Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (211)

Search Parameters:
Keywords = cultivated land management scale

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
29 pages, 3782 KiB  
Article
Land Use Evolution and Multi-Scenario Simulation of Shrinking Border Counties Based on the PLUS Model: A Case Study of Changbai County
by Bingxin Li, Chennan He, Xue Jiang, Qiang Zheng and Jiashuang Li
Sustainability 2025, 17(14), 6441; https://doi.org/10.3390/su17146441 - 14 Jul 2025
Viewed by 408
Abstract
The sharp decline in the population along the northeastern border poses a significant threat to the security of the region, the prosperity of border areas, and the stability of the social economy in our country. Effective management of human and land resources is [...] Read more.
The sharp decline in the population along the northeastern border poses a significant threat to the security of the region, the prosperity of border areas, and the stability of the social economy in our country. Effective management of human and land resources is crucial for the high-quality development of border areas. Taking Changbai County on the northeastern border as an example, based on multi-source data such as land use, the natural environment, climate conditions, transportation location, and social economy from 2000 to 2020, the land use transfer matrix, spatial kernel density, and PLUS model were used to analyze the spatio-temporal evolution characteristics of land use and explore simulation scenarios and optimization strategies under different planning concepts. This study reveals the following: (1) During the study period, the construction land continued to increase, but the growth rate slowed down, mainly transferred from cultivated land and forest land, and the spatial structure evolved from a single center to a double center, with the core always concentrated along the border. (2) The distance to the port (transportation location), night light (social economy), slope (natural environment), and average annual temperature (climate conditions) are the main driving factors for the change in construction land, and the PLUS model can effectively simulate the land use trend under population contraction. (3) In the reduction scenario, the construction land decreased by 1.67 km2, the scale of Changbai Town slightly reduced, and the contraction around Malugou Town and Badagou Town was more significant. The study shows that the reduction scenario is more conducive to the population aggregation and industrial carrying capacity improvement of shrinking county towns, which is in line with the high-quality development needs of border areas in our country. Full article
Show Figures

Figure 1

24 pages, 3167 KiB  
Article
Effects of Vegetation Heterogeneity on Butterfly Diversity in Urban Parks: Applying the Patch–Matrix Framework at Fine Scales
by Dan Han, Cheng Wang, Junying She, Zhenkai Sun and Luqin Yin
Sustainability 2025, 17(14), 6289; https://doi.org/10.3390/su17146289 - 9 Jul 2025
Viewed by 286
Abstract
(1) Background: Urban parks play a critical role in conserving biodiversity within city landscapes, yet the effects of fine-scale microhabitat heterogeneity remain poorly understood. This study examines how land cover and vegetation unit type within parks influence butterfly diversity. (2) Methods: From July [...] Read more.
(1) Background: Urban parks play a critical role in conserving biodiversity within city landscapes, yet the effects of fine-scale microhabitat heterogeneity remain poorly understood. This study examines how land cover and vegetation unit type within parks influence butterfly diversity. (2) Methods: From July to September 2019 and June to September 2020, adult butterflies were surveyed in 27 urban parks across Beijing. We classified vegetation into units based on vertical structure and management intensity, and then applied the patch–matrix framework and landscape metrics to quantify fine-scale heterogeneity in vegetation unit composition and configuration. Generalized linear models (GLM), generalized additive models (GAM), and random forest (RF) models were applied to identify factors influencing butterfly richness (Chao1 index) and abundance. (3) Results: In total, 10,462 individuals representing 37 species, 28 genera, and five families were recorded. Model results revealed that the proportion of park area covered by spontaneous herbaceous areas (SHA), wooded spontaneous meadows (WSM), and the Shannon diversity index (SHDI) of vegetation units were positively associated with butterfly species richness. In contrast, butterfly abundance was primarily influenced by the proportion of park area covered by cultivated meadows (CM) and overall green-space coverage. (4) Conclusions: Fine-scale vegetation patch composition within urban parks significantly influences butterfly diversity. Our findings support applying the patch–matrix framework at intra-park scales and suggest that integrating spontaneous herbaceous zones—especially wooded spontaneous meadows—with managed flower-rich meadows will enhance butterfly diversity in urban parks. Full article
Show Figures

