Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (22)

Search Parameters:
Keywords = cyclic nucleotide-gated ion channel gene

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 10575 KiB  
Article
Analysis of CNGC Family Members in Citrus clementina (Hort. ex Tan.) by a Genome-Wide Approach
by Yuanda Lv, Shumei Liu, Yanyan Ma, Lina Hu and Huaxue Yan
Int. J. Mol. Sci. 2025, 26(3), 960; https://doi.org/10.3390/ijms26030960 - 23 Jan 2025
Viewed by 918
Abstract
The study focuses on the Cyclic nucleotide-gated ion channels (CNGCs) proteins in citrus, aiming to investigate their potential roles. A total of 33 CcCNGC proteins were identified and characterized in Citrus clementina using a genome-wide method. The study revealed that these proteins share [...] Read more.
The study focuses on the Cyclic nucleotide-gated ion channels (CNGCs) proteins in citrus, aiming to investigate their potential roles. A total of 33 CcCNGC proteins were identified and characterized in Citrus clementina using a genome-wide method. The study revealed that these proteins share a conserved CNGC domain structurally but exhibit significant differences in their primary sequence and motif composition. Phylogenetic analysis classified the CcCNGC proteins into 13 subgroups. The cis-elements present in all CcCNGCs promoters were identified and classified, and the number of elements was determined. The results suggested that these genes play important roles in citrus growth and development, as well as in response to biotic and abiotic stresses. Gene expression analysis further supported these findings, demonstrating that CNGC genes were responsive to various plant hormones and Phytophthora nicotianae infection, which causes citrus foot rot. Overall, the study indicated that members of the CcCNGC gene family exhibit structural and functional diversity. Further research is needed to validate the specific functions of individual family members and their roles in citrus physiology and response to stress conditions. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Figure 1

19 pages, 3437 KiB  
Article
Genome Analysis of BnCNGC Gene Family and Function Exploration of BnCNGC57 in Brassica napus L.
by Yue Wang, Qing Chi, Wenjing Jia, Tiantian Zheng, Binghua Li, Lin Li, Ting Li, Rui Gao, Wenzhe Liu, Shenglin Ye, Ruqiang Xu and Hanfeng Zhang
Int. J. Mol. Sci. 2024, 25(21), 11359; https://doi.org/10.3390/ijms252111359 - 22 Oct 2024
Viewed by 1423
Abstract
The cyclic nucleotide-gated ion channel (CNGC), as a non-selective cation channel, plays a pivotal role in plant growth and stress response. A systematic analysis and identification of the BnCNGC gene family in Brassica napus is crucial for uncovering its biological functions and potential [...] Read more.
The cyclic nucleotide-gated ion channel (CNGC), as a non-selective cation channel, plays a pivotal role in plant growth and stress response. A systematic analysis and identification of the BnCNGC gene family in Brassica napus is crucial for uncovering its biological functions and potential applications in plant science. In this study, we identified 61 BnCNGC members in the B. napus genome, which are phylogenetically similar to Arabidopsis and can be classified into Groups I-IV (with Group IV further subdivided into IV-a and IV-b). Collinearity analysis with other species provided insights into the evolution of BnCNGC. By homology modeling, we predicted the three-dimensional structure of BnCNGC proteins and analyzed cis-acting elements in their promoters, revealing diverse roles in hormone regulation, growth, and stress response. Notably, overexpression of BnCNGC57 (BnaC09g42460D) significantly increased seed size, possibly through regulating cell proliferation via the MAPK signaling pathway. Our findings contribute to a better understanding of the BnCNGC gene family and highlight the potential regulatory role of BnCNGC57 in the seed development of B. napus. Full article
(This article belongs to the Special Issue Advances in Plant Genomics and Genetics: 2nd Edition)
Show Figures

