Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (9)

Search Parameters:
Keywords = cyclovirus

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 8399 KiB  
Article
Three Distinct Circovirids Identified in a Tapeworm Recovered from a Bobcat (Lynx rufus)
by Ayla Žuštra, April Howard, Katie Schwartz, Ron Day, Jaclyn Dietrich, Caroline Sobotyk, Simona Kraberger and Arvind Varsani
Viruses 2025, 17(6), 745; https://doi.org/10.3390/v17060745 - 23 May 2025
Viewed by 698
Abstract
Bobcats (Lynx rufus) are an iconic North American predator; however, there is limited knowledge regarding their associated parasites. In this case study, we used a metagenomic approach to identify associated viruses and helminth species from a deceased bobcat. We determined the full [...] Read more.
Bobcats (Lynx rufus) are an iconic North American predator; however, there is limited knowledge regarding their associated parasites. In this case study, we used a metagenomic approach to identify associated viruses and helminth species from a deceased bobcat. We determined the full mitochondrial genome of the bobcat and three helminths, i.e., tapeworm (Taenia sp.), stomach worm (Physaloptera sp.), and lung worm (Metathelazia sp.). Furthermore, we identified four circovirids; two (identified in a tapeworm and fecal swab) are members of the genus Circovirus and share 96.7% genome-wide identity between isolates and 87.4–88.6% identity with members of the species Circovirus miztontli. These appear to infect vertebrate species common to the Sonoran Desert, which could be a rodent preyed upon by the bobcat, and/or bobcat itself. The other two circovirids are novel members of the genus Cyclovirus (both identified in a tapeworm), one sharing 99.8% with those in the species Cyclovirus misi from a rodent and the other <67.3% with all other Cycloviruses. Our data support that these two Cycloviruses are likely tapeworm-infecting; however, more studies are needed to confirm the host. These findings enhance our understanding of viruses and helminths in bobcats, emphasizing the need for further research to unravel the ecology of parasites in these elusive predators. Full article
(This article belongs to the Section Animal Viruses)
Show Figures

Figure 1

10 pages, 1172 KiB  
Article
Circoviridae Survey in Captive Non-Human Primates, Italy
by Vittorio Sarchese, Federica Di Profio, Andrea Palombieri, Klaus Gunther Friedrich, Serena Robetto, Krisztian Banyai, Fulvio Marsilio, Vito Martella and Barbara Di Martino
Animals 2024, 14(6), 881; https://doi.org/10.3390/ani14060881 - 13 Mar 2024
Viewed by 1576
Abstract
Circoviruses (CVs) and cycloviruses (CyVs), members of the family Circoviridae, have been identified only occasionally in non-human primates (NHPs). In this study, we investigated the presence and genetic features of these viruses in 48 NHPs housed in the Bioparco—Rome Zoological Garden (Italy) [...] Read more.
Circoviruses (CVs) and cycloviruses (CyVs), members of the family Circoviridae, have been identified only occasionally in non-human primates (NHPs). In this study, we investigated the presence and genetic features of these viruses in 48 NHPs housed in the Bioparco—Rome Zoological Garden (Italy) and in the Anima Natura Wild Sanctuary Semproniano (Grosseto, Italy), testing fecal, saliva, and serum samples with a broadly reactive consensus nested PCR able of amplifying a partial region of the replicase (Rep) gene of members of the family Circoviridae. Viral DNA was detected in a total of 10 samples, including a saliva swab and 9 fecal samples collected, respectively from five Japanese macaques (Macaca fuscata) and four mandrills (Mandrillus sphinx), with an overall prevalence of 18.7% (9/48). On genome sequencing, five strains revealed the highest nucleotide identity (98.3–98.6%) to a CyV strain (RI196/ITA) detected in the intestinal content of a Maltese wall lizard (Podarcis filfolensis) in Italy. Although the origin of the Italian NHP strains, genetically distant from previously detected NHP CyVs, is uncertain, our results also highlight that the virome of captive animals is modulated by the different dietary and environmental sources of exposure. Full article
(This article belongs to the Section Zoo Animals)
Show Figures