Figure 1

29 pages, 22994 KiB  
Article
Simulating Land Use and Evaluating Spatial Patterns in Wuhan Under Multiple Climate Scenarios: An Integrated SD-PLUS-FD Modeling Approach
by Hao Yuan, Xinyu Li, Meichen Ding, Guoqiang Shen and Mengyuan Xu
Land 2025, 14(7), 1412; https://doi.org/10.3390/land14071412 - 4 Jul 2025
Viewed by 434
Abstract
Amid intensifying global climate anomalies and accelerating urban expansion, land use systems have become increasingly dynamic, complex, and uncertain. Accurately predicting and scientifically evaluating the evolution of land use patterns is essential to advancing territorial spatial governance and achieving ecological security goals. However, [...] Read more.
Amid intensifying global climate anomalies and accelerating urban expansion, land use systems have become increasingly dynamic, complex, and uncertain. Accurately predicting and scientifically evaluating the evolution of land use patterns is essential to advancing territorial spatial governance and achieving ecological security goals. However, most existing land use models emphasize quantity forecasting and spatial allocation, while overlooking the third critical dimension—structural complexity, which is essential for understanding the nonlinear, fragmented evolution of urban systems, thus limiting their ability to fully capture the evolutionary characteristics of urban land systems. To address this gap, this study proposes an integrated SD-PLUS-FD model, which combines System Dynamics, Patch-based Land Use Simulation, and Fractal Dimension analysis to construct a comprehensive three-dimensional framework for simulating and evaluating land use patterns in terms of quantity, spatial distribution, and structural complexity. Wuhan is selected as the case study area, with simulations conducted under three IPCC-aligned climate scenarios—SSP1-2.6, SSP2-4.5, and SSP5-8.5—to project land use changes by 2030. The SD model demonstrates robust predictive performance, with an overall error of less than ±5%, while the PLUS model achieves high spatial accuracy (average Kappa >0.7996; average overall accuracy >0.8856). Fractal dimension analysis further reveals that since 2000, the spatial boundary complexity of all land use types—except forest land—has generally shown an upward trend across multiple scenarios, highlighting the increasingly nonlinear and fragmented nature of urban expansion. The FD values for construction land and cultivated land declined to their historical low in 2005, then gradually increased, reaching their peak under the SSP1-2.6 scenario. Notably, the increase in FD for construction land was significantly greater than that for cultivated land, indicating a stronger dynamic response in spatial structural evolution. In contrast, forest land exhibited pronounced scenario-dependent variations in FD. Its structural complexity remained generally stable under all scenarios except SSP5-8.5, reflecting higher structural resilience and boundary adaptability under diverse socioclimatic conditions. The SD-PLUS-FD model effectively reveals how land systems respond to different socioclimatic drivers in both spatial and structural dimensions. This three-dimensional framework reveals how land systems respond to socioclimatic drivers across temporal, spatial, and structural scales, offering strategic insights for climate-resilient planning and optimized land resource management in rapidly urbanizing regions. Full article
Show Figures

Figure 1

22 pages, 2370 KiB  
Article
Effects of Land Use Conversion from Upland Field to Paddy Field on Soil Temperature Dynamics and Heat Transfer Processes
by Jun Yi, Mengyi Xu, Qian Ren, Hailin Zhang, Muxing Liu, Yuanhang Fei, Shenglong Li, Hanjiang Nie, Qi Li, Xin Ni and Yongsheng Wang
Land 2025, 14(7), 1352; https://doi.org/10.3390/land14071352 - 26 Jun 2025
Viewed by 356
Abstract
Investigating soil temperature and the heat transfer process is essential for understanding water–heat changes and energy balance in farmland. The conversion from upland fields (UFs) to paddy fields (PFs) alters the land cover, irrigation regimes, and soil properties, leading to differences in soil [...] Read more.
Investigating soil temperature and the heat transfer process is essential for understanding water–heat changes and energy balance in farmland. The conversion from upland fields (UFs) to paddy fields (PFs) alters the land cover, irrigation regimes, and soil properties, leading to differences in soil temperature, thermal properties, and heat fluxes. Our study aimed to quantify the effects of converting UFs to PFs on soil temperature and heat transfer processes, and to elucidate its underlying mechanisms. A long-term cultivated UF and a newly developed PF (converted from a UF in May 2015) were selected for this study. Soil water content (SWC) and temperature were monitored hourly over two years (June 2017 to June 2019) in five soil horizons (i.e., 10, 20, 40, 60, and 90 cm) at both fields. The mean soil temperature differences between the UF and PF at each depth on the annual scale varied from −0.1 to 0.4 °C, while they fluctuated more significantly on the seasonal (−0.9~1.8 °C), monthly (−1.5~2.5 °C), daily (−5.6~4.9 °C), and hourly (−7.3~11.3 °C) scales. The SWC in the PF was significantly higher than that in the UF, primarily due to differences in tillage practices, which resulted in a narrower range of soil temperature variation in the PF. Additionally, the SWC and soil physicochemical properties significantly altered the soil’s thermal properties. Compared with the UF, the volumetric heat capacity (Cs) at the depths of 10, 20, 40, 60, and 90 cm in the PF changed by 8.6%, 19.0%, 5.5%, −4.3%, and −2.9%, respectively. Meanwhile, the thermal conductivity (λθ) increased by 1.5%, 18.3%, 19.0%, 9.0%, and 25.6%, respectively. Moreover, after conversion from the UF to the PF, the heat transfer direction changed from downward to upward in the 10–20 cm soil layer, resulting in a 42.9% reduction in the annual average soil heat flux (G). Furthermore, the differences in G between the UF and PF were most significant in the summer (101.9%) and most minor in the winter (12.2%), respectively. The conversion of the UF to the PF increased the Cs and λθ, ultimately reducing the range of soil temperature variation and changing the direction of heat transfer, which led to more heat release from the soil. This study reveals the effects of farmland use type conversion on regional land surface energy balance, providing theoretical underpinnings for optimizing agricultural ecosystem management. Full article
Show Figures

