The Effect of Salinity and Light Intensity on the Batch Cultured Cyanobacteria Anabaena sp. and Cyanothece sp.
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Anabaena sp.
3.2. Cyanothece sp.
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Conflicts of Interest
References
- Priyadarshani, I.; Rath, B. Commercial and industrial applications of microalgae—A review. J. Algal Biomass Utln. 2012, 3, 89–100. [Google Scholar]
- Sun, H.; Zhao, W.; Mao, X.; Li, Y.; Wu, T.; Chen, F. High-value biomass from microalgae production platforms: Strategies and progress based on carbon metabolism and energy conversion. Biotechnol. Biofuels 2018, 11, 227. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sill, C.; Torzillo, G.; Vonshak, A. Arthrospira (Spirulina). In Ecology of Cyanobacteria II: Their Diversity in Space and Time; Whitton, B.A., Ed.; Springer Science+Business: Berlin, Germany, 2012; p. 677. [Google Scholar] [CrossRef]
- Morais, M.G.; Vaz, B.S.; Morais, E.G.; Costa, J.A.V. Biologically active metabolites synthesized by microalgae. BioMed Res. Int. 2015, 2015, 835761. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Renaud, S.M.; Thinh, L.V.; Lambrinidis, G.; Parry, D.L. Effect of temperature on growth, chemical composition and fatty acid composition of tropical Australian microalgae grown in batch cultures. Aquaculture 2002, 211, 195–214. [Google Scholar] [CrossRef]
- Gatamaneni, B.L.; Orsat, V.; Lefsrud, M. Factors affecting growth of various microalgal species. Environ. Eng. Sci. 2018, 35, 1037–1048. [Google Scholar] [CrossRef]
- Wang, C.-Y.; Fu, C.-C.; Liu, Y.-C. Effects of using light-emitting diodes on the cultivation of Spirulina platensis. Biochem. Eng. 2007, 37, 21–25. [Google Scholar] [CrossRef]
- Raqiba, H.; Sibi, G. Light emitting diode (LED) illumination for enhanced growth and cellular composition in three microalgae. Adv. Microb. Res. 2019, 3, 007. [Google Scholar] [CrossRef]
- Vonshak, A.; Torzillo, G. Environmental Stress Physiology. In Handbook of Microalgal Culture: Biotechnology and Applied Phycology; Richmond, A., Ed.; Blackwell Science Ltd.: Hoboken, NJ, USA, 2004; pp. 73–75. ISBN 0–632–05953–2. [Google Scholar]
- Barsanti, L.; Gualtiery, P. Algae: Anatomy, Biochemistry and Biotechnology; CRC Taylor & Francis: New York, NY, USA, 2006. [Google Scholar]
- Bilanovic, D.; Andargatchew, A.; Kroeger, T.; Shelef, G. Freshwater and marine microalgae sequestering of CO2 at different C and N concentrations. Response surface methodology analysis. Energy Convers. Manag. 2009, 50, 262–267. [Google Scholar] [CrossRef]
- Hotos, G.; Avramidou, D.; Bekiari, V. Calibration curves of culture density assessed by spectrophotometer for three microalgae (Nephroselmis sp., Amphidinium carterae and Phormidium sp.). Eur. J. Biol. Biotechnol. 2020, 1, 1–7. [Google Scholar] [CrossRef]
- Coutteau, P. Manual on the production and use of live food for aquaculture. FAO Fish. Tech. Pap. 1996, 361, 7–48. [Google Scholar]
- Pal, W.S.; Singh, K.N.; Azam, K. Evaluation of Relationship between Light Intensity (Lux) and Growth of Chaetoceros muelleri. J. Oceanogr. Mar. Res. 2013, 1, 1–4. [Google Scholar]