Figure 1

19 pages, 5033 KiB  
Article
Metagenomic Detection of Divergent Insect- and Bat-Associated Viruses in Plasma from Two African Individuals Enrolled in Blood-Borne Surveillance
by Gregory S. Orf, Ana Olivo, Barbara Harris, Sonja L. Weiss, Asmeeta Achari, Guixia Yu, Scot Federman, Dora Mbanya, Linda James, Samuel Mampunza, Charles Y. Chiu, Mary A. Rodgers, Gavin A. Cloherty and Michael G. Berg
Viruses 2023, 15(4), 1022; https://doi.org/10.3390/v15041022 - 21 Apr 2023
Cited by 12 | Viewed by 4625
Abstract
Metagenomic next-generation sequencing (mNGS) has enabled the high-throughput multiplexed identification of sequences from microbes of potential medical relevance. This approach has become indispensable for viral pathogen discovery and broad-based surveillance of emerging or re-emerging pathogens. From 2015 to 2019, plasma was collected from [...] Read more.
Metagenomic next-generation sequencing (mNGS) has enabled the high-throughput multiplexed identification of sequences from microbes of potential medical relevance. This approach has become indispensable for viral pathogen discovery and broad-based surveillance of emerging or re-emerging pathogens. From 2015 to 2019, plasma was collected from 9586 individuals in Cameroon and the Democratic Republic of the Congo enrolled in a combined hepatitis virus and retrovirus surveillance program. A subset (n = 726) of the patient specimens was analyzed by mNGS to identify viral co-infections. While co-infections from known blood-borne viruses were detected, divergent sequences from nine poorly characterized or previously uncharacterized viruses were also identified in two individuals. These were assigned to the following groups by genomic and phylogenetic analyses: densovirus, nodavirus, jingmenvirus, bastrovirus, dicistrovirus, picornavirus, and cyclovirus. Although of unclear pathogenicity, these viruses were found circulating at high enough concentrations in plasma for genomes to be assembled and were most closely related to those previously associated with bird or bat excrement. Phylogenetic analyses and in silico host predictions suggested that these are invertebrate viruses likely transmitted through feces containing consumed insects or through contaminated shellfish. This study highlights the power of metagenomics and in silico host prediction in characterizing novel viral infections in susceptible individuals, including those who are immunocompromised from hepatitis viruses and retroviruses, or potentially exposed to zoonotic viruses from animal reservoir species. Full article
(This article belongs to the Special Issue Applications of Next-Generation Sequencing in Virus Discovery 2.0)
Show Figures

Figure 1

14 pages, 1099 KiB  
Article
A Novel Coronavirus and a Broad Range of Viruses in Kenyan Cave Bats
by Joseph Kamau, Koray Ergunay, Paul W. Webala, Silvia A. Justi, Brian P. Bourke, Maureen W. Kamau, James Hassell, Mary N. Chege, David K. Mwaura, Cynthia Simiyu, Sospeter Kibiwot, Samson Onyuok, Laura Caicedo-Quiroga, Tao Li, Dawn M. Zimmerman and Yvonne-Marie Linton
Viruses 2022, 14(12), 2820; https://doi.org/10.3390/v14122820 - 17 Dec 2022
Cited by 10 | Viewed by 3631
Abstract
Background and Methods: To investigate virus diversity in hot zones of probable pathogen spillover, 54 oral-fecal swabs were processed from five bat species collected from three cave systems in Kenya, using metagenome sequencing. Results: Viruses belonging to the Astroviridae, Circoviridae, Coronaviridae [...] Read more.
Background and Methods: To investigate virus diversity in hot zones of probable pathogen spillover, 54 oral-fecal swabs were processed from five bat species collected from three cave systems in Kenya, using metagenome sequencing. Results: Viruses belonging to the Astroviridae, Circoviridae, Coronaviridae, Dicistroviridae, Herpesviridae and Retroviridae were detected, with unclassified viruses. Retroviral sequences were prevalent; 74.1% of all samples were positive, with distinct correlations between virus, site and host bat species. Detected retroviruses comprised Myotis myotis, Myotis ricketti, Myotis daubentonii and Galidia endogenous retroviruses, murine leukemia virus-related virus and Rhinolophus ferrumequinum retrovirus (RFRV). A near-complete genome of a local RFRV strain with identical genome organization and 2.8% nucleotide divergence from the prototype isolate was characterized. Bat coronavirus sequences were detected with a prevalence of 24.1%, where analyses on the ORF1ab region revealed a novel alphacoronavirus lineage. Astrovirus sequences were detected in 25.9%of all samples, with considerable diversity. In 9.2% of the samples, other viruses including Actinidia yellowing virus 2, bat betaherpesvirus, Bole tick virus 4, Cyclovirus and Rhopalosiphum padi virus were identified. Conclusions: Further monitoring of bats across Kenya is essential to facilitate early recognition of possibly emergent zoonotic viruses. Full article
(This article belongs to the Section Animal Viruses)
Show Figures