Figure 1

16 pages, 7768 KiB  
Article
Genome-Wide Identification of the Cyclic Nucleotide-Gated Ion Channel Gene Family and Expression Profiles Under Low-Temperature Stress in Luffa cylindrica L.
by Jianting Liu, Yuqian Wang, Lijuan Peng, Mindong Chen, Xinru Ye, Yongping Li, Zuliang Li, Qingfang Wen and Haisheng Zhu
Int. J. Mol. Sci. 2024, 25(20), 11330; https://doi.org/10.3390/ijms252011330 - 21 Oct 2024
Cited by 3 | Viewed by 1578
Abstract
Cyclic nucleotide-gated ion channels (CNGCs) are cell membrane channel proteins for calcium ions. They have been reported to play important roles in survival and in the responses to environmental factors in various plants. However, little is known about the CNGC family and its [...] Read more.
Cyclic nucleotide-gated ion channels (CNGCs) are cell membrane channel proteins for calcium ions. They have been reported to play important roles in survival and in the responses to environmental factors in various plants. However, little is known about the CNGC family and its functions in luffa (Luffa cylindrica L.). In this study, a bioinformatics-based method was used to identify members of the CNGC gene family in L. cylindrica. In total, 20 LcCNGCs were detected, and they were grouped into five subfamilies (I, II, Ⅲ, IV-a, and IV-b) in a phylogenetic analysis with CNGCs from Arabidopsis thaliana (20 AtCNGCs) and Momordica charantia (17 McCNGCs). The 20 LcCNGC genes were unevenly distributed on 11 of the 13 chromosomes in luffa, with none on Chromosomes 1 and 5. The members of each subfamily encoded proteins with highly conserved functional domains. An evolutionary analysis of CNGCs in luffa revealed three gene losses and a motif deletion. An examination of gene replication events during evolution indicated that two tandemly duplicated gene pairs were the primary driving force behind the evolution of the LcCNGC gene family. PlantCARE analyses of the LcCNGC promoter regions revealed various cis-regulatory elements, including those responsive to plant hormones (abscisic acid, methyl jasmonate, and salicylic acid) and abiotic stresses (light, drought, and low temperature). The presence of these cis-acting elements suggested that the encoded CNGC proteins may be involved in stress responses, as well as growth and development. Transcriptome sequencing (RNA-seq) analyses revealed tissue-specific expression patterns of LcCNGCs in various plant parts (roots, stems, leaves, flowers, and fruit) and the upregulation of some LcCNGCs under low-temperature stress. To confirm the accuracy of the RNA-seq data, 10 cold-responsive LcCNGC genes were selected for verification by quantitative real-time polymerase chain reaction (RT-qPCR) analysis. Under cold conditions, LcCNGC4 was highly upregulated (>50-fold increase in its transcript levels), and LcCNGC3, LcCNGC6, and LcCNGC13 were upregulated approximately 10-fold. Our findings provide new information about the evolution of the CNGC family in L. cylindrica and provide insights into the functions of the encoded CNGC proteins. Full article
(This article belongs to the Special Issue Transcription Factors in Plant Gene Expression Regulation)
Show Figures