- Parmar, A.; Singh, N.K.; Pandey, A.; Gnansounou, E.; Madamwar, D. Cyanobacteria and microalgae: A positive prospect for biofuels. Bioresour. Technol. 2011, 102, 10163–10172. [Google Scholar] [CrossRef]
- Wahidin, S.; Idris, A.; Muhamad Shaleh, S.R. The influence of light intensity and photoperiod on the growth and lipid content of microalgae Nannochloropsis sp. Bioresour. Technol. 2013, 129, 7–11. [Google Scholar] [CrossRef]
- Guermazi, W.; Masmoudi, S.; Boukhris, S.; Ayadi, H.; Morant-Manceau, A. Under low irradiation, the light regime modifies growth and metabolite production in various species of microalgae. J. Appl. Phycol. 2014, 26, 2283–2293. [Google Scholar] [CrossRef]
- Singh, S.P.; Singh, P. Effect of temperature and light on the growth of algae species: A review. Renew. Sustain. Energy Rev. 2015, 50, 431–444. [Google Scholar] [CrossRef]
- Hotos, G.N. Culture Growth of the Cyanobacterium Phormidium sp. in Various Salinity and Light Regimes and Their Influence on Its Phycocyanin and Other Pigments Content. J. Mar. Sci. Eng. 2021, 9, 798. [Google Scholar] [CrossRef]
- Chisti, Y. Constraints to commercialization of algal fuels. J. Biotechnol. 2013, 167, 201–214. [Google Scholar] [CrossRef]
- Pade, N.; Hagemann, M. Salt Acclimation of Cyanobacteria and Their Application in Biotechnology. Life 2015, 5, 25–49. [Google Scholar] [CrossRef]
- Hotos, G.N. A Preliminary Survey on the Planktonic Biota in a Hypersaline Pond of Messolonghi Saltworks (W. Greece). Diversity 2021, 13, 270. [Google Scholar] [CrossRef]
- Joset, F.; Jeanjean, R.; Hagemann, M. Dynamics of the response of cyanobacteria to salt stress: Deciphering the molecular events. Physiol. Plant 1996, 96, 738–744. [Google Scholar] [CrossRef]
- Thajuddin, N.; Subramanian, G. Cyanobacterial biodiversity and potential applications in biotechnology. Curr. Sci. 2005, 89, 47–57. [Google Scholar]
- Rippka, R.; Deruelles, J.; Waterbury, J.B.; Herdman, M.; Stainer, R.Y. Generic assignments, strain histories and properties of pure cultures of cyanobacteria. J. Gen. Microbiol. 1979, 111, 1–61. [Google Scholar] [CrossRef] [Green Version]
- Blumwald, E.; Tel-Or, E. Osmoregulation and cell composition in salt-adaptation of Nostoc muscorum. Arch. Microbiol. 1982, 132, 168–172. [Google Scholar] [CrossRef]
- Sheikh, T.A.; Baba, Z.A.; Parvez, S. Effect of NaCl on Growth and Physiological Traits of Anabena cylindrica L. Pak. J. Biol. Sci. 2006, 9, 2528–2530. [Google Scholar] [CrossRef] [Green Version]
- Fu, F.X.; Bell, P.R.F. Effect of salinity on growth, pigmentation, N2 fixation and alkaline phosphatase activity of cultured Trichodesmium spp. Mar. Ecol. Prog. Ser. 2003, 257, 69–76. [Google Scholar] [CrossRef] [Green Version]
- Nagle, V.L.; Mhalsekar, N.M.; Jagtap, T.G. Isolation, optimization and characterization of selected cyanophycean members. Indian J. Mar. Sci. 2010, 39, 212–218. [Google Scholar]
- Muruga, B.N.; Wagacha, J.M.; Kabaru, J.M.; Amugune, N.; Duboise, S.M. Effect of physicochemical conditions on growth rates of cyanobacteria species isolated from Lake Magadi, a Soda lake in Kenya. WebPub J. Sci. Res. 2014, 2, 41–50. [Google Scholar]