Figure 1

20 pages, 4795 KiB  
Article
Assessment of Crop Water Resource Utilization in Arid and Semi-Arid Regions Based on the Water Footprint Theory
by Yuqian Tang, Nan Xia, Yuxuan Xiao, Zhanjiang Xu and Yonggang Ma
Agronomy 2025, 15(7), 1529; https://doi.org/10.3390/agronomy15071529 - 24 Jun 2025
Viewed by 245
Abstract
The arid and semi-arid regions of Northwest China, as major agricultural production zones, have long faced dual challenges: increasing water resource pressure and severe supply–demand imbalances caused by the expansion of cultivated land. The crop water footprint, an effective indicator for quantifying agricultural [...] Read more.
The arid and semi-arid regions of Northwest China, as major agricultural production zones, have long faced dual challenges: increasing water resource pressure and severe supply–demand imbalances caused by the expansion of cultivated land. The crop water footprint, an effective indicator for quantifying agricultural water use, plays a crucial role in supporting sustainable development in the region. This study adopted a multi-scale spatiotemporal analysis framework, combining the CROPWAT model with Geographic Information System (GIS) techniques to investigate the spatiotemporal evolution of crop water footprints in Northwest China from 2000 to 2020. The Logarithmic Mean Divisia Index (LMDI) model was used to analyze spatial variations in the driving forces. A multidimensional evaluation system—encompassing structural, economic, ecological, and sustainability dimensions—was established to comprehensively assess agricultural water resource utilization in the region. Results indicated that the crop water footprint in Northwest China followed a “decline-increase-decline” trend, it increased from 90.97 billion m3 in 2000 to a peak of 133.49 billion m3 in 2017, before declining to 129.30 billion m3 in 2020. The center of the crop water footprint gradually shifted northward—from northern Qinghai to southern Inner Mongolia—mainly due to rapid farmland expansion and increasing water consumption in northern areas. Policy and institutional effect, together with economic development effect, were identified as the primary drivers, contributing 49% in total. Although reliance on blue water has decreased, the region continues to experience moderate water pressure, with sustainable use achieved in only half of the study years. Water scarcity remains a pressing concern. This study offers a theoretical basis and policy recommendations to enhance water use efficiency, develop effective management strategies, and promote sustainable water resource utilization in Northwest China. Full article
(This article belongs to the Section Water Use and Irrigation)
Show Figures

Figure 1

27 pages, 2440 KiB  
Article
Structural and Functional Responses of Small Mammal Communities to Land Abandonment in a Region of High Biodiversity
by Anamaria Lazăr, Marcela Alexandra Sandu, Ana Maria Benedek and Ioan Sîrbu
Animals 2025, 15(13), 1857; https://doi.org/10.3390/ani15131857 - 24 Jun 2025
Viewed by 359
Abstract
Small mammals are common in farmland, where their communities are affected by agricultural management. However, so far, no clear patterns have emerged, its effect varying in accordance with the ecological context, spatial scale, and geographic area. We aimed to assess whether the discontinuation [...] Read more.
Small mammals are common in farmland, where their communities are affected by agricultural management. However, so far, no clear patterns have emerged, its effect varying in accordance with the ecological context, spatial scale, and geographic area. We aimed to assess whether the discontinuation of land cultivation and pasture grazing leads to significant changes in the abundance, diversity, and composition of small mammal communities. These were surveyed in transects of live traps set in used and abandoned arable fields and pastures in highly patched agricultural landscapes in Transylvania (Romania). Farmland abandonment was positively related to species richness, taxonomic and functional diversity, and abundance. Its effect was stronger in pastures, where intensive grazing is a limiting factor for small mammals. Functional trait composition was also sensitive to fallowing and abandonment of grazing, which promote diurnal activity, broader niches, and lower fertility. In conclusion, small mammals benefit from the maintenance of uncultivated plots and low numbers of grazing livestock, which we recommend as management strategy in traditional mosaic landscapes, to support taxonomic and functional biodiversity with implications in ecosystem service functionality. Our results also revealed more diverse communities than those showcased by similar studies in central and western Europe, with similar overall abundances. Full article
(This article belongs to the Section Ecology and Conservation)
Show Figures