Figure 1

19 pages, 4452 KiB  
Article
Genome-Wide Identification and Expression Analysis of the Cyclic Nucleotide-Gated Channel Gene Family in Zoysia japonica under Salt Stress
by Shu-Tong Li, Wei-Yi Kong, Jing-Bo Chen, Dong-Li Hao and Hai-Lin Guo
Int. J. Mol. Sci. 2024, 25(18), 10114; https://doi.org/10.3390/ijms251810114 - 20 Sep 2024
Cited by 1 | Viewed by 1422
Abstract
Salt stress severely inhibits plant growth. Understanding the mechanism of plant salt tolerance is highly important to improving plant salt tolerance. Previous studies have shown that nonselective cyclic nucleotide-gated ion channels (CNGCs) play an important role in plant salt tolerance. However, [...] Read more.
Salt stress severely inhibits plant growth. Understanding the mechanism of plant salt tolerance is highly important to improving plant salt tolerance. Previous studies have shown that nonselective cyclic nucleotide-gated ion channels (CNGCs) play an important role in plant salt tolerance. However, current research on CNGCs mainly focuses on CNGCs in glycophytic plants, and research on CNGCs in halophytes that exhibit special salt tolerance strategies is still scarce. This study used the halophilic plant Zoysia japonica, an excellent warm-season turfgrass, as the experimental material. Through bioinformatics analysis, 18 members of the CNGC family were identified in Zoysia japonica; they were designated ZjCNGC1 through ZjCNGC18 according to their scaffold-level chromosomal positions. ZjCNGCs are divided into four groups (I–IV), with the same groups having differentiated protein-conserved domains and gene structures. ZjCNGCs are unevenly distributed on 16 scaffold-level chromosomes. Compared with other species, the ZjCNGCs in Group III exhibit obvious gene expansion, mainly due to duplication of gene segments. The collinearity between ZjCNGCs, OsCNGCs, and SjCNGCs suggests that CNGCs are evolutionarily conserved among gramineous plants. However, the Group III ZjCNGCs are only partially collinear with OsCNGCs and SjCNGCs, implying that the expansion of Group III ZjCNGC genes may have been an independent event occurring in Zoysia japonica. Protein interaction prediction revealed that ZjCNGCs, calcium-dependent protein kinase, H+-ATPase, outwardly rectifying potassium channel protein, and polyubiquitin 3 interact with ZjCNGCs. Multiple stress response regulatory elements, including those involved in salt stress, are present on the ZjCNGC promoter. The qPCR results revealed differences in the expression patterns of ZjCNGCs in different parts of the plant. Under salt stress conditions, the expression of ZjCNGCs was significantly upregulated in roots and leaves, with ZjCNGC8 and ZjCNGC13 showing the greatest increase in expression in the roots. These results collectively suggest that ZjCNGCs play an important role in salt tolerance and that their expansion into Group III may be a special mechanism underlying the salt tolerance of Zoysia japonica. Full article
(This article belongs to the Section Molecular Plant Sciences)
Show Figures

Figure 1

23 pages, 6043 KiB  
Article
GhCNGC13 and 32 Act as Critical Links between Growth and Immunity in Cotton
by Song Peng, Panyu Li, Tianming Li, Zengyuan Tian and Ruqiang Xu
Int. J. Mol. Sci. 2024, 25(1), 1; https://doi.org/10.3390/ijms25010001 - 19 Dec 2023
Cited by 5 | Viewed by 1728
Abstract
Cyclic nucleotide-gated ion channels (CNGCs) remain poorly studied in crop plants, most of which are polyploid. In allotetraploid Upland cotton (Gossypium hirsutum), silencing GhCNGC13 and 32 impaired plant growth and shoot apical meristem (SAM) development, while triggering plant autoimmunity. Both growth [...] Read more.
Cyclic nucleotide-gated ion channels (CNGCs) remain poorly studied in crop plants, most of which are polyploid. In allotetraploid Upland cotton (Gossypium hirsutum), silencing GhCNGC13 and 32 impaired plant growth and shoot apical meristem (SAM) development, while triggering plant autoimmunity. Both growth hormones (indole-3-acetic acid and gibberellin) and stress hormones (abscisic acid, salicylic acid, and jasmonate) increased, while leaf photosynthesis decreased. The silenced plants exhibited an enhanced resistance to Botrytis cinerea; however, Verticillium wilt resistance was weakened, which was associated with LIPOXYGENASE2 (LOX2) downregulation. Transcriptomic analysis of silenced plants revealed 4835 differentially expressed genes (DEGs) with functional enrichment in immunity and photosynthesis. These DEGs included a set of transcription factors with significant over-representation in the HSF, NAC, and WRKY families. Moreover, numerous members of the GhCNGC family were identified among the DEGs, which may indicate a coordinated action. Collectively, our results suggested that GhCNGC13 and 32 functionally link to photosynthesis, plant growth, and plant immunity. We proposed that GhCNGC13 and 32 play a critical role in the “growth–defense tradeoff” widely observed in crops. Full article
(This article belongs to the Special Issue Advances in the Identification and Characterization of Plant Genes)
Show Figures

