Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (10)

Search Parameters:
Keywords = cyanobacteria, Cyanothece sp.

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 3170 KiB  
Article
Exploring Metal Interactions with Released Polysaccharides from Cyanothece sp. CE4: A Chemical and Spectroscopic Study on Biosorption Mechanism
by Matilde Ciani, Giovanni Orazio Lepore, Alessandro Puri, Giorgio Facchetti and Alessandra Adessi
Polymers 2025, 17(3), 371; https://doi.org/10.3390/polym17030371 - 29 Jan 2025
Viewed by 850
Abstract
This study investigates the potential of released polysaccharides (RPS) from the halophilic cyanobacterium Cyanothece sp. CE4 as biosorbents for heavy metals, specifically copper (Cu), nickel (Ni), and zinc (Zn). By combining ICP-OES, SEM-EDX, FT-IR spectroscopy, and XAS techniques, this work provides a comprehensive [...] Read more.
This study investigates the potential of released polysaccharides (RPS) from the halophilic cyanobacterium Cyanothece sp. CE4 as biosorbents for heavy metals, specifically copper (Cu), nickel (Ni), and zinc (Zn). By combining ICP-OES, SEM-EDX, FT-IR spectroscopy, and XAS techniques, this work provides a comprehensive chemical and spectroscopic analysis of the biosorption mechanisms driving metal removal. The results revealed a strong binding affinity for Cu, followed by Ni and Zn, with RPS functional groups playing a key role in metal coordination. The RPS efficiently removed metals from both monometallic and multimetallic solutions, emphasizing their adaptability in competitive environments. XAS analysis highlighted unique metal-specific coordination patterns. Ni preferentially binds to oxygen donors and Zn to chlorine, and Cu exhibits non-selective binding. Remarkably, the extracted RPS achieved a maximum Cu removal capacity of 67 mg per gram of RPS dry weight, surpassing previously reported biosorption capacities. This study not only advances the understanding of biosorption mechanisms by cyanobacterial RPS but also emphasizes their dual role in environmental remediation and circular resource management. The insights provided here establish a foundation for the development of sustainable, cyanobacteria-based solutions for heavy-metal recovery and environmental sustainability. Full article
(This article belongs to the Special Issue Advanced Processing Strategy for Functional Polymer Materials)
Show Figures

Graphical abstract

31 pages, 13875 KiB  
Article
The Freshwater Cyanobacterium Synechococcus elongatus PCC 7942 Does Not Require an Active External Carbonic Anhydrase
by Elena V. Kupriyanova, Maria A. Sinetova, David A. Gabrielyan and Dmitry A. Los
Plants 2024, 13(16), 2323; https://doi.org/10.3390/plants13162323 - 20 Aug 2024
Cited by 2 | Viewed by 1637
Abstract
Under standard laboratory conditions, Synechococcus elongatus PCC 7942 lacks EcaASyn, a periplasmic carbonic anhydrase (CA). In this study, a S. elongatus transformant was created that expressed the homologous EcaACya from Cyanothece sp. ATCC 51142. This additional external CA had no [...] Read more.
Under standard laboratory conditions, Synechococcus elongatus PCC 7942 lacks EcaASyn, a periplasmic carbonic anhydrase (CA). In this study, a S. elongatus transformant was created that expressed the homologous EcaACya from Cyanothece sp. ATCC 51142. This additional external CA had no discernible effect on the adaptive responses and physiology of cells exposed to changes similar to those found in S. elongatus natural habitats, such as fluctuating CO2 and HCO3 concentrations and ratios, oxidative or light stress, and high CO2. The transformant had a disadvantage over wild-type cells under certain conditions (Na+ depletion, a reduction in CO2). S. elongatus cells lacked their own EcaASyn in all experimental conditions. The results suggest the presence in S. elongatus of mechanisms that limit the appearance of EcaASyn in the periplasm. For the first time, we offer data on the expression pattern of CCM-associated genes during S. elongatus adaptation to CO2 replacement with HCO3, as well as cell transfer to high CO2 levels (up to 100%). An increase in CO2 concentration coincides with the suppression of the NDH-14 system, which was previously thought to function constitutively. Full article
(This article belongs to the Special Issue Photosynthesis and Carbon Metabolism in Higher Plants and Algae)
Show Figures

