The Effect of Salinity and Light Intensity on the Batch Cultured Cyanobacteria Anabaena sp. and Cyanothece sp.
Abstract
1. Introduction
2. Materials and Methods
3. Results
3.1. Anabaena sp.
3.2. Cyanothece sp.
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Conflicts of Interest
References
- Priyadarshani, I.; Rath, B. Commercial and industrial applications of microalgae—A review. J. Algal Biomass Utln. 2012, 3, 89–100. [Google Scholar]
- Sun, H.; Zhao, W.; Mao, X.; Li, Y.; Wu, T.; Chen, F. High-value biomass from microalgae production platforms: Strategies and progress based on carbon metabolism and energy conversion. Biotechnol. Biofuels 2018, 11, 227. [Google Scholar] [CrossRef] [PubMed]
- Sill, C.; Torzillo, G.; Vonshak, A. Arthrospira (Spirulina). In Ecology of Cyanobacteria II: Their Diversity in Space and Time; Whitton, B.A., Ed.; Springer Science+Business: Berlin, Germany, 2012; p. 677. [Google Scholar] [CrossRef]
- Morais, M.G.; Vaz, B.S.; Morais, E.G.; Costa, J.A.V. Biologically active metabolites synthesized by microalgae. BioMed Res. Int. 2015, 2015, 835761. [Google Scholar] [CrossRef] [PubMed]
- Renaud, S.M.; Thinh, L.V.; Lambrinidis, G.; Parry, D.L. Effect of temperature on growth, chemical composition and fatty acid composition of tropical Australian microalgae grown in batch cultures. Aquaculture 2002, 211, 195–214. [Google Scholar] [CrossRef]
- Gatamaneni, B.L.; Orsat, V.; Lefsrud, M. Factors affecting growth of various microalgal species. Environ. Eng. Sci. 2018, 35, 1037–1048. [Google Scholar] [CrossRef]
- Wang, C.-Y.; Fu, C.-C.; Liu, Y.-C. Effects of using light-emitting diodes on the cultivation of Spirulina platensis. Biochem. Eng. 2007, 37, 21–25. [Google Scholar] [CrossRef]
- Raqiba, H.; Sibi, G. Light emitting diode (LED) illumination for enhanced growth and cellular composition in three microalgae. Adv. Microb. Res. 2019, 3, 007. [Google Scholar] [CrossRef]
- Vonshak, A.; Torzillo, G. Environmental Stress Physiology. In Handbook of Microalgal Culture: Biotechnology and Applied Phycology; Richmond, A., Ed.; Blackwell Science Ltd.: Hoboken, NJ, USA, 2004; pp. 73–75. ISBN 0–632–05953–2. [Google Scholar]
- Barsanti, L.; Gualtiery, P. Algae: Anatomy, Biochemistry and Biotechnology; CRC Taylor & Francis: New York, NY, USA, 2006. [Google Scholar]
- Bilanovic, D.; Andargatchew, A.; Kroeger, T.; Shelef, G. Freshwater and marine microalgae sequestering of CO2 at different C and N concentrations. Response surface methodology analysis. Energy Convers. Manag. 2009, 50, 262–267. [Google Scholar] [CrossRef]
- Hotos, G.; Avramidou, D.; Bekiari, V. Calibration curves of culture density assessed by spectrophotometer for three microalgae (Nephroselmis sp., Amphidinium carterae and Phormidium sp.). Eur. J. Biol. Biotechnol. 2020, 1, 1–7. [Google Scholar] [CrossRef]
- Coutteau, P. Manual on the production and use of live food for aquaculture. FAO Fish. Tech. Pap. 1996, 361, 7–48. [Google Scholar]
- Pal, W.S.; Singh, K.N.; Azam, K. Evaluation of Relationship between Light Intensity (Lux) and Growth of Chaetoceros muelleri. J. Oceanogr. Mar. Res. 2013, 1, 1–4. [Google Scholar]