Figure 1

19 pages, 3641 KiB  
Article
Identification of the CNGC Gene Family in Rice and Mining of Alleles for Application in Rice Improvement
by Xinchen Wang, Fengcai Wu, Jinguo Zhang, Yaling Bao, Nansheng Wang, Guohui Dou, Dezhuang Meng, Xingmeng Wang, Jianfeng Li and Yingyao Shi
Plants 2023, 12(24), 4089; https://doi.org/10.3390/plants12244089 - 6 Dec 2023
Cited by 5 | Viewed by 2388
Abstract
Cyclic nucleotide-gated ion channel (CNGC) gene regulation plays important roles in plant immune and abiotic stress response. Here, we identified 16 CNGC genes in rice (Oryza sativa). Then, we analyzed their chromosomal location, physicochemical properties, subcellular localization, gene functional interaction network, cis-acting elements, [...] Read more.
Cyclic nucleotide-gated ion channel (CNGC) gene regulation plays important roles in plant immune and abiotic stress response. Here, we identified 16 CNGC genes in rice (Oryza sativa). Then, we analyzed their chromosomal location, physicochemical properties, subcellular localization, gene functional interaction network, cis-acting elements, phylogenetic relationships, collinearity, expression in tissues under normal conditions and abiotic stresses, and geng-cds-haplotype (gcHap) diversity in 3010 gcHaps. As a result, OsCNGC3 (Os06g0527300) was identified as a gene different from previous report, and OsCNGC genes were found to play important roles in rice population differentiation and rice improvement. Our results revealed their very strong differentiation between subspecies and populations, important roles in response to abiotic stresses, as well as strong genetic bottleneck effects and artificial selection of gcHap diversity in the modern breeding process of Xian (indica) and Geng (japonica) populations. The results also suggested that natural variations in most rice CNGC loci are potentially valuable for improving rice productivity and tolerance to abiotic stresses. The favorable alleles at the CNGC loci should be explored to facilitate their application in future rice improvement. Full article
(This article belongs to the Special Issue Molecular Breeding and Germplasm Improvement of Rice)
Show Figures

Figure 1

20 pages, 8812 KiB  
Article
New Insight into the Function of Dopamine (DA) during Cd Stress in Duckweed (Lemna turionifera 5511)
by Wenqiao Wang, Yunwen Yang, Xu Ma, Yuman He, Qiuting Ren, Yandi Huang, Jing Wang, Ying Xue, Rui Yang, Yuhan Guo, Jinge Sun, Lin Yang and Zhanpeng Sun
Plants 2023, 12(10), 1996; https://doi.org/10.3390/plants12101996 - 16 May 2023
Cited by 4 | Viewed by 2553
Abstract
Dopamine (DA), a kind of neurotransmitter in animals, has been proven to cause a positive influence on plants during abiotic stress. In the present study, the function of DA on plants under cadmium (Cd) stress was revealed. The yellowing of duckweed leaves under [...] Read more.
Dopamine (DA), a kind of neurotransmitter in animals, has been proven to cause a positive influence on plants during abiotic stress. In the present study, the function of DA on plants under cadmium (Cd) stress was revealed. The yellowing of duckweed leaves under Cd stress could be alleviated by an exogenous DA (10/20/50/100/200 μM) supplement, and 50 μM was the optimal concentration to resist Cd stress by reducing root breakage, restoring photosynthesis and chlorophyll content. In addition, 24 h DA treatment increased Cd content by 1.3 times in duckweed under Cd stress through promoting the influx of Cd2+. Furthermore, the gene expression changes study showed that photosynthesis-related genes were up-regulated by DA addition under Cd stress. Additionally, the mechanisms of DA-induced Cd detoxification and accumulation were also investigated; some critical genes, such as vacuolar iron transporter 1 (VIT1), multidrug resistance-associated protein (MRP) and Rubisco, were significantly up-regulated with DA addition under Cd stress. An increase in intracellular Ca2+ content and a decrease in Ca2+ efflux induced by DA under Cd stress were observed, as well as synchrony with changes in the expression of cyclic nucleotide-gated ion channel 2 (CNGC2), predicting that, in plants, CNGC2 may be an upstream target for DA action and trigger the change of intracellular Ca2+ signal. Our results demonstrate that DA supplementation can improve Cd resistance by enhancing duckweed photosynthesis, changing intracellular Ca2+ signaling, and enhancing Cd detoxification and accumulation. Interestingly, we found that exposure to Cd reduced endogenous DA content, which is the result of a blocked shikimate acid pathway and decreased expression of the tyrosine aminotransferase (TAT) gene. The function of DA in Cd stress offers a new insight into the application and study of DA to Cd phytoremediation in aquatic systems. Full article
(This article belongs to the Special Issue Plant Metal and Metalloid Homeostasis)
Show Figures