Figure 1

17 pages, 5015 KiB  
Article
Impact of Carbon Fixation, Distribution and Storage on the Production of Farnesene and Limonene in Synechocystis PCC 6803 and Synechococcus PCC 7002
by Marine Vincent, Victoire Blanc-Garin, Célia Chenebault, Mattia Cirimele, Sandrine Farci, Luis Fernando Garcia-Alles, Corinne Cassier-Chauvat and Franck Chauvat
Int. J. Mol. Sci. 2024, 25(7), 3827; https://doi.org/10.3390/ijms25073827 - 29 Mar 2024
Viewed by 2083
Abstract
Terpenes are high-value chemicals which can be produced by engineered cyanobacteria from sustainable resources, solar energy, water and CO2. We previously reported that the euryhaline unicellular cyanobacteria Synechocystis sp. PCC 6803 (S.6803) and Synechococcus sp. PCC 7002 (S.7002) produce farnesene and [...] Read more.
Terpenes are high-value chemicals which can be produced by engineered cyanobacteria from sustainable resources, solar energy, water and CO2. We previously reported that the euryhaline unicellular cyanobacteria Synechocystis sp. PCC 6803 (S.6803) and Synechococcus sp. PCC 7002 (S.7002) produce farnesene and limonene, respectively, more efficiently than other terpenes. In the present study, we attempted to enhance farnesene production in S.6803 and limonene production in S.7002. Practically, we tested the influence of key cyanobacterial enzymes acting in carbon fixation (RubisCO, PRK, CcmK3 and CcmK4), utilization (CrtE, CrtR and CruF) and storage (PhaA and PhaB) on terpene production in S.6803, and we compared some of the findings with the data obtained in S.7002. We report that the overproduction of RubisCO from S.7002 and PRK from Cyanothece sp. PCC 7425 increased farnesene production in S.6803, but not limonene production in S.7002. The overexpression of the crtE genes (synthesis of terpene precursors) from S.6803 or S.7002 did not increase farnesene production in S.6803. In contrast, the overexpression of the crtE gene from S.6803, but not S.7002, increased farnesene production in S.7002, emphasizing the physiological difference between these two model cyanobacteria. Furthermore, the deletion of the crtR and cruF genes (carotenoid synthesis) and phaAB genes (carbon storage) did not increase the production of farnesene in S.6803. Finally, as a containment strategy of genetically modified strains of S.6803, we report that the deletion of the ccmK3K4 genes (carboxysome for CO2 fixation) did not affect the production of limonene, but decreased the production of farnesene in S.6803. Full article
(This article belongs to the Special Issue Advances in Research of Algae, Cyanobacteria, and Phytoplankton)
Show Figures