Graphical abstract

47 pages, 10515 KiB  
Review
Soilless Agricultural Systems: Opportunities, Challenges, and Applications for Enhancing Horticultural Resilience to Climate Change and Urbanization
by Imran Ali Lakhiar, Haofang Yan, Tabinda Naz Syed, Chuan Zhang, Sher Ali Shaikh, Md. Rakibuzzaman and Rahim Bux Vistro
Horticulturae 2025, 11(6), 568; https://doi.org/10.3390/horticulturae11060568 - 22 May 2025
Cited by 2 | Viewed by 2119
Abstract
Rapid urbanization, climate variability, and land degradation are increasingly challenging traditional open-field farming systems. Soilless farming (SLF) has emerged as a complementary approach to enhance horticultural resilience in space-constrained and climate-stressed environments. This review critically evaluates the role of SLF within the broader [...] Read more.
Rapid urbanization, climate variability, and land degradation are increasingly challenging traditional open-field farming systems. Soilless farming (SLF) has emerged as a complementary approach to enhance horticultural resilience in space-constrained and climate-stressed environments. This review critically evaluates the role of SLF within the broader framework of climate-smart agriculture (C-SA), with a particular focus on its applications in urban and peri-urban settings. Drawing on a systematic review of the existing literature, the study explores how SLF technologies contribute to efficient resource use, localized food production, and environmental sustainability. By decoupling crop cultivation from soil, SLF enables precise control over nutrient delivery and water use in enclosed environments, such as vertical farms, greenhouses, and container-based units. These systems offer notable advantages regarding water conservation, increased yield per unit area, and adaptability to non-arable or degraded land, making them particularly relevant for high-density cities, arid zones, and climate-sensitive regions. SLF systems are categorized into substrate-based (e.g., coco peat and rock wool) and water-based systems (e.g., hydroponics, aquaponics, and aeroponics), each with distinct design requirements, nutrient management strategies, and crop compatibility. Emerging technologies—including artificial intelligence, the Internet of Things, and automation—further enhance SLF system efficiency through real-time data monitoring and precision control. Despite these advancements, challenges remain. High setup costs, energy demands, and the need for technical expertise continue to limit large-scale adoption. While SLF is not a replacement for traditional agriculture, it offers a strategic supplement to bolster localized food systems and address climate-related risks in horticultural production. Urban horticulture is no longer a peripheral activity; it is becoming an integral element of sustainable urban development. SLF should be embedded within broader resilience strategies, tailored to specific socioeconomic and environmental contexts. Full article
(This article belongs to the Special Issue Soilless Culture and Hydroponics in Closed Systems)
Show Figures

Figure 1

21 pages, 789 KiB  
Article
Herbicide Screening and Application Method Development for Sustainable Weed Management in Tagetes erecta L. Fields
by Yiping Zhang, Dongyan Feng, Chengcheng Jia, Wangqi Huang, Feng Xu, Yalian Jiang, Junhong Huang, Ye Li, Jihua Wang and Dongsheng Tang
Plants 2025, 14(11), 1572; https://doi.org/10.3390/plants14111572 - 22 May 2025
Viewed by 478
Abstract
Marigold (Tagetes erecta L.), a crop of significant medicinal, ornamental, and economic value, faces severe industrialization challenges due to weed-induced yield losses (up to 60%). This study aims to identify safe and highly efficient herbicides for marigold, assess their effects on dominant [...] Read more.
Marigold (Tagetes erecta L.), a crop of significant medicinal, ornamental, and economic value, faces severe industrialization challenges due to weed-induced yield losses (up to 60%). This study aims to identify safe and highly efficient herbicides for marigold, assess their effects on dominant weeds and crop safety, and provide a practical basis for large-scale cultivation. We evaluated 11 pre-emergence herbicides, 13 post-emergence herbicides, and agronomic practices (plastic mulch) through three field trials to optimize weed control, crop safety, and productivity. In Experiment 1, pre-emergence applications of pendimethalin (35% SC) and oxyfluorfen (240 g/L EC) under plastic mulch suppressed 85–99% of grass and broad-leaved weeds, elevating marigold yield to 1655.6 kg/667 m2 and increasing lutein content by 10.7% compared to controls, with no phytotoxicity to subsequent wheat (Triticum aestivum L.)or broad beans (Vicia faba L.). Experiment 2 demonstrated that post-cultivation soil treatment with metolachlor · oxyfluorfen · pendimethalin (50% EC) enhanced weed suppression (47.8–53.6%) and yield (3.4% increase) while ensuring crop safety. Experiment 3 revealed that the post-emergence herbicides haloxyfop-P-methyl (108 g/L EC) and fomesafen (250 g/L SL) achieved over 92% reduction in grass weed biomass and over 75% reduction in broadleaf weed density, respectively, alongside a 6.1% yield improvement. Therefore, region-specific strategies are recommended based on local agronomic conditions: high-value production zones should adopt integrated systems combining plastic mulch with pre-emergence herbicides; arid lands with extended crop rotation intervals require pre-emergence herbicides after intertillage and earthing-up; labor-abundant regions can rotate targeted post-emergence herbicides to delay resistance evolution. This study provides data-driven optimization strategies for comprehensive weed management in marigold fields, offering practical solutions to enhance industrial productivity and ecological sustainability. Full article
(This article belongs to the Special Issue Advances in Planting Techniques and Production of Horticultural Crops)
Show Figures