- Parmar, A.; Singh, N.K.; Pandey, A.; Gnansounou, E.; Madamwar, D. Cyanobacteria and microalgae: A positive prospect for biofuels. Bioresour. Technol. 2011, 102, 10163–10172. [Google Scholar] [CrossRef]
- Wahidin, S.; Idris, A.; Muhamad Shaleh, S.R. The influence of light intensity and photoperiod on the growth and lipid content of microalgae Nannochloropsis sp. Bioresour. Technol. 2013, 129, 7–11. [Google Scholar] [CrossRef]
- Guermazi, W.; Masmoudi, S.; Boukhris, S.; Ayadi, H.; Morant-Manceau, A. Under low irradiation, the light regime modifies growth and metabolite production in various species of microalgae. J. Appl. Phycol. 2014, 26, 2283–2293. [Google Scholar] [CrossRef]
- Singh, S.P.; Singh, P. Effect of temperature and light on the growth of algae species: A review. Renew. Sustain. Energy Rev. 2015, 50, 431–444. [Google Scholar] [CrossRef]
- Hotos, G.N. Culture Growth of the Cyanobacterium Phormidium sp. in Various Salinity and Light Regimes and Their Influence on Its Phycocyanin and Other Pigments Content. J. Mar. Sci. Eng. 2021, 9, 798. [Google Scholar] [CrossRef]
- Chisti, Y. Constraints to commercialization of algal fuels. J. Biotechnol. 2013, 167, 201–214. [Google Scholar] [CrossRef]
- Pade, N.; Hagemann, M. Salt Acclimation of Cyanobacteria and Their Application in Biotechnology. Life 2015, 5, 25–49. [Google Scholar] [CrossRef]
- Hotos, G.N. A Preliminary Survey on the Planktonic Biota in a Hypersaline Pond of Messolonghi Saltworks (W. Greece). Diversity 2021, 13, 270. [Google Scholar] [CrossRef]
- Joset, F.; Jeanjean, R.; Hagemann, M. Dynamics of the response of cyanobacteria to salt stress: Deciphering the molecular events. Physiol. Plant 1996, 96, 738–744. [Google Scholar] [CrossRef]
- Thajuddin, N.; Subramanian, G. Cyanobacterial biodiversity and potential applications in biotechnology. Curr. Sci. 2005, 89, 47–57. [Google Scholar]
- Rippka, R.; Deruelles, J.; Waterbury, J.B.; Herdman, M.; Stainer, R.Y. Generic assignments, strain histories and properties of pure cultures of cyanobacteria. J. Gen. Microbiol. 1979, 111, 1–61. [Google Scholar] [CrossRef]
- Blumwald, E.; Tel-Or, E. Osmoregulation and cell composition in salt-adaptation of Nostoc muscorum. Arch. Microbiol. 1982, 132, 168–172. [Google Scholar] [CrossRef]
- Sheikh, T.A.; Baba, Z.A.; Parvez, S. Effect of NaCl on Growth and Physiological Traits of Anabena cylindrica L. Pak. J. Biol. Sci. 2006, 9, 2528–2530. [Google Scholar] [CrossRef][Green Version]
- Fu, F.X.; Bell, P.R.F. Effect of salinity on growth, pigmentation, N2 fixation and alkaline phosphatase activity of cultured Trichodesmium spp. Mar. Ecol. Prog. Ser. 2003, 257, 69–76. [Google Scholar] [CrossRef]
- Nagle, V.L.; Mhalsekar, N.M.; Jagtap, T.G. Isolation, optimization and characterization of selected cyanophycean members. Indian J. Mar. Sci. 2010, 39, 212–218. [Google Scholar]
- Muruga, B.N.; Wagacha, J.M.; Kabaru, J.M.; Amugune, N.; Duboise, S.M. Effect of physicochemical conditions on growth rates of cyanobacteria species isolated from Lake Magadi, a Soda lake in Kenya. WebPub J. Sci. Res. 2014, 2, 41–50. [Google Scholar]