Figure 1

13 pages, 9444 KiB  
Article
Computational Insights and In Silico Characterization of a Novel Mini-Lipoxygenase from Nostoc Sphaeroides and Its Application in the Quality Improvement of Steamed Bread
by Bingjie Xia, Huibing Chi, Bingjie Zhang, Zhaoxin Lu, Huawei Liu, Fengxia Lu and Ping Zhu
Int. J. Mol. Sci. 2023, 24(9), 7941; https://doi.org/10.3390/ijms24097941 - 27 Apr 2023
Cited by 2 | Viewed by 1641
Abstract
Lipoxygenase (EC1.13.11.12, LOX) has been potentially used in the food industry for food quality improvement. However, the low activity, poor thermal stability, narrow range of pH stability, as well as undesirable isoenzymes and off-flavors, have hampered the application of current commercial LOX. In [...] Read more.
Lipoxygenase (EC1.13.11.12, LOX) has been potentially used in the food industry for food quality improvement. However, the low activity, poor thermal stability, narrow range of pH stability, as well as undesirable isoenzymes and off-flavors, have hampered the application of current commercial LOX. In this study, a putative mini-lipoxygenase gene from cyanobacteria, Nostoc sphaeroides (NsLOX), was cloned and expressed in E. coli BL21. NsLOX displayed only 26.62% structural identity with the reported LOX from Cyanothece sp., indicating it as a novel LOX. The purified NsLOX showed the maximum activity at pH 8.0 and 15 °C, with superior stability at a pH range from 6.0 to 13.0, retaining about 40% activity at 40 °C for 90 min. Notably, NsLOX exhibited the highest specific activity of 78,080 U/mg towards linoleic acid (LA), and the kinetic parameters—Km, kcat, and kcat/Km—attain values of 19.46 μM, 9199.75 s−1, and 473.85 μM−1 s−1, respectively. Moreover, the activity of NsLOX was obviously activated by Ca2+, but it was completely inhibited by Zn2+ and Cu2+. Finally, NsLOX was supplied in steamed bread and contributed even better improved bread quality than the commercial LOX. These results suggest NsLOX as a promising substitute of current commercial LOX for application in the food industry. Full article
(This article belongs to the Section Macromolecules)
Show Figures

Figure 1

13 pages, 1710 KiB  
Article
Multidrug-Resistant Bacterial Pathogens and Public Health: The Antimicrobial Effect of Cyanobacterial-Biosynthesized Silver Nanoparticles
by Nermin A. El Semary and Esam M. Bakir
Antibiotics 2022, 11(8), 1003; https://doi.org/10.3390/antibiotics11081003 - 26 Jul 2022
Cited by 16 | Viewed by 2677
Abstract
Background: Cyanobacteria are considered as green nano-factories. Manipulation of the size of biogenic silver nanoparticles is needed to produce particles that suit the different applications such as the use as antibacterial agents. The present study attempts to manipulate the size of biosynthesized silver [...] Read more.
Background: Cyanobacteria are considered as green nano-factories. Manipulation of the size of biogenic silver nanoparticles is needed to produce particles that suit the different applications such as the use as antibacterial agents. The present study attempts to manipulate the size of biosynthesized silver nanoparticles produced by cyanobacteria and to test the different-sized nanoparticles against pathogenic clinical bacteria. Methods: Cyanothece-like. coccoid unicellular cyanobacterium was tested for its ability to biosynthesize nanosilver particles of different sizes. A stock solution of silver nitrate was prepared from which three different concentrations were added to cyanobacterial culture. UV-visible spectroscopy and FTIR were conducted to characterize the silver nanoparticles produced in the cell free filtrate. Dynamic Light Scattering (DLS) was performed to determine the size of the nanoparticles produced at each concentration. The antimicrobial bioassays were conducted on broad host methicillin-resistant Staphylococcus aureus (MRSA), and Streptococcus sp., was conducted to detect the nanoparticle size that was most efficient as an antimicrobial agent. Results. The UV-Visible spectra showed excellent congruence of the plasmon peak characteristic of nanosilver at 450 nm for all three different concentrations, varying peak heights were recorded according to the concentration used. The FTIR of the three solutions revealed the absence of characteristic functional groups in the solution. All three concentrations showed spectra at 1636 and 2050–2290 nm indicating uniformity of composition. Moreover, DLS analysis revealed that the silver nanoparticles produced with lowest concentration of precursor AgNO3 had smallest size followed by those resulting from the higher precursor concentration. The nanoparticles resulting from highest concentration of precursor AgNO3 were the biggest in size and tending to agglomerate when their size was above 100 nm. The three types of differently-sized silver nanoparticles were used against two bacterial pathogenic strains with broad host range; MRSA-(Methicillin-resistant Staphylococcus aureus) and Streptococcus sp. The three types of nanoparticles showed antimicrobial effects with the smallest nanoparticles being the most efficient in inhibiting bacterial growth. Discussion: Nanosilver particles biosynthesized by Cyanothece-like cyanobacterium can serve as antibacterial agent against pathogens including multi-drug resistant strains. The most appropriate nanoparticle size for efficient antimicrobial activity had to be identified. Hence, size-manipulation experiment was conducted to find the most effective size of nanosilver particles. This size manipulation was achieved by controlling the amount of starting precursor. Excessive precursor material resulted in the agglomeration of the silver nanoparticles to a size greater than 100 nm. Thereby decreasing their ability to penetrate into the inner vicinity of microbial cells and consequently decreasing their antibacterial potency. Conclusion: Antibacterial nanosilver particles can be biosynthesized and their size manipulated by green synthesis. The use of biogenic nanosilver particles as small as possible is recommended to obtain effective antibacterial agents. Full article
(This article belongs to the Special Issue Silver and Gold Compounds as Antibiotics)
Show Figures