- Tel-Or, E. Response of N2-fixing cyanobacteria to salt. Appl. Environ. Microbiol. 1980, 40, 689–693. [Google Scholar] [CrossRef] [Green Version]
- Molitor, V.; Erber, W.; Peschek, G.A. Increased levels of cytochrome oxidase and sodium-proton antiporter in the plasma membrane of Anacystis nidulans after growth in sodium-enriched media. FEBS Lett. 1986, 204, 251–256. [Google Scholar] [CrossRef] [Green Version]
- Gabbay-Azaria, R.; Schonfeld, M.; Tel-Or, S.; Messinger, R.; Tel-Or, E. Respiratory activity in the marine cyanobacterium Spirulina subsalsa and its role in salt tolerance. Arch. Microbiol. 1992, 157, 183–190. [Google Scholar] [CrossRef]
- Jeanjean, R.; Bedu, S.; Havaux, M.; Matthijs, H.C.P.; Joset, F. Salt-induced photosystem I cyclic electron transfer restores growth on low inorganic carbon in a type 1 NAD(P)H dehydrogenase deficient mutant Synechocystis PCC6803. FEMS Microbiol. Lett. 1998, 167, 131–137. [Google Scholar] [CrossRef]
- Fava, G.; Martini, E. Effect of inbreeding and salinity on quantitative characters and asymmetry of Tisbe holothuriae (Humes). Hydrobiologia 1988, 167, 463–467. [Google Scholar] [CrossRef]
- Zhang, Q.; Gradinger, R.; Spindler, M. Experimental study on the effect of salinity on growth rates of Arctic-sea-ice algae from the Greenland Sea. Boreal Environ. Res. 1999, 4, 1–8. [Google Scholar]
- Sudhir, P.; Murthy, S.D.S. Effects of salt stress on basic processes of photosynthesis. Photosynthetica 2004, 42, 481–486. [Google Scholar] [CrossRef]
- Hu, H.; Gao, K. Response of growth and fatty acid compositions of Nannochloropsis sp. to environmental factors under elevated CO2 concentration. Biotechnol. Lett. 2006, 28, 987–992. [Google Scholar] [CrossRef]
- Takagi, M.; Karseno; Yoshida, T. Effect of salt concentration on intracellular accumulation of lipids and triacylglycerides in marine microalgae Dunaliella cells. J. Biosci. Bioeng. 2006, 101, 223–226. [Google Scholar] [CrossRef] [Green Version]
- Huang, W.W.; Dong, B.Z.; Cai, Z.P.; Duan, S.S. Growth effects on mixed culture of Dunaliella salina and Phaeodactylum tricornutum under different inoculation densities and nitrogen concentrations. Afr. J. Biotechnol. 2011, 10, 13164–13174. [Google Scholar]
- Klepacz-Smółka, A.; Pietrzyk, D.; Szeląg, R.; Głuszcz, P.; Daroch, M.; Tang, J.; Ledakowicz, S. Effect of light colour and photoperiod on biomass growth and phycocyanin production by Synechococcus PCC 6715. Bioresour. Technol. 2020, 313, 123700. [Google Scholar] [CrossRef]
- Kumar, M.; Kulshreshtha, J.; Singh, G.P. Growth and biopigment accumulation of cyanobacterium Spirulina platensis at different light intensities and temperature. Braz. J. Microbiol. 2011, 42, 1128–1135. [Google Scholar] [CrossRef] [Green Version]
- Johnson, E.M.; Kumar, K.; Das, D. Physicochemical parameters optimization, and purification of phycobiliproteins from the isolated Nostoc sp. Bioresour. Technol. 2014, 166, 541–547. [Google Scholar] [CrossRef]
- Walter, A.; de Carvalho, J.C.; Soccol, V.T.; Bisinella de Faria, A.B.; Ghiggi, V.; Soccol, C.R. Study of Phycocyanin Production from Spirulina platensis Under Different Light Spectra. Brasilian Arch. Biol. Technol. 2011, 54, 675–682. [Google Scholar] [CrossRef]