- Tel-Or, E. Response of N2-fixing cyanobacteria to salt. Appl. Environ. Microbiol. 1980, 40, 689–693. [Google Scholar] [CrossRef]
- Molitor, V.; Erber, W.; Peschek, G.A. Increased levels of cytochrome oxidase and sodium-proton antiporter in the plasma membrane of Anacystis nidulans after growth in sodium-enriched media. FEBS Lett. 1986, 204, 251–256. [Google Scholar] [CrossRef]
- Gabbay-Azaria, R.; Schonfeld, M.; Tel-Or, S.; Messinger, R.; Tel-Or, E. Respiratory activity in the marine cyanobacterium Spirulina subsalsa and its role in salt tolerance. Arch. Microbiol. 1992, 157, 183–190. [Google Scholar] [CrossRef]
- Jeanjean, R.; Bedu, S.; Havaux, M.; Matthijs, H.C.P.; Joset, F. Salt-induced photosystem I cyclic electron transfer restores growth on low inorganic carbon in a type 1 NAD(P)H dehydrogenase deficient mutant Synechocystis PCC6803. FEMS Microbiol. Lett. 1998, 167, 131–137. [Google Scholar] [CrossRef]
- Fava, G.; Martini, E. Effect of inbreeding and salinity on quantitative characters and asymmetry of Tisbe holothuriae (Humes). Hydrobiologia 1988, 167, 463–467. [Google Scholar] [CrossRef]
- Zhang, Q.; Gradinger, R.; Spindler, M. Experimental study on the effect of salinity on growth rates of Arctic-sea-ice algae from the Greenland Sea. Boreal Environ. Res. 1999, 4, 1–8. [Google Scholar]
- Sudhir, P.; Murthy, S.D.S. Effects of salt stress on basic processes of photosynthesis. Photosynthetica 2004, 42, 481–486. [Google Scholar] [CrossRef]
- Hu, H.; Gao, K. Response of growth and fatty acid compositions of Nannochloropsis sp. to environmental factors under elevated CO2 concentration. Biotechnol. Lett. 2006, 28, 987–992. [Google Scholar] [CrossRef]
- Takagi, M.; Karseno; Yoshida, T. Effect of salt concentration on intracellular accumulation of lipids and triacylglycerides in marine microalgae Dunaliella cells. J. Biosci. Bioeng. 2006, 101, 223–226. [Google Scholar] [CrossRef]
- Huang, W.W.; Dong, B.Z.; Cai, Z.P.; Duan, S.S. Growth effects on mixed culture of Dunaliella salina and Phaeodactylum tricornutum under different inoculation densities and nitrogen concentrations. Afr. J. Biotechnol. 2011, 10, 13164–13174. [Google Scholar]
- Klepacz-Smółka, A.; Pietrzyk, D.; Szeląg, R.; Głuszcz, P.; Daroch, M.; Tang, J.; Ledakowicz, S. Effect of light colour and photoperiod on biomass growth and phycocyanin production by Synechococcus PCC 6715. Bioresour. Technol. 2020, 313, 123700. [Google Scholar] [CrossRef]
- Kumar, M.; Kulshreshtha, J.; Singh, G.P. Growth and biopigment accumulation of cyanobacterium Spirulina platensis at different light intensities and temperature. Braz. J. Microbiol. 2011, 42, 1128–1135. [Google Scholar] [CrossRef]
- Johnson, E.M.; Kumar, K.; Das, D. Physicochemical parameters optimization, and purification of phycobiliproteins from the isolated Nostoc sp. Bioresour. Technol. 2014, 166, 541–547. [Google Scholar] [CrossRef]
- Walter, A.; de Carvalho, J.C.; Soccol, V.T.; Bisinella de Faria, A.B.; Ghiggi, V.; Soccol, C.R. Study of Phycocyanin Production from Spirulina platensis Under Different Light Spectra. Brasilian Arch. Biol. Technol. 2011, 54, 675–682. [Google Scholar] [CrossRef]