Figure 1

10 pages, 4906 KiB  
Article
The Effect of Salinity and Light Intensity on the Batch Cultured Cyanobacteria Anabaena sp. and Cyanothece sp.
by George N. Hotos, Despoina Avramidou and Athina Samara
Hydrobiology 2022, 1(3), 278-287; https://doi.org/10.3390/hydrobiology1030020 - 24 Jun 2022
Cited by 6 | Viewed by 3229
Abstract
On the quest of discovering novel local strains of microalgal species that can be effectively cultured with industrial perspectives, two cyanobacterial strains Anabaena sp. and Cyanothece sp. were isolated from the lagoonal and saltworks waters of the Messolonghi lagoon (W. Greece). They were [...] Read more.
On the quest of discovering novel local strains of microalgal species that can be effectively cultured with industrial perspectives, two cyanobacterial strains Anabaena sp. and Cyanothece sp. were isolated from the lagoonal and saltworks waters of the Messolonghi lagoon (W. Greece). They were batch cultured at 20–21.5 °C in six combinations of three salinities (20, 40 and 60 ppt) and two light intensities (2000 and 8000 lux) resulting in: (a) Anabaena grew best at 20 and 40 ppt at high light of 8000 lux. (b) Cyanothece grew best at 40 and 60 ppt at high light. (c) Low light of 2000 lux resulted in much reduced growth in all treatments. (d) Maximal biomass yield was 1.27 and 1.77 g d.w./L for Anabaena and Cyanothece, respectively. Overall, both species have culture potential yielding biomass comparable to the average (or above) relevant values reported in the literature for various cultured cyanobacteria. Full article
Show Figures

Figure 1

20 pages, 4370 KiB  
Article
The Effect of Colored and White Light on Growth and Phycobiliproteins, Chlorophyll and Carotenoids Content of the Marine Cyanobacteria Phormidium sp. and Cyanothece sp. in Batch Cultures
by George N. Hotos and Theodoros I. Antoniadis
Life 2022, 12(6), 837; https://doi.org/10.3390/life12060837 - 4 Jun 2022
Cited by 25 | Viewed by 5380
Abstract
Two local marine cyanobacteria, Phormidium sp. and Cyanothece sp., were batch-cultured under 18–19.5 °C, at 40 ppt salinity, using white LED light of low (40 μmol photons/m2/s) and high (160 μmol/m2/s) intensity and, additionally, blue, green and red LED [...] Read more.
Two local marine cyanobacteria, Phormidium sp. and Cyanothece sp., were batch-cultured under 18–19.5 °C, at 40 ppt salinity, using white LED light of low (40 μmol photons/m2/s) and high (160 μmol/m2/s) intensity and, additionally, blue, green and red LED light. Yield was highest in high white light in both species (2.15 g dw/L in Phormidium, 1.47 g/L in Cyanothece), followed by green light (1.25 g/L) in Cyanothece and low white and green (1.26–1.33 g/L) in Phormidium. Green light maximized phycocyanin in Phormidium (0.45 mg/mL), while phycoerythrin was enhanced (0.17 mg/mL) by blue light and allophycocyanin by all colors (~0.80 mg/mL). All colors maximized phycocyanin in Cyanothece (~0.32 mg/mL), while phycoerythrin and allophycocyanin peaked under green light (~0.138 and 0.38 mg/mL, respectively). In Phormidium, maximization of chlorophyll-a (9.3 μg/mL) was induced by green light, while total carotenoids and b-carotene (3.05 and 0.89 μg/mL, respectively) by high white light. In Cyanothece, both white light intensities along with green maximized chlorophyll-a (~9 μg/mL) while high white light and green maximized total carotenoids (2.6–3.0 μg/mL). This study strongly indicates that these cyanobacteria can be cultured at the first stage under white light to accumulate sufficient biomass and, subsequently, under colored light for enhancing phycobiliproteins. Full article
(This article belongs to the Special Issue Microalgae Metabolites)
Show Figures

