Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (8)

Search Parameters:
Keywords = cryo-soft X ray tomography

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 3324 KiB  
Review
Zooming in and out: Exploring RNA Viral Infections with Multiscale Microscopic Methods
by Cheng-An Lyu, Yao Shen and Peijun Zhang
Viruses 2024, 16(9), 1504; https://doi.org/10.3390/v16091504 - 23 Sep 2024
Viewed by 1761
Abstract
RNA viruses, being submicroscopic organisms, have intriguing biological makeups and substantially impact human health. Microscopic methods have been utilized for studying RNA viruses at a variety of scales. In order of observation scale from large to small, fluorescence microscopy, cryo-soft X-ray tomography (cryo-SXT), [...] Read more.
RNA viruses, being submicroscopic organisms, have intriguing biological makeups and substantially impact human health. Microscopic methods have been utilized for studying RNA viruses at a variety of scales. In order of observation scale from large to small, fluorescence microscopy, cryo-soft X-ray tomography (cryo-SXT), serial cryo-focused ion beam/scanning electron microscopy (cryo-FIB/SEM) volume imaging, cryo-electron tomography (cryo-ET), and cryo-electron microscopy (cryo-EM) single-particle analysis (SPA) have been employed, enabling researchers to explore the intricate world of RNA viruses, their ultrastructure, dynamics, and interactions with host cells. These methods evolve to be combined to achieve a wide resolution range from atomic to sub-nano resolutions, making correlative microscopy an emerging trend. The developments in microscopic methods provide multi-fold and spatial information, advancing our understanding of viral infections and providing critical tools for developing novel antiviral strategies and rapid responses to emerging viral threats. Full article
(This article belongs to the Special Issue Microscopy Methods for Virus Research)
Show Figures

Figure 1

2 pages, 191 KiB  
Abstract
Untangling the Microscopic World of Organelles, Cells, Tissues, and Organs: A Focus on the Dysfunctional Golgi Apparatus in Disease Research
by Daniel Joseph Gómez
Biol. Life Sci. Forum 2023, 21(1), 15; https://doi.org/10.3390/blsf2023021015 - 21 Mar 2023
Viewed by 2654
Abstract
Emerging techniques in organelle structural biology have revolutionized our understanding of disease mechanisms and opened new possibilities for developing targeted therapies. In particular, dysfunctions of the Golgi apparatus (GA) have been implicated in a wide range of neurological disorders and cancer, making it [...] Read more.
Emerging techniques in organelle structural biology have revolutionized our understanding of disease mechanisms and opened new possibilities for developing targeted therapies. In particular, dysfunctions of the Golgi apparatus (GA) have been implicated in a wide range of neurological disorders and cancer, making it a key area of focus in organelle structural biology. The GA plays a crucial role in regulating the transport and modification of proteins and lipids, and dysfunction of this organelle can lead to mislocation and accumulation of proteins and impaired glycosylation, resulting in neurodegenerative diseases such as Parkinson’s Disease and neurodevelopmental disorders (NDDs). Inhibition of vesicular trafficking by α-synuclein may affect dopamine-producing neurons and neuromodulators, while fragmentation and defects within the GA can lead to apoptotic pathways during pathological mechanisms. Additionally, defects and fragmentation of the GA have been implicated in cancer progression, making it a key area of interest for cancer researchers. Advances in imaging technology, such as cryogenic electron tomography, soft-X-ray tomography (SXT), and multiplex correlative light and electron microscopy (CLEM), have enabled high-resolution visualization of the GA and its dysfunctions in neurological diseases and cancer. These techniques provide detailed insight into the structure and function of the GA and have the potential to inform new treatments for diseases associated with GA dysfunction. Recent studies have shown that molecular zippers hold the Golgi membrane together, providing further insight into the mechanisms underlying GA dysfunction in diseases such as Parkinson’s, NDDs, and cancer. Cryo-CLEM and nanobody-assisted tissue immunostaining for volumetric EM (NATIVE) techniques enable high-resolution visualization of the GA and its native environment, aiding in understanding its function in health and disease. In addition, novel techniques such as Optical coherence tomography (OCT) enable rapid, accurate, and high-resolution in vivo imaging of the mouse cortex, providing 3D visualization of cortical microarchitecture using a feature segmentation algorithm. OCT enables label-free, micron-scale 3D imaging of biological tissues’ fine structures with significant depth and a large field of view. A 3D CNS segmentation mask of brain neural networks in a living mouse can be visualized at micron-level resolution using OCT. Overall, the organelle structural biology field, specifically the study of the Golgi apparatus dysfunction in neurological disorders and cancer, has significant implications for developing new therapeutic targets, gene therapy, and drug design. With continued research and advancements in imaging technologies, we can expect to gain a more comprehensive understanding of the underlying mechanisms of GA dysfunction in neurological disorders and cancer, paving the way for innovative new treatments and therapies. Full article
Show Figures

Graphical abstract

12 pages, 2138 KiB  
Article
Soft X-ray