- Pandey, J.P.; Pathak, N.; Tiwari, A. Standardization of pH and Light Intensity for the Biomass Production of Spirulina platensis. J. Algal Biomass Util. 2010, 1, 93–102. [Google Scholar]
- Ho, S.; Liao, J.; Chen, C.; Chang, J. Bioresource Technology Combining light strategies with recycled medium to enhance the economic feasibility of phycocyanin production with Spirulina platensis. Bioresour. Technol. 2018, 247, 669–675. [Google Scholar] [CrossRef]
- Khatoon, H.; Leong, L.K.; Rahman, N.A.; Mian, S.; Begum, H.; Banerjee, S.; Endut, A. Effects of different light source and media on growth and production of phycobiliprotein from freshwater cyanobacteria. Bioresour. Technol. 2018, 249, 652–658. [Google Scholar] [CrossRef]
- Colla, L.M.; Reinehr, C.O.; Reichert, C.; Costa, J.A.V. Production of biomass and nutraceutical compounds by Spirulina platensis under different temperature and nitrogen regimes. Bioresour. Technol. 2007, 98, 1489–1493. [Google Scholar] [CrossRef]
- Robarts, R.D.; Zohary, T. Temperature effects on photosynthetic capacity, respiration and growth rates of bloom-forming cyanobacteria. N. Z. J. Mar. Fresh. Res. 1987, 21, 391–399. [Google Scholar] [CrossRef]
Conditions | 20 ppt-L | 20 ppt-XL | 40 ppt-L | 40 ppt-XL | 60 ppt-L | 60 ppt-XL |
---|---|---|---|---|---|---|
Anabaena sp. | ||||||
SGR ± SE | 0.168 a ± 0.006 | 0.192 b ± 0.003 | 0.185 c,b ± 0.007 | 0.213 d ± 0.009 | 0.160 e,a ± 0.002 | 0.131 f ± 0.001 |
Day interval | 4th–11th | 4–11 | 4–11 | 4–11 | 4–11 | 4–11 |
n | 18 | 18 | 18 | 18 | 18 | 18 |
Tg ± SE (days) | 4.212 ± 0.143 | 3.371 ± 0.031 | 3.416 ± 0.065 | 3.052 ± 0.065 | 3.534 ± 0.071 | 3.316 ± 0.031 |
n | 18 | 18 | 18 | 18 | 18 | 18 |
Cyanothece sp. | ||||||
SGR ± SE | 0.041 a ± 0.004 | 0.084 b ± 0.002 | 0.105 c ± 0.004 | 0.281d ± 0.003 | 0.119 e,c ± 0.014 | 0.260 f ± 0.005 |
Day interval | 6th–11th | 6–11 | 6–11 | 6–11 | 6–11 | 6–11 |
n | 9 | 9 | 9 | 9 | 9 | 9 |
Tg ± SE (days) | 16.99 ±1.395 | 8.29 ± 0.162 | 6.61 ± 0.253 | 2.471 ± 0.023 | 5.84 ± 0.643 | 2.67 ± 0.051 |
n | 9 | 9 | 9 | 9 | 9 | 9 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hotos, G.N.; Avramidou, D.; Samara, A. The Effect of Salinity and Light Intensity on the Batch Cultured Cyanobacteria Anabaena sp. and Cyanothece sp. Hydrobiology 2022, 1, 278-287. https://doi.org/10.3390/hydrobiology1030020
Hotos GN, Avramidou D, Samara A. The Effect of Salinity and Light Intensity on the Batch Cultured Cyanobacteria Anabaena sp. and Cyanothece sp. Hydrobiology. 2022; 1(3):278-287. https://doi.org/10.3390/hydrobiology1030020
Chicago/Turabian StyleHotos, George N., Despoina Avramidou, and Athina Samara. 2022. "The Effect of Salinity and Light Intensity on the Batch Cultured Cyanobacteria Anabaena sp. and Cyanothece sp." Hydrobiology 1, no. 3: 278-287. https://doi.org/10.3390/hydrobiology1030020
APA StyleHotos, G. N., Avramidou, D., & Samara, A. (2022). The Effect of Salinity and Light Intensity on the Batch Cultured Cyanobacteria Anabaena sp. and Cyanothece sp. Hydrobiology, 1(3), 278-287. https://doi.org/10.3390/hydrobiology1030020