Figure 1

15 pages, 4046 KiB  
Article
Silver Nanoparticle Production by the Cyanobacterium Cyanothece sp.: De Novo Manipulation of Nano-Biosynthesis by Phytohormones
by Maged E. Mohamed, Nermin A. El Semary and Nancy S. Younis
Life 2022, 12(2), 139; https://doi.org/10.3390/life12020139 - 18 Jan 2022
Cited by 5 | Viewed by 2967
Abstract
Background: Numerous cyanobacteria have the potential to reduce metallic ions to form pure metal nanoparticles in a green biosynthesis process. Aim: To investigate the production capacity of silver nanoparticles by the cyanobacterium Cyanothece sp. and to examine the effect of five different phytohormones, [...] Read more.
Background: Numerous cyanobacteria have the potential to reduce metallic ions to form pure metal nanoparticles in a green biosynthesis process. Aim: To investigate the production capacity of silver nanoparticles by the cyanobacterium Cyanothece sp. and to examine the effect of five different phytohormones, indole acetic acid, kinetin; gibberellic acid; abscisic acid; and methyl jasmonate, on this capacity. Methods: The cyanobacterial strain was grown for 60 days and the harvested cyanobacterium biomass was incubated with 0.1 mM of AgNO3. Percentage conversion of Ag+ to Ag0 was calculated to indicate the AgNPs’ production capacity. Different concentrations of the five phytohormones were added to cultures and the AgNP production was monitored throughout different time intervals. Results: Cyanothece sp. biosynthesized spherical AgNPs (diameter range 70 to 140 nm, average diameter 84.37 nm). The addition of indole acetic acid and kinetin provoked the maximum conversion (87.29% and 55.16%, respectively) of Ag+ to Ag0, exceeding or slightly below that of the control (56%). Gibberellic and abscisic acids failed to elevate the Ag+ to Ag0 conversion rate (45.23% and 47.95%, respectively) above that of the control. Methyl jasmonate increased the Ag+ to Ag0 conversion rate to 90.29%, although nearly all the cyanobacterial cultures died at the end. Conclusion: Phytohormones could be used to induce or inhibit the green production of AgNPs with the cyanobacterium Cyanothece sp. This novel manipulation technique may have several applications in agriculture or biomedicine. Full article
Show Figures