Figure 1

22 pages, 1234 KiB  
Article
Impact of Non-Agricultural Labor Transfer on the Ecological Efficiency of Cultivated Land: Evidence from China
by Weijuan Li, Jinyong Guo and Tian Xie
Agriculture 2025, 15(10), 1083; https://doi.org/10.3390/agriculture15101083 - 17 May 2025
Cited by 1 | Viewed by 547
Abstract
The ecological efficiency of cultivated land utilization is closely related to food security and the sustainable development of agriculture. As an important actor in the utilization of cultivated land, the transfer of labor to non-agricultural sectors and its impact on ecological efficiency remain [...] Read more.
The ecological efficiency of cultivated land utilization is closely related to food security and the sustainable development of agriculture. As an important actor in the utilization of cultivated land, the transfer of labor to non-agricultural sectors and its impact on ecological efficiency remain underexplored. Taking China as an example, this study employs push–pull theory, technology factor substitution theory, and land scale economy theory to explore the motivations and mechanisms of non-agricultural labor transfer. An empirical analysis was conducted using provincial panel data from 2011 to 2023. The research methods include the super-efficiency SBM model, fixed effect model, mediating effect model, and threshold effect model. The results are as follows: (1) Non-agricultural labor transfer promotes improvements in the ecological efficiency of cultivated land utilization. A 1% growth in non-agricultural labor transfer is associated with a 0.615% improvement in the ecological efficiency of cultivated land utilization. The impact is especially evident in the main grain-producing areas and northern regions. (2) As a modern agricultural production factor, agricultural machinery plays a mediating role in factor substitution at the farmland stage, accounting for 39% of the effect. (3) The scale of agricultural land operation exhibits a single threshold effect with a threshold value of 1.1577. Against the backdrop of widespread non-agricultural labor transfer, this study provides a reference for further strengthening the utilization of agricultural machinery and promoting large-scale land operations. Full article
(This article belongs to the Section Agricultural Economics, Policies and Rural Management)
Show Figures

Figure 1

20 pages, 6222 KiB  
Article
Spatiotemporal Evolution and Prediction of Carbon Storage in Karst Fault Basin Based on FLUS and InVEST Models
by Jiabin Zhang, Rong Tang, Wenting Liu, Guobao Zhang, Xiangru Hao, Yaguang Gong, Ying Zhou and Yuanhui Yang
Sustainability 2025, 17(9), 3931; https://doi.org/10.3390/su17093931 - 27 Apr 2025
Viewed by 460
Abstract
Karst topography comprises a fragile ecological environment with a significant potential for carbon sequestration. It is characterized by severe rocky desertification, particularly in China’s karst fault basin. Therefore, there is a crucial need to scientifically evaluate the variations in carbon storage over time [...] Read more.
Karst topography comprises a fragile ecological environment with a significant potential for carbon sequestration. It is characterized by severe rocky desertification, particularly in China’s karst fault basin. Therefore, there is a crucial need to scientifically evaluate the variations in carbon storage over time and space in this area to ensure effective land space planning and regional ecological security, especially considering the dual carbon target. Using land use data (1985–2020) from the karst fault basin in Southwest China, the study employed the InVEST model to evaluate temporal and spatial variations in carbon storage. A time span of 35 years was examined, and predictions regarding carbon storage in 2050 were formulated under three different conditions: natural evolution, ecological protection, and cultivated land protection. These predictions were based on natural, social, and economic driving factors. The results revealed a fluctuating downward trend in regards to carbon storage in the study area from 1985 to 2020, with a total decrease of 2.1 × 106 t. After 2000, there has been significant improvement in the dynamic degree of land use for forest land, grassland, and construction land compared to the levels before 2000. Additionally, many land use types with high carbon density transitioned into those with lower carbon density. Spatially, the carbon density in the karst fault basin was higher in the north and lower in the central and southern basins. At the county spatial scale, except for the northern and central parts of the study area, there was a decrease in total carbon storage in the remaining counties. By 2050, under the ecological protection scenario, total carbon storage is projected to increase by approximately 6 × 106 t, whereas under the natural evolution and cultivated land protection scenarios, it is expected to decrease by 2 × 106 t and 3 × 106 t, respectively. Specifically, under the natural evolution scenario, only five counties will experience an increase in carbon storage, while the other counties will witness a decrease. The findings of this study offer a scientific basis for enhancing ecosystem carbon services through land management practices and the control of rocky desertification in the karst fault basin. They can inform decision-making processes regarding carbon sequestration, ecosystem restoration, and sustainable land use planning in the region. Full article
Show Figures