- Pandey, J.P.; Pathak, N.; Tiwari, A. Standardization of pH and Light Intensity for the Biomass Production of Spirulina platensis. J. Algal Biomass Util. 2010, 1, 93–102. [Google Scholar]
- Ho, S.; Liao, J.; Chen, C.; Chang, J. Bioresource Technology Combining light strategies with recycled medium to enhance the economic feasibility of phycocyanin production with Spirulina platensis. Bioresour. Technol. 2018, 247, 669–675. [Google Scholar] [CrossRef]
- Khatoon, H.; Leong, L.K.; Rahman, N.A.; Mian, S.; Begum, H.; Banerjee, S.; Endut, A. Effects of different light source and media on growth and production of phycobiliprotein from freshwater cyanobacteria. Bioresour. Technol. 2018, 249, 652–658. [Google Scholar] [CrossRef]
- Colla, L.M.; Reinehr, C.O.; Reichert, C.; Costa, J.A.V. Production of biomass and nutraceutical compounds by Spirulina platensis under different temperature and nitrogen regimes. Bioresour. Technol. 2007, 98, 1489–1493. [Google Scholar] [CrossRef]
- Robarts, R.D.; Zohary, T. Temperature effects on photosynthetic capacity, respiration and growth rates of bloom-forming cyanobacteria. N. Z. J. Mar. Fresh. Res. 1987, 21, 391–399. [Google Scholar] [CrossRef] [Green Version]
Conditions | 20 ppt-L | 20 ppt-XL | 40 ppt-L | 40 ppt-XL | 60 ppt-L | 60 ppt-XL |
---|---|---|---|---|---|---|
Anabaena sp. | ||||||
SGR ± SE | 0.168 a ± 0.006 | 0.192 b ± 0.003 | 0.185 c,b ± 0.007 | 0.213 d ± 0.009 | 0.160 e,a ± 0.002 | 0.131 f ± 0.001 |
Day interval | 4th–11th | 4–11 | 4–11 | 4–11 | 4–11 | 4–11 |
n | 18 | 18 | 18 | 18 | 18 | 18 |
Tg ± SE (days) | 4.212 ± 0.143 | 3.371 ± 0.031 | 3.416 ± 0.065 | 3.052 ± 0.065 | 3.534 ± 0.071 | 3.316 ± 0.031 |
n | 18 | 18 | 18 | 18 | 18 | 18 |
Cyanothece sp. | ||||||
SGR ± SE | 0.041 a ± 0.004 | 0.084 b ± 0.002 | 0.105 c ± 0.004 | 0.281d ± 0.003 | 0.119 e,c ± 0.014 | 0.260 f ± 0.005 |
Day interval | 6th–11th | 6–11 | 6–11 | 6–11 | 6–11 | 6–11 |
n | 9 | 9 | 9 | 9 | 9 | 9 |
Tg ± SE (days) | 16.99 ±1.395 | 8.29 ± 0.162 | 6.61 ± 0.253 | 2.471 ± 0.023 | 5.84 ± 0.643 | 2.67 ± 0.051 |
n | 9 | 9 | 9 | 9 | 9 | 9 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hotos, G.N.; Avramidou, D.; Samara, A. The Effect of Salinity and Light Intensity on the Batch Cultured Cyanobacteria Anabaena sp. and Cyanothece sp. Hydrobiology 2022, 1, 278-287. https://doi.org/10.3390/hydrobiology1030020
Hotos GN, Avramidou D, Samara A. The Effect of Salinity and Light Intensity on the Batch Cultured Cyanobacteria Anabaena sp. and Cyanothece sp. Hydrobiology. 2022; 1(3):278-287. https://doi.org/10.3390/hydrobiology1030020
Chicago/Turabian StyleHotos, George N., Despoina Avramidou, and Athina Samara. 2022. "The Effect of Salinity and Light Intensity on the Batch Cultured Cyanobacteria Anabaena sp. and Cyanothece sp." Hydrobiology 1, no. 3: 278-287. https://doi.org/10.3390/hydrobiology1030020
APA StyleHotos, G. N., Avramidou, D., & Samara, A. (2022). The Effect of Salinity and Light Intensity on the Batch Cultured Cyanobacteria Anabaena sp. and Cyanothece sp. Hydrobiology, 1(3), 278-287. https://doi.org/10.3390/hydrobiology1030020