6°/min) increased, the peak and residual shear stresses decreased, while the shear stress increased with vertical confinement pressure, accompanied by significant residual stress. As the relative density of sand increased from 27.4% to 72.2%, the shear behavior transitioned from contraction to dilation. Regarding surface roughness, the experiment identified a critical threshold: when roughness is below this threshold, it significantly affects the peak shear strength; when above this threshold, the effect is smaller, and failure shifts to the internal sand body. This study provides valuable insights into the mechanics of the sand–steel interface and contributes to optimizing the foundation design for marine infrastructure. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

15 pages, 5700 KiB  
Article
Simulation Study on Directional Solidification of Titanium–Aluminum Alloy Based on Liquid Metal Cooling Method
by Feng Li, Hong Huang, Xiao Zong, Kehan Wang, Han Liu, Xuejun Liu and Xianfei Ding
Metals 2025, 15(4), 366; https://doi.org/10.3390/met15040366 - 26 Mar 2025
Viewed by 565
Abstract
In this study, the ProCast software (version 2014) incorporating the CAFE model is applied to conduct numerical simulation analysis of the directional solidification process of titanium–aluminium alloy cylindrical rods at varying withdraw rates. According to the analytical results, the withdraw rate is a [...] Read more.
In this study, the ProCast software (version 2014) incorporating the CAFE model is applied to conduct numerical simulation analysis of the directional solidification process of titanium–aluminium alloy cylindrical rods at varying withdraw rates. According to the analytical results, the withdraw rate is a critical parameter that affects the morphology of the solid–liquid interface and the grain growth behavior during the directional solidification process. An increase in the drawing rate facilitates nucleation undercooling within the rod, inducing a shift in grain morphology from columnar to equiaxed. At a drawing rate of 1 mm/min, the solid–liquid interface exhibits the most stable morphology, as characterized by a flat interface. As indicated by further analysis, at this drawing rate, specific grain orientations are eliminated during competitive growth with an increase in solid fraction, culminating in the formation of columnar grain structures. Additionally, the impact of drawing rate on grain size and number is investigated, with an increase observed in grain number with drawing rate and a decrease found in grain size. The findings of this study contribute to a deeper understanding of mechanisms behind the grain morphology evolution of titanium aluminide, providing crucial theoretical support for optimizing directional solidification processes. Full article
(This article belongs to the Special Issue Solidification and Casting of Metals and Alloys (2nd Edition))
Show Figures

Figure 1

21 pages, 8213 KiB  
Article
Numerical Investigation of Cylindrical Water Droplets Subjected to Air Shock Loading at a High Weber Number
by F. Edoardo Taglialatela and Giuliano De Stefano
Fluids 2025, 10(4), 81; https://doi.org/10.3390/fluids10040081 - 25 Mar 2025
Cited by 1 | Viewed by 582
Abstract
This work is devoted to the computational investigation of the deformation and breakup of cylindrical water bodies in the high-speed airflow behind incident shock waves. Both single-column and tandem-column configurations in various arrangements were simulated by reproducing the shock/droplet interaction process in a [...] Read more.
This work is devoted to the computational investigation of the deformation and breakup of cylindrical water bodies in the high-speed airflow behind incident shock waves. Both single-column and tandem-column configurations in various arrangements were simulated by reproducing the shock/droplet interaction process in a shock-tube device. The calculations were conducted by using a third-party solver recently developed for compressible two-phase flows in the framework of the open source finite volume toolbox OpenFOAM. The numerical approach is based on the use of the volume-of-fluid method to resolve the phase interface, where a particular discretization technique allows us to prevent unphysical instabilities. The numerical scheme makes use of more precise information of the local propagation speeds to maintain a high resolution and a small numerical viscosity. Qualitative and quantitative comparisons of the results with reference experimental and numerical data demonstrated good agreement for the main characteristics of the interaction process in terms of the morphology, dynamics, and breakup of the deforming water bodies. Full article
(This article belongs to the Special Issue 10th Anniversary of Fluids—Recent Advances in Fluid Mechanics)
Show Figures