Figure 1

23 pages, 6507 KiB  
Article
Revitalizing Marginal Areas of Basilicata (Southern Italy) with Saffron: A Strategy Approach Mixing Alternative Cultivation System and Land Suitability Analysis
by Nunzia Cicco, Vincenzo Candido, Rosa Coluzzi, Vito Imbrenda, Maria Lanfredi, Michele Larocca, Annarita Lorusso, Carla Benelli and Adriano Sofo
Land 2025, 14(4), 902; https://doi.org/10.3390/land14040902 - 19 Apr 2025
Viewed by 1039
Abstract
The abandonment of farmland in Europe is a significant issue due to its environmental, socio-economic, and landscape consequences. This tendency mainly impacts marginal and inner areas, located far from large urban districts, because of biophysical and/or socio-economic factors. Although European and national regulations [...] Read more.
The abandonment of farmland in Europe is a significant issue due to its environmental, socio-economic, and landscape consequences. This tendency mainly impacts marginal and inner areas, located far from large urban districts, because of biophysical and/or socio-economic factors. Although European and national regulations try to turn the fragility of these territories into an opportunity for sustainable development, many of these areas, especially in southern Europe, continue to suffer socio-economic disparities. For this reason, it is necessary to consider regional and district-wide initiatives that can economically revitalize marginal areas while safeguarding their natural capital. Alternative cropping systems, capable of optimizing the quality of some food crops, can play an essential role in the economic development of populations living in marginal areas. These areas, represented by inland zones often abandoned due to the difficulty of applying mechanized agriculture, can represent an opportunity to rediscover sustainable and profitable practices. Among the high-value crops, saffron (Crocus sativus L.), “red gold” and “king of spices”, stands out for its potential. Indeed, thanks to the use of tuff tubs, a more eco-sustainable choice compared to the plastic pots already mentioned in the literature, it is possible to improve the quality of this spice. Furthermore, Crocus sativus L. not only lends itself to multiple uses but also represents a valid opportunity to supplement agricultural income. This is made possible by its high profitability and beneficial properties for human health, offering a way to diversify agricultural production with positive economic and social impacts. It is known that the saffron market in Italy suffers from competition from developing countries (Iran, Morocco, India) capable of producing saffron at lower costs than European countries, thanks to the lower cost of labor. Therefore, this study seeks to identify marginal areas that can be recovered and valorized through an eco-sustainable cultivation system with the potential to enhance the quality of this spice, making it unique and resilient to competition. Specifically, this paper is organized on a dual scale of investigation: (a) at the local level to demonstrate the economic-ecological feasibility of saffron cultivation through the adoption of an alternative farming technique on an experimental site located in Tricarico (Basilicata—Southern Italy, 40°37′ N, 16°09′ E; 472 m. a.s.l.) that, although fertile, is not suitable for mechanized cropping systems; (b) at the regional level through a spatially explicit land suitability analysis to indicate the possible location where to export saffron cultivation. The final map, obtained by combining geo-environmental variables, can be considered a precious tool to support policymakers and farmers to foster a broad agricultural strategy founded on new crop management systems. The adoption of this alternative agroecological system could optimize the use of land resources in the perspective of increasing crop productivity and profitability in marginal agricultural areas. Full article
(This article belongs to the Special Issue Feature Papers for "Land, Soil and Water" Section)
Show Figures