Figure 1

21 pages, 11965 KiB  
Article
Identification of CNGCs in Glycine max and Screening of Related Resistance Genes after Fusarium solani Infection
by Yuxing Cui, Jingxuan Wang, Yingxue Bai, Liping Ban, Junda Ren, Qiaoxia Shang and Weiyu Li
Biology 2023, 12(3), 439; https://doi.org/10.3390/biology12030439 - 12 Mar 2023
Cited by 4 | Viewed by 2339
Abstract
Cyclic nucleotide-gated channels (CNGCs), non-selective cation channels localised on the plasmalemma, are involved in growth, development, and regulatory mechanisms in plants during adverse stress. To date, CNGC gene families in multiple crops have been identified and analysed. However, there have been [...] Read more.
Cyclic nucleotide-gated channels (CNGCs), non-selective cation channels localised on the plasmalemma, are involved in growth, development, and regulatory mechanisms in plants during adverse stress. To date, CNGC gene families in multiple crops have been identified and analysed. However, there have been no systematic studies on the evolution and development of CNGC gene families in legumes. Therefore, in the present study, via transcriptome analysis, we identified 143 CNGC genes in legumes, and thereafter, classified and named them according to the grouping method used for Arabidopsis thaliana. Functional verification for disease stress showed that four GmCNGCs were specifically expressed in the plasmalemma during the stress process. Further, functional enrichment analysis showed that their mode of participation and coordination included inorganic ion concentration regulation inside and outside the membrane via the transmembrane ion channel and participation in stress regulation via signal transduction. The CNGC family genes in G. max involved in disease stress were also identified and physiological stress response and omics analyses were also performed. Our preliminary results revealed the basic laws governing the involvement of CNGCs in disease resistance in G. max, providing important gene resources and a theoretical reference for the breeding of resistant soybean. Full article
(This article belongs to the Special Issue Recent Advances in Molecular Plant Pathology)
Show Figures

Figure 1

13 pages, 3990 KiB  
Article
Genome-Wide Identification, Characterization and Experimental Expression Analysis of CNGC Gene Family in Gossypium
by Lei Chen, Wenwen Wang, Hailun He, Peng Yang, Xiaoting Sun and Zhengsheng Zhang
Int. J. Mol. Sci. 2023, 24(5), 4617; https://doi.org/10.3390/ijms24054617 - 27 Feb 2023
Cited by 6 | Viewed by 2424
Abstract
Cyclic nucleotide-gated ion channels (CNGCs) are channel proteins for calcium ions, and have been reported to play important roles in regulating survival and environmental response of various plants. However, little is known about how the CNGC family works in Gossypium. In this [...] Read more.
Cyclic nucleotide-gated ion channels (CNGCs) are channel proteins for calcium ions, and have been reported to play important roles in regulating survival and environmental response of various plants. However, little is known about how the CNGC family works in Gossypium. In this study, 173 CNGC genes, which were identified from two diploid and five tetraploid Gossypium species, were classified into four groups by phylogenetic analysis. The collinearity results demonstrated that CNGC genes are integrally conservative among Gossypium species, but four gene losses and three simple translocations were detected, which is beneficial to analyzing the evolution of CNGCs in Gossypium. The various cis-acting regulatory elements in the CNGCs’ upstream sequences revealed their possible functions in responding to multiple stimuli such as hormonal changes and abiotic stresses. In addition, expression levels of 14 CNGC genes changed significantly after being treated with various hormones. The findings in this study will contribute to understanding the function of the CNGC family in cotton, and lay a foundation for unraveling the molecular mechanism of cotton plants’ response to hormonal changes. Full article
Show Figures