Figure 1

13 pages, 2116 KiB  
Article
Numerical Simulation of Capture of Diffusing Particles in Porous Media
by Valeriy E. Arkhincheev, Bair V. Khabituev and Stanislav P. Maltsev
Computation 2025, 13(4), 82; https://doi.org/10.3390/computation13040082 - 22 Mar 2025
Viewed by 500
Abstract
Numerical modeling was conducted to study the capture of particles diffusing in porous media with traps. The pores are cylindrical in shape, and the traps are randomly distributed along the cylindrical surfaces of the pores. The dynamics of particle capture by the traps [...] Read more.
Numerical modeling was conducted to study the capture of particles diffusing in porous media with traps. The pores are cylindrical in shape, and the traps are randomly distributed along the cylindrical surfaces of the pores. The dynamics of particle capture by the traps, as well as the filling of the traps, were investigated. In general, the decrease in the number of particles follows an exponential trend, with a characteristic time determined by the trap concentration. However, at longer times, extended plateaus emerge in the particle distribution function. Additionally, the dynamics of the interface boundary corresponding to the median trap filling (M = 0.5) were examined. This interface separates regions where traps are filled with a probability greater than 0.5 from regions where traps are filled with a probability less than 0.5. The motion of the interface over time was found to follow a logarithmic dependence. The influence of the radius of the pore on the capture on traps, which are placed on the internal surface of the cylinders, was investigated. The different dependencies of the extinction time on the number of traps were found at different radii of pores the first time. Full article
Show Figures

Figure 1

20 pages, 5677 KiB  
Article
Thermo-Mechanical Analysis for Composite Cylindrical Shells with Temperature-Dependent Material Properties Under Combined Thermal and Mechanical Loading
by Junjie Li, Hai Qian and Chunhua Lu
Materials 2025, 18(7), 1391; https://doi.org/10.3390/ma18071391 - 21 Mar 2025
Viewed by 517
Abstract
Composite laminated structures, comprising various engineering materials, are extensively utilized in engineering structures due to their superior design flexibility and enhanced mechanical performance. This study investigates the mechanical behavior of laminated cylindrical shells under combined thermal and mechanical loads. Using the theory of [...] Read more.
Composite laminated structures, comprising various engineering materials, are extensively utilized in engineering structures due to their superior design flexibility and enhanced mechanical performance. This study investigates the mechanical behavior of laminated cylindrical shells under combined thermal and mechanical loads. Using the theory of thermoelasticity, exact solutions are derived for temperature, displacement, and stress distributions in axisymmetric cylindrical shells with arbitrary numbers of layers and varying thicknesses, considering the temperature-dependent properties of the component materials. An iterative method and a slice model are introduced to address the interplay between temperature variations and material properties with the transfer matrix method on the basis of Fourier’s law of heat conduction. Stresses and displacements are used to formulate the state-space equation. Continuity conditions at the interfaces are applied to recursively establish the relationships between internal and external surfaces by the state-space method. Unique solutions for temperature, displacement, and stress, which are dependent on temperature, are determined by the surface conditions. The high accuracy and effectiveness of the proposed method are validated through convergence and comparative studies. Notably, neglecting temperature dependence leads to significant differences, with temperature increasing by 11.28%, displacement by 17.35%, and stress by 33.74%. Furthermore, the effects of surface temperature, thickness-to-radius ratio, layer numbers, and component materials on the temperature, displacement, and stress distributions within laminated cylindrical shells are thoroughly explored. Full article
Show Figures