Figure 1

27 pages, 1216 KiB  
Article
Measurement of Production Efficiency and Analysis of Influencing Factors in Major Sugarcane-Producing Regions of China
by Chuanmin Yan, Xingqun Li, Lei Zhan, Zhizhuo Li and Jun Wen
Agriculture 2025, 15(8), 885; https://doi.org/10.3390/agriculture15080885 - 18 Apr 2025
Viewed by 513
Abstract
Enhancing production efficiency in major sugarcane-producing regions is of strategic significance for ensuring the security of China’s sugar industry and promoting its industrial upgrading. Using the DEA–Malmquist–Tobit modeling framework, this study dynamically evaluates production efficiency from 2011 to 2023, spanning China’s 12th to [...] Read more.
Enhancing production efficiency in major sugarcane-producing regions is of strategic significance for ensuring the security of China’s sugar industry and promoting its industrial upgrading. Using the DEA–Malmquist–Tobit modeling framework, this study dynamically evaluates production efficiency from 2011 to 2023, spanning China’s 12th to 14th Five-Year Plan periods, with a focus on the primary sugarcane-producing regions: Guangdong, Guangxi, Yunnan, and Hainan. Results indicate a U-shaped fluctuation in national comprehensive technical efficiency, with a historical low in 2022 due to a collapse in scale efficiency, pinpointing scale management as the central constraint. Regionally, Guangdong consistently maintained optimal dual efficiency. Yunnan stabilized its efficiency through rigid policy mechanisms. Guangxi experienced setbacks due to competition between eucalyptus and sugarcane cultivation, while Hainan faced a precipitous decline in scale efficiency following industry exits. Total factor productivity (TFP) analysis revealed that stagnation in technological advancement was the primary cause of productivity decline, leading to asynchronous regional technology diffusion and subsequent reliance on scale adjustments. During the 12th Five-Year Plan, Hainan led in TFP growth but experienced a sharp downturn in the 13th period due to policy tightening. In contrast, Guangdong achieved notable TFP growth in the 14th period through technological breakthroughs, whereas Yunnan lagged behind Guangxi due to technological inertia. Analysis of the driving mechanisms showed that urbanization rates significantly boosted efficiency through intensified land use. Full article
(This article belongs to the Section Agricultural Economics, Policies and Rural Management)
Show Figures

Figure 1

21 pages, 17349 KiB  
Article
Multi-Type Change Detection and Distinction of Cultivated Land Parcels in High-Resolution Remote Sensing Images Based on Segment Anything Model
by Zhongxin Huang, Xiaomei Yang, Yueming Liu, Zhihua Wang, Yonggang Ma, Haitao Jing and Xiaoliang Liu
Remote Sens. 2025, 17(5), 787; https://doi.org/10.3390/rs17050787 - 24 Feb 2025
Cited by 2 | Viewed by 872
Abstract
Change detection of cultivated land parcels is critical for achieving refined management of farmland. However, existing change detection methods based on high-resolution remote sensing imagery focus primarily on cultivation type changes, neglecting the importance of detecting parcel pattern changes. To address the issue [...] Read more.
Change detection of cultivated land parcels is critical for achieving refined management of farmland. However, existing change detection methods based on high-resolution remote sensing imagery focus primarily on cultivation type changes, neglecting the importance of detecting parcel pattern changes. To address the issue of detecting diverse types of changes in cultivated land parcels, this study constructs an automated workflow framework for change detection, based on the unsupervised segmentation method of the SAM (Segment Anything Model). By performing spatial connection analysis on cultivated land parcel units extracted by the SAM for two phases and combining multiple features such as texture features (GLCM), multi-scale structural similarity (MS-SSIM), and normalized difference vegetation index (NDVI), precise identification of cultivation type and pattern change areas was achieved. The study results show that the proposed method achieved the highest accuracy in detecting parcel pattern changes in plain areas (precision: 78.79%, recall: 79.45%, IOU: 78.44%), confirming the effectiveness of the proposed method. This study provides an efficient and low-cost detection and distinction method for analyzing changes in cultivated land patterns and types using high-resolution remote sensing images, which can be directly applied in real-world scenarios. The method significantly enhances the automation and timeliness of parcel unit change detection, offering important applications for advancing precision agriculture and sustainable land resource management. Full article
Show Figures