Figure 1

12 pages, 3390 KiB  
Article
Genome-Wide Analysis and Expression of Cyclic Nucleotide–Gated Ion Channel (CNGC) Family Genes under Cold Stress in Mango (Mangifera indica)
by Yajie Zhang, Yubo Li, Jing Yang, Xinli Yang, Shengbei Chen, Zhouli Xie, Mingjie Zhang, Yanlei Huang, Jinghong Zhang and Xing Huang
Plants 2023, 12(3), 592; https://doi.org/10.3390/plants12030592 - 29 Jan 2023
Cited by 12 | Viewed by 2210
Abstract
The ‘king of fruits’ mango (Mangifera indica) is widely cultivated in tropical areas and has been threatened by frequent extreme cold weather. Cyclic nucleotide–gated ion channel (CNGC) genes have an important function in the calcium-mediated development and cold response [...] Read more.
The ‘king of fruits’ mango (Mangifera indica) is widely cultivated in tropical areas and has been threatened by frequent extreme cold weather. Cyclic nucleotide–gated ion channel (CNGC) genes have an important function in the calcium-mediated development and cold response of plants. However, few CNGC-related studies are reported in mango, regardless of the mango cold stress response. In this study, we identified 43 CNGC genes in mango showing tissue-specific expression patterns. Five MiCNGCs display more than 3-fold gene expression induction in the fruit peel and leaf under cold stress. Among these, MiCNGC9 and MiCNGC13 are significantly upregulated below 6 °C, suggesting their candidate functions under cold stress. Furthermore, cell membrane integrity was damaged at 2 °C in the mango leaf, as shown by the content of malondialdehyde (MDA), and eight MiCNGCs are positively correlated with MDA contents. The high correlation between MiCNGCs and MDA implies MiCNGCs might regulate cell membrane integrity by regulating MDA content. Together, these findings provide a valuable guideline for the functional characterization of CNGC genes and will benefit future studies related to cold stress and calcium transport in mango. Full article
(This article belongs to the Special Issue Abiotic Stress Responses in Woody Plants)
Show Figures

Figure 1

17 pages, 4489 KiB  
Article
Genome-Wide Analysis of Cyclic Nucleotide-Gated Channel Genes Related to Pollen Development in Rice
by Su-Kyoung Lee, Soo-Min Lee, Myung-Hee Kim, Soon-Ki Park and Ki-Hong Jung
Plants 2022, 11(22), 3145; https://doi.org/10.3390/plants11223145 - 17 Nov 2022
Cited by 9 | Viewed by 3113
Abstract
In the angiosperm, pollen germinates and rapidly expands the pollen tube toward the ovule. This process is important for plant double fertilization and seed setting. It is well known that the tip-focused calcium gradient is essential for pollen germination and pollen tube growth. [...] Read more.
In the angiosperm, pollen germinates and rapidly expands the pollen tube toward the ovule. This process is important for plant double fertilization and seed setting. It is well known that the tip-focused calcium gradient is essential for pollen germination and pollen tube growth. However, little is known about the Ca2+ channels that play a role in rice pollen germination and tube growth. Here, we divided the 16 cyclic nucleotide-gated channel (CNGC) genes from rice into five subgroups and found two subgroups (clades II and III) have pollen-preferential genes. Then, we performed a meta-expression analysis of all OsCNGC genes in anatomical samples and identified three pollen-preferred OsCNGCs (OsCNGC4, OsCNGC5, and OsCNGC8). The subcellular localization of these OsCNGC proteins is matched with their roles as ion channels on the plasma membrane. Unlike other OsCNGCs, these genes have a unique cis-acting element in the promoter. OsCNGC4 can act by forming a homomeric complex or a heteromeric complex with OsCNGC5 or OsCNGC8. In addition, it was suggested that they can form a multi-complex with Mildew Resistance Locus O (MLO) protein or other types of ion transporters, and that their expression can be modulated by Ruptured Pollen tube (RUPO) encoding receptor-like kinase. These results shed light on understanding the regulatory mechanisms of pollen germination and pollen tube growth through calcium channels in rice. Full article
(This article belongs to the Special Issue Recent Advances in Rice and Tomato Molecular Breeding)
Show Figures