Figure 1

16 pages, 3747 KiB  
Article
Salinity Stress Mitigation Using Encapsulated Biofertilizers for Sustainable Agriculture
by Nermin Adel Hussein El Semary, Mohamed Helmi Hadj Alouane, Olfa Nasr, Munirah F. Aldayel, Fatimah H. Alhaweti and Faheem Ahmed
Sustainability 2020, 12(21), 9218; https://doi.org/10.3390/su12219218 - 5 Nov 2020
Cited by 11 | Viewed by 3193
Abstract
The harmful effect of salinity stress on crops needs to be mitigated. Therefore, the application of microbial inoculum in combination with nanomaterials and methyl salicylate was investigated. Initially, different seeds were exposed to salinity levels treated with variable microbial treatments using different modes [...] Read more.
The harmful effect of salinity stress on crops needs to be mitigated. Therefore, the application of microbial inoculum in combination with nanomaterials and methyl salicylate was investigated. Initially, different seeds were exposed to salinity levels treated with variable microbial treatments using different modes of applications. The microbial treatments included application of cyanobacterial strain Cyanothece sp. and the rhizobacterium Enterobacter cloacae, alone or in combination with one another, and a final treatment using combined microbial inoculum supplied with methyl salicylate. Later, different nanomaterials were used, namely, graphene, graphene oxide, and carbon nanotubes in combination with biofertilizers on the highest salinity level. The nanomaterial with microbial treatment and methyl salicylate were applied partly as a mixture in soil and partly as capsules. Results showed that salinity stress had a drastic inhibitory effect on growth parameters, especially at −5 MPa level. Nonetheless, the microbial treatments significantly alleviated the deleterious effect of salinity stress, especially when combined with methyl salicylate. When the nanomaterials were added to biofertilizers at highest salinity level, the inhibitory effect of salinity was mostly alleviated. Smart use of synergistic biofertilizers alongside the right nanomaterial, both encapsulated and in soil, would allow for mitigation and alleviation of inhibitory effect of salinity. Full article
(This article belongs to the Section Environmental Sustainability and Applications)
Show Figures

Figure 1

16 pages, 2582 KiB  
Article
Cyanobacteria as Nanogold Factories II: Chemical Reactivity and anti-Myocardial Infraction Properties of Customized Gold Nanoparticles Biosynthesized by Cyanothece sp.
by Nancy S. Younis, Esam M. Bakir, Maged E. Mohamed and Nermin A. El Semary
Mar. Drugs 2019, 17(7), 402; https://doi.org/10.3390/md17070402 - 8 Jul 2019
Cited by 19 | Viewed by 3820
Abstract
Cyanothece sp., a coccoid, unicellular, nitrogen-fixing and hydrogen-producing cyanobacterium, has been used in this study to biosynthesize customized gold nanoparticles under certain chemical conditions. The produced gold nanoparticles had a characteristic absorption band at 525–535 nm. Two types of gold nanoparticle, the purple [...] Read more.
Cyanothece sp., a coccoid, unicellular, nitrogen-fixing and hydrogen-producing cyanobacterium, has been used in this study to biosynthesize customized gold nanoparticles under certain chemical conditions. The produced gold nanoparticles had a characteristic absorption band at 525–535 nm. Two types of gold nanoparticle, the purple and blue, were formed according to the chemical environment in which the cyanobacterium was grown. Dynamic light scattering was implemented to estimate the size of the purple and blue nanoparticles, which ranged from 80 ± 30 nm and 129 ± 40 nm in diameter, respectively. The highest scattering of laser light was recorded for the blue gold nanoparticles, which was possibly due to their larger size and higher concentration. The appearance of anodic and cathodic peaks in cyclic voltammetric scans of the blue gold nanoparticles reflected the oxidation into gold oxide, followed by the subsequent reduction into the nano metal state. The two produced forms of gold nanoparticles were used to treat isoproterenol-induced myocardial infarction in experimental rats. Both forms of nanoparticles ameliorated myocardial infarction injury, with a slight difference in their curative activity with the purple being more effective. Mechanisms that might explain the curative effect of these nanoparticles on the myocardial infarction were proposed. The morphological, physiological, and biochemical attributes of the Cyanothece sp. cyanobacterium were fundamental for the successful production of “tailored” nanoparticles, and complemented the chemical conditions for the differential biosynthesis process. The present research represents a novel approach to manipulate cyanobacterial cells towards the production of different-sized gold nanoparticles whose curative impacts vary accordingly. This is the first report on that type of manipulated gold nanoparticles biosynthesis which will hopefully open doors for further investigations and biotechnological applications. Full article
(This article belongs to the Special Issue Compounds from Cyanobacteria II)
Show Figures

Graphical abstract

Back to TopTop