Figure 1

23 pages, 11295 KiB  
Article
Spatiotemporal Heterogeneity and Zoning Strategies of Multifunctional Trade-Offs and Synergies in Cultivated Land in the Hexi Corridor
by Kaichun Zhou, Zixiang Sun, Tingting Ma, Yulin Li and Binggeng Xie
Land 2025, 14(2), 335; https://doi.org/10.3390/land14020335 - 7 Feb 2025
Cited by 2 | Viewed by 780
Abstract
As the indispensable basic resource of agricultural production, cultivated land has always carried the important mission of maintaining food stability, promoting rural economic development, and maintaining ecological balance. However, in application, there is often a conflict between the multiple functions of cultivated land [...] Read more.
As the indispensable basic resource of agricultural production, cultivated land has always carried the important mission of maintaining food stability, promoting rural economic development, and maintaining ecological balance. However, in application, there is often a conflict between the multiple functions of cultivated land and the limited ability of cultivated land to perform multiple functions. Therefore, this paper uses hot spot analysis, the IUEMS model, the InVEST model, Pearson correlation coefficients and self-organizing feature maps (SOFMs) to explore the multifunctional trade-offs and synergistic relationships of cultivated land in the Hexi Corridor at the grid scale and the zoning optimization scheme. The results revealed that from 2000 to 2020, the cultivated land production functions and social security functions in the Hexi Corridor maintained a high level and continued to rise, and the hot spots exhibited a stable pattern of “central and southeast concentration”. The ecological function performance is relatively weak, and the hot spots are concentrated mainly in the southeast, whereas the landscape view recreational functions as a whole show a trend of gradual recovery after weakening. In terms of mutual relationships, there are significant synergies between cultivated land production and social security functions, whereas the trade-offs and synergies between other functions are complex and changeable. Production and social security show a coordinated spatial distribution pattern. Production, social security, and ecological functions are dominated by spatial trade-offs. The production and landscape recreation functions, social security and ecological functions, social security and landscape recreation functions, and ecological and landscape recreation functions are mainly synergistic in space. Through self-organizing feature map analysis, the cultivated land in the Hexi Corridor is divided into four functional areas: agricultural production-dominant areas, agricultural social security areas, ecological agriculture areas, and balanced development areas, and management objectives are proposed. This study can provide useful lessons and references for land use planning and management in other similar areas. Full article
Show Figures

Figure 1

39 pages, 2108 KiB  
Article
Integrating Sustainable Development Goals into Urban Planning to Advance Sustainability in Sub-Saharan Africa: Barriers and Practical Solutions from the Case Study of Moundou, Chad
by Ernest Haou, Ndonaye Allarané, Cyprien Coffi Aholou and Ouya Bondoro
Urban Sci. 2025, 9(2), 22; https://doi.org/10.3390/urbansci9020022 - 22 Jan 2025
Cited by 4 | Viewed by 5412
Abstract
The accelerating pace of urbanization, coupled with changes in land-use patterns and the exacerbation of extreme climatic events—marked by heightened unpredictability and severity, particularly in regions of the Global South—necessitates a thorough reevaluation of urban governance and management frameworks. In response to these [...] Read more.
The accelerating pace of urbanization, coupled with changes in land-use patterns and the exacerbation of extreme climatic events—marked by heightened unpredictability and severity, particularly in regions of the Global South—necessitates a thorough reevaluation of urban governance and management frameworks. In response to these challenges, it is essential for strategies to integrate local socio-economic specificities while navigating the inherent complexities of these issues, leveraging contextually appropriate resources within a sustainability paradigm. In this regard, contextualizing and incorporating the Sustainable Development Goals (SDGs) into urban planning frameworks is crucial for advancing urban sustainability. However, significant obstacles hinder their effective integration at the urban scale, particularly in fast-evolving, resource-constrained settings. This study seeks to address this critical gap by systematically examining the barriers to SDG integration in urban planning within sub-Saharan Africa. For this purpose, Moundou, Chad, is used as a representative case study, reflecting both the challenges and opportunities of urban sustainability in the region. A hybrid methodology underpins this research, combining in-depth interviews with key development stakeholders, a detailed review of strategic documents aligned with the SDGs, and semi-structured questionnaires to capture diverse perspectives. The results reveal that the institutional dimension constitutes 38.46% of the barriers identified by stakeholders, with key challenges including limited capacity for long-term planning, a lack of expertise, and inadequate multisectoral coordination, among others. In addition, the economic and socio-cultural dimensions each represent 23.08% of the identified barriers, encompassing issues such as dependence on external funding, the high cost of green technologies, low public awareness, and resistance to change within communities. Finally, the data access dimension ranks last, accounting for 15.38%. To overcome these challenges, it is essential to implement mechanisms that strengthen institutional capacities, promote cross-sectoral collaboration, enhance public awareness, and cultivate a culture of adaptability and innovation within local communities. Furthermore, improving data accessibility and reinforcing financial mechanisms are vital to addressing these barriers comprehensively. Full article
Show Figures

Figure 1

Back to TopTop