Figure 1

18 pages, 20726 KiB  
Article
A Biomimetic Flexible Sliding Suction Cup Suitable for Curved Surfaces
by Enhua Cui, Xiangcong Zhou, Yanqiang Liu, Jixiao Xue, Siyuan Xiong and Deyuan Zhang
Biomimetics 2025, 10(3), 137; https://doi.org/10.3390/biomimetics10030137 - 24 Feb 2025
Cited by 1 | Viewed by 1123
Abstract
The sliding suction robots designed for wall-climbing functions could have accuracy defects due to suction cup sealing, friction interference, and surface adaptability. Hence, this work develops a biomimetic, flexible, sliding suction cup suitable for crawling on curved surfaces. Inspired by the hypostomus plecostomus’s [...] Read more.
The sliding suction robots designed for wall-climbing functions could have accuracy defects due to suction cup sealing, friction interference, and surface adaptability. Hence, this work develops a biomimetic, flexible, sliding suction cup suitable for crawling on curved surfaces. Inspired by the hypostomus plecostomus’s mouth, we designed a biomimetic low-contact force flow channel structure and a matrix of friction-reducing protrusions along the lip edge of the sliding suction cup. This design reduces frictional resistance on the sliding interface and the flexible nature of the suction cup, allowing it to be used on curved or vertical surfaces of different materials. Several simulation-based optimization analyses and experimental tests are conducted on the biomimetic low-contact force flow channel structure, and various structural design principles are explored for achieving high adhesion and low-contact force. Additionally, a friction reduction model for the matrix structure is designed to verify the effects of parameters such as load, protrusion size, and quantity on the friction coefficient of the matrix structure surface through friction tests. The sliding suction cup prototype presents an average crawling speed of about 0.4 m/s on a horizontal plane and 0.7 m/s for crawling on vertical walls and the inner surface of a cylindrical rail. Full article
(This article belongs to the Special Issue Bio-Inspired Mechanical Design and Control)
Show Figures

Figure 1

17 pages, 8109 KiB  
Article
Angle-Dependent Adhesive Mechanics in Hard–Soft Cylindrical Material Interfaces
by Thao H. Pham, Iakov A. Lyashenko and Valentin L. Popov
Materials 2025, 18(2), 375; https://doi.org/10.3390/ma18020375 - 15 Jan 2025
Viewed by 836
Abstract
In this research, the adhesive contact between a hard steel and a soft elastomer cylinder was experimentally studied. In the experiment, the hard cylinder was indented into the soft one, after which the two cylinders were separated. The contact area between the cylinders [...] Read more.
In this research, the adhesive contact between a hard steel and a soft elastomer cylinder was experimentally studied. In the experiment, the hard cylinder was indented into the soft one, after which the two cylinders were separated. The contact area between the cylinders was elliptical in shape, and the eccentricity of this increased as the angle between the axes of the contacting cylinders decreased. Additionally, the adhesive pull-off force and the contact area increased with a decrease in the angle between the cylinders. The use of a transparent elastomer allowed for observation of the shape of the contact in real time, which facilitated the creation of videos demonstrating the complete process of contact failure and the evolution of the ellipse shape, depending on the distance between the cylinders and normal force. These findings contribute to a better understanding of adhesive interactions in elliptical contacts between cylinders and can be applied to fields such as soft robotics, material design, and bioengineering, where precise control over adhesion and contact mechanics is crucial. Full article
Show Figures

Figure 1

11 pages, 302 KiB  
Article
The Half-Space Sommerfeld Problem of a Horizontal Dipole for Magnetic Media
by Seil Sautbekov and Merey Sautbekova
Mathematics 2025, 13(1), 169; https://doi.org/10.3390/math13010169 - 6 Jan 2025
Viewed by 954
Abstract
A Hertz radiator’s Sommerfeld boundary value problem is considered for the case when its electric moment is directed horizontally relative to the plane interface between two media with different values of magnetic permeability. An integral representation of the exact expression for the Hertz [...] Read more.
A Hertz radiator’s Sommerfeld boundary value problem is considered for the case when its electric moment is directed horizontally relative to the plane interface between two media with different values of magnetic permeability. An integral representation of the exact expression for the Hertz potential, which generalizes the classical solution for non-magnetic media, both in cylindrical and spherical coordinate systems, is obtained. The corresponding expressions for the scattered wave fields are given in the form of Sommerfeld integrals. It is shown that the potential components can be represented as the sum of an infinite series in powers of the Green function. Full article
(This article belongs to the Special Issue Computational Methods in Electromagnetics)
Show Figures

Figure 1

Back to TopTop