Figure 1

12 pages, 2201 KiB  
Article
Novel Cyclovirus Species in Dogs with Hemorrhagic Gastroenteritis
by Kerry Gainor, Yashpal S. Malik and Souvik Ghosh
Viruses 2021, 13(11), 2155; https://doi.org/10.3390/v13112155 - 26 Oct 2021
Cited by 3 | Viewed by 3449
Abstract
Nested PCRs with circovirus/cyclovirus pan-rep (replicase gene) primers detected eukaryotic circular Rep-encoding single-stranded DNA (CRESS DNA) viruses in three (samples CN9E, CN16E and CN34) of 18 canine parvovirus-2-positive fecal samples from household dogs with hemorrhagic gastroenteritis on the Caribbean island of Nevis. [...] Read more.
Nested PCRs with circovirus/cyclovirus pan-rep (replicase gene) primers detected eukaryotic circular Rep-encoding single-stranded DNA (CRESS DNA) viruses in three (samples CN9E, CN16E and CN34) of 18 canine parvovirus-2-positive fecal samples from household dogs with hemorrhagic gastroenteritis on the Caribbean island of Nevis. The complete genomes of CRESS DNA virus CN9E, CN16E and CN34 were determined by inverse nested PCRs. Based on (i) genome organization, (ii) location of the putative origin of replication, (iii) pairwise genome-wide sequence identities, (iv) the presence of conserved motifs in the putative replication-associated protein (Rep) and the arginine-rich region in the amino terminus of the putative capsid protein (Cp) and (v) a phylogenetic analysis, CN9E, CN16E and CN34 were classified as cycloviruses. Canine-associated cycloviruses CN16E and CN34 were closely related to each other and shared low genome-wide nucleotide (59.642–59.704%), deduced Rep (35.018–35.379%) and Cp (26.601%) amino acid sequence identities with CN9E. All the three canine-associated cycloviruses shared < 80% genome-wide pairwise nucleotide sequence identities with cycloviruses from other animals/environmental samples, constituting two novel species (CN9E and CN16E/34) within the genus Cyclovirus. Considering the feeding habits of dogs, we could not determine whether the cycloviruses were of dietary origin or infected the host. Interestingly, the CN9E putative Rep-encoding open reading frame was found to use the invertebrate mitochondrial genetic code with an alternative initiation codon (ATA) for translation, corroborating the hypothesis that cycloviruses are actually arthropod-infecting viruses. To our knowledge, this is the first report on the detection and complete genome analysis of cycloviruses from domestic dogs. Full article
(This article belongs to the Special Issue Gastroenteritis Viruses 2021)
Show Figures

Figure 1

20 pages, 5515 KiB  
Article
Detection and Complete Genome Analysis of Circoviruses and Cycloviruses in the Small Indian Mongoose (Urva auropunctata): Identification of Novel Species
by Kerry Gainor, Anne A. M. J. Becker, Yashpal S. Malik and Souvik Ghosh
Viruses 2021, 13(9), 1700; https://doi.org/10.3390/v13091700 - 27 Aug 2021
Cited by 16 | Viewed by 3815
Abstract
Fecal samples from 76 of 83 apparently healthy small Indian mongooses (Urva auropunctata) were PCR positive with circovirus/cyclovirus pan-rep (replicase gene) primers. In this case, 30 samples yielded high quality partial rep sequences (~400 bp), of which 26 sequences shared [...] Read more.
Fecal samples from 76 of 83 apparently healthy small Indian mongooses (Urva auropunctata) were PCR positive with circovirus/cyclovirus pan-rep (replicase gene) primers. In this case, 30 samples yielded high quality partial rep sequences (~400 bp), of which 26 sequences shared maximum homology with cycloviruses from an arthropod, bats, humans or a sheep. Three sequences exhibited maximum identities with a bat circovirus, whilst a single sequence could not be assigned to either genus. Using inverse nested PCRs, the complete genomes of mongoose associated circoviruses (Mon-1, -29 and -66) and cycloviruses (Mon-20, -24, -32, -58, -60 and -62) were determined. Mon-1, -20, -24, -29, -32 and -66 shared <80% maximum genome-wide pairwise nucleotide sequence identities with circoviruses/cycloviruses from other animals/sources, and were assigned to novel circovirus, or cyclovirus species. Mon-58, -60 and -62 shared maximum pairwise identities of 79.90–80.20% with human and bat cycloviruses, which were borderline to the cut-off identity value for assigning novel cycloviral species. Despite high genetic diversity, the mongoose associated circoviruses/cycloviruses retained the various features that are conserved among members of the family Circoviridae, such as presence of the putative origin of replication (ori) in the 5′-intergenic region, conserved motifs in the putative replication-associated protein and an arginine rich region in the amino terminus of the putative capsid protein. Since only fecal samples were tested, and mongooses are polyphagous predators, we could not determine whether the mongoose associated circoviruses/cycloviruses were of dietary origin, or actually infected the host. To our knowledge, this is the first report on detection and complete genome analysis of circoviruses/cycloviruses in the small Indian mongoose, warranting further studies in other species of mongooses. Full article
(This article belongs to the Special Issue Emerging Wildlife Viral Diseases)
Show Figures

Figure 1

15 pages, 1249 KiB  
Article
The Virome of Acute Respiratory Diseases in Individuals at Risk of Zoonotic Infections
by Nguyen Thi Kha Tu, Nguyen Thi Thu Hong, Nguyen Thi Han Ny, Tran My Phuc, Pham Thi Thanh Tam, H. Rogier van Doorn, Ho Dang Trung Nghia, Dang Thao Huong, Duong An Han, Luu Thi Thu Ha, Xutao Deng, Guy Thwaites, Eric Delwart, Anna-Maija K. Virtala, Olli Vapalahti, Stephen Baker and Le Van Tan
Viruses 2020, 12(9), 960; https://doi.org/10.3390/v12090960 - 29 Aug 2020
Cited by 28 | Viewed by 7291
Abstract
The ongoing coronavirus disease 2019 (COVID-19) pandemic emphasizes the need to actively study the virome of unexplained respiratory diseases. We performed viral metagenomic next-generation sequencing (mNGS) analysis of 91 nasal-throat swabs from individuals working with animals and with acute respiratory diseases. Fifteen virus [...] Read more.
The ongoing coronavirus disease 2019 (COVID-19) pandemic emphasizes the need to actively study the virome of unexplained respiratory diseases. We performed viral metagenomic next-generation sequencing (mNGS) analysis of 91 nasal-throat swabs from individuals working with animals and with acute respiratory diseases. Fifteen virus RT-PCR-positive samples were included as controls, while the other 76 samples were RT-PCR negative for a wide panel of respiratory pathogens. Eukaryotic viruses detected by mNGS were then screened by PCR (using primers based on mNGS-derived contigs) in all samples to compare viral detection by mNGS versus PCR and assess the utility of mNGS in routine diagnostics. mNGS identified expected human rhinoviruses, enteroviruses, influenza A virus, coronavirus OC43, and respiratory syncytial virus (RSV) A in 13 of 15 (86.7%) positive control samples. Additionally, rotavirus, torque teno virus, human papillomavirus, human betaherpesvirus 7, cyclovirus, vientovirus, gemycircularvirus, and statovirus were identified through mNGS. Notably, complete genomes of novel cyclovirus, gemycircularvirus, and statovirus were genetically characterized. Using PCR screening, the novel cyclovirus was additionally detected in 5 and the novel gemycircularvirus in 12 of the remaining samples included for mNGS analysis. Our studies therefore provide pioneering data of the virome of acute-respiratory diseases from individuals at risk of zoonotic infections. The mNGS protocol/pipeline applied here is sensitive for the detection of a variety of viruses, including novel ones. More frequent detections of the novel viruses by PCR than by mNGS on the same samples suggests that PCR remains the most sensitive diagnostic test for viruses whose genomes are known. The detection of novel viruses expands our understanding of the respiratory virome of animal-exposed humans and warrant further studies. Full article
(This article belongs to the Section Animal Viruses)
Show Figures

Graphical abstract

17 pages, 2256 KiB  
Article
Highly Sensitive Virome Characterization of Aedes aegypti and Culex pipiens Complex from Central Europe and the Caribbean Reveals Potential for Interspecies Viral Transmission
by Jakob Thannesberger, Nicolas Rascovan, Anna Eisenmann, Ingeborg Klymiuk, Carina Zittra, Hans-Peter Fuehrer, Thea Scantlebury-Manning, Marquita Gittens-St.Hilaire, Shane Austin, Robert Clive Landis and Christoph Steininger
Pathogens 2020, 9(9), 686; https://doi.org/10.3390/pathogens9090686 - 21 Aug 2020
Cited by 13 | Viewed by 5105
Abstract
Mosquitoes are the most important vectors for arthropod-borne viral diseases. Mixed viral infections of mosquitoes allow genetic recombination or reassortment of diverse viruses, turning mosquitoes into potential virologic mixing bowls. In this study, we field-collected mosquitoes of different species (Aedes aegypti and [...] Read more.
Mosquitoes are the most important vectors for arthropod-borne viral diseases. Mixed viral infections of mosquitoes allow genetic recombination or reassortment of diverse viruses, turning mosquitoes into potential virologic mixing bowls. In this study, we field-collected mosquitoes of different species (Aedes aegypti and Culex pipiens complex), from different geographic locations and environments (central Europe and the Caribbean) for highly sensitive next-generation sequencing-based virome characterization. We found a rich virus community associated with a great diversity of host species. Among those, we detected a large diversity of novel virus sequences that we could predominately assign to circular Rep-encoding single-stranded (CRESS) DNA viruses, including the full-length genome of a yet undescribed Gemykrogvirus species. Moreover, we report for the first time the detection of a potentially zoonotic CRESS-DNA virus (Cyclovirus VN) in mosquito vectors. This study expands the knowledge on virus diversity in medically important mosquito vectors, especially for CRESS-DNA viruses that have previously been shown to easily recombine and jump the species barrier. Full article
Show Figures

Figure 1

17 pages, 2936 KiB  
Article
Single Stranded DNA Viruses Associated with Capybara Faeces Sampled in Brazil
by Rafaela S. Fontenele, Cristiano Lacorte, Natalia S. Lamas, Kara Schmidlin, Arvind Varsani and Simone G. Ribeiro
Viruses 2019, 11(8), 710; https://doi.org/10.3390/v11080710 - 2 Aug 2019
Cited by 39 | Viewed by 5905
Abstract
Capybaras (Hydrochoerus hydrochaeris), the world’s largest rodents, are distributed throughout South America. These wild herbivores are commonly found near water bodies and are well adapted to rural and urban areas. There is limited information on the viruses circulating through capybaras. This [...] Read more.
Capybaras (Hydrochoerus hydrochaeris), the world’s largest rodents, are distributed throughout South America. These wild herbivores are commonly found near water bodies and are well adapted to rural and urban areas. There is limited information on the viruses circulating through capybaras. This study aimed to expand the knowledge on the viral diversity associated with capybaras by sampling their faeces. Using a viral metagenomics approach, we identified diverse single-stranded DNA viruses in the capybara faeces sampled in the Distrito Federal, Brazil. A total of 148 complete genomes of viruses in the Microviridae family were identified. In addition, 14 genomoviruses (family Genomoviridae), a novel cyclovirus (family Circoviridae), and a smacovirus (family Smacoviridae) were identified. Also, 37 diverse viruses that cannot be assigned to known families and more broadly referred to as unclassified circular replication associated protein encoding single-stranded (CRESS) DNA viruses were identified. This study provides a snapshot of the viral diversity associated with capybaras that may be infectious to these animals or associated with their microbiota or diet. Full article
(This article belongs to the Special Issue Viromics: Approaches, Advances, and Applications)
Show Figures

Figure 1

Back to TopTop