Figure 1

21 pages, 3103 KiB  
Article
Examination of Intracellular GPCR-Mediated Signaling with High Temporal Resolution
by Nadine Gruteser and Arnd Baumann
Int. J. Mol. Sci. 2022, 23(15), 8516; https://doi.org/10.3390/ijms23158516 - 31 Jul 2022
Cited by 1 | Viewed by 2693
Abstract
The GTP-binding protein-coupled receptors (GPCRs) play important roles in physiology and neuronal signaling. More than a thousand genes, excluding the olfactory receptors, have been identified that encode these integral membrane proteins. Their pharmacological and functional properties make them fascinating targets for drug development, [...] Read more.
The GTP-binding protein-coupled receptors (GPCRs) play important roles in physiology and neuronal signaling. More than a thousand genes, excluding the olfactory receptors, have been identified that encode these integral membrane proteins. Their pharmacological and functional properties make them fascinating targets for drug development, since various disease states can be treated and overcome by pharmacologically addressing these receptors and/or their downstream interacting partners. The activation of the GPCRs typically causes transient changes in the intracellular second messenger concentrations as well as in membrane conductance. In contrast to ion channel-mediated electrical signaling which results in spontaneous cellular responses, the GPCR-mediated metabotropic signals operate at a different time scale. Here we have studied the kinetics of two common GPCR-induced signaling pathways: (a) Ca2+ release from intracellular stores and (b) cyclic adenosine monophosphate (cAMP) production. The latter was monitored via the activation of cyclic nucleotide-gated (CNG) ion channels causing Ca2+ influx into the cell. Genetically modified and stably transfected cell lines were established and used in stopped-flow experiments to uncover the individual steps of the reaction cascades. Using two homologous biogenic amine receptors, either coupling to Go/q or Gs proteins, allowed us to determine the time between receptor activation and signal output. With ~350 ms, the release of Ca2+ from intracellular stores was much faster than cAMP-mediated Ca2+ entry through CNG channels (~6 s). The measurements with caged compounds suggest that this difference is due to turnover numbers of the GPCR downstream effectors rather than the different reaction cascades, per se. Full article
Show Figures

Figure 1

13 pages, 2482 KiB  
Article
Mutants of the Zebrafish K+ Channel Hcn2b Exhibit Epileptic-like Behaviors
by Roberto Rodríguez-Ortiz and Ataúlfo Martínez-Torres
Int. J. Mol. Sci. 2021, 22(21), 11471; https://doi.org/10.3390/ijms222111471 - 25 Oct 2021
Cited by 5 | Viewed by 3349
Abstract
Epilepsy is a chronic neurological disorder that affects 50 million people worldwide. The most common form of epilepsy is idiopathic, where most of the genetic defects of this type of epilepsy occur in ion channels. Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels are activated by [...] Read more.
Epilepsy is a chronic neurological disorder that affects 50 million people worldwide. The most common form of epilepsy is idiopathic, where most of the genetic defects of this type of epilepsy occur in ion channels. Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels are activated by membrane hyperpolarization, and are mainly expressed in the heart and central and peripheral nervous systems. In humans, four HCN genes have been described, and emergent clinical data shows that dysfunctional HCN channels are involved in epilepsy. Danio rerio has become a versatile organism to model a wide variety of diseases. In this work, we used CRISPR/Cas9 to generate hcn2b mutants in zebrafish, and characterized them molecularly and behaviorally. We obtained an hcn2b mutant allele with an 89 bp deletion that produced a premature stop codon. The mutant exhibited a high mortality rate in its life span, probably due to its sudden death. We did not detect heart malformations or important heart rate alterations. Absence seizures and moderate seizures were observed in response to light. These seizures rarely caused instant death. The results show that mutations in the Hcn2b channel are involved in epilepsy and provide evidence of the advantages of zebrafish to further our understanding of the pathogenesis of epilepsy. Full article
(This article belongs to the Special Issue Zebrafish as a Model for Neurological Disorders)
Show Figures

Graphical abstract

22 pages, 5662 KiB  
Article
Loss of HCN2 in Dorsal Hippocampus of Young Adult Mice Induces Specific Apoptosis of the CA1 Pyramidal Neuron Layer
by Matthias Deutsch, Carina Stegmayr, Sabine Balfanz and Arnd Baumann
Int. J. Mol. Sci. 2021, 22(13), 6699; https://doi.org/10.3390/ijms22136699 - 22 Jun 2021
Cited by 3 | Viewed by 3001
Abstract
Neurons inevitably rely on a proper repertoire and distribution of membrane-bound ion-conducting channels. Among these proteins, the family of hyperpolarization-activated and cyclic nucleotide-gated (HCN) channels possesses unique properties giving rise to the corresponding Ih-current that contributes to various aspects of neural [...] Read more.
Neurons inevitably rely on a proper repertoire and distribution of membrane-bound ion-conducting channels. Among these proteins, the family of hyperpolarization-activated and cyclic nucleotide-gated (HCN) channels possesses unique properties giving rise to the corresponding Ih-current that contributes to various aspects of neural signaling. In mammals, four genes (hcn1-4) encode subunits of HCN channels. These subunits can assemble as hetero- or homotetrameric ion-conducting channels. In order to elaborate on the specific role of the HCN2 subunit in shaping electrical properties of neurons, we applied an Adeno-associated virus (AAV)-mediated, RNAi-based knock-down strategy of hcn2 gene expression both in vitro and in vivo. Electrophysiological measurements showed that HCN2 subunit knock-down resulted in specific yet anticipated changes in Ih-current properties in primary hippocampal neurons and, in addition, corroborated that the HCN2 subunit participates in postsynaptic signal integration. To further address the role of the HCN2 subunit in vivo, we injected recombinant (r)AAVs into the dorsal hippocampus of young adult male mice. Behavioral and biochemical analyses were conducted to assess the contribution of HCN2-containing channels in shaping hippocampal network properties. Surprisingly, knock-down of hcn2 expression resulted in a severe degeneration of the CA1 pyramidal cell layer, which did not occur in mice injected with control rAAV constructs. This finding might pinpoint to a vital and yet unknown contribution of HCN2 channels in establishing or maintaining the proper function of CA1 pyramidal neurons of the dorsal hippocampus. Full article
(This article belongs to the Special Issue Gene Therapy for Neurodegenerative Disease)
Show Figures

Figure 1

10 pages, 1114 KiB  
Communication
Search for Candidate Genes Causing the Excessive Ca Accumulation in Roots of Tipburn-Damaged Lisianthus (Eustoma grandiflorum) Cultivars
by Takanori Kuronuma and Hitoshi Watanabe
Agriculture 2021, 11(3), 254; https://doi.org/10.3390/agriculture11030254 - 17 Mar 2021
Cited by 5 | Viewed by 3122
Abstract
Occurrence of tipburn is a severe problem in the production of lisianthus cultivars. Previous studies have shown excessive Ca accumulation in the roots of tipburn-damaged cultivars, where the distribution of Ca to the tips of the top leaves is inhibited. However, few studies [...] Read more.
Occurrence of tipburn is a severe problem in the production of lisianthus cultivars. Previous studies have shown excessive Ca accumulation in the roots of tipburn-damaged cultivars, where the distribution of Ca to the tips of the top leaves is inhibited. However, few studies have investigated the association between Ca accumulation and gene expression in horticultural crops. To provide a list of candidate target genes that might be causing the excessive Ca accumulation in roots, we focused Ca2+ transporter and pectin methylesterase (PME) genes and RNA-seq of upper leaves and roots in tipburn-occurrence cultivar (“Voyage peach”: VP) and non-occurrence cultivar (“Umi honoka”: UH) was conducted. In both the upper leaves and roots of VP, genes encoding the glutamate receptors (GLRs), cation/Ca2+ exchangers 4 (CCX4), Na+/Ca2+ exchanger-like protein (NCL), and PMEs were upregulated, and a gene encoding the cyclic nucleotide-gated ion channel 9 (CNGC9) was downregulated. In contrast, genes encoding the vacuolar cation/proton exchanger 5 (CAX5), calcium-transporting ATPase 1 and 12 (ACA1 and ACA12) showed differential expression in each organ. Among them, only CAX5 was upregulated and ACA12 was downregulated in the roots of VP. Based on these results, we suggested that CAX5 and ACA12 are the candidate genes causing the excessive Ca accumulation in the roots of tipburn-occurrence lisianthus cultivars. Future studies should investigate the temporal changes in gene expression using quantitative PCR and conduct functional analysis of candidate genes in tipburn-damaged lisianthus cultivars. Full article
(This article belongs to the Section Agricultural Product Quality and Safety)
Show Figures

Figure 1

Back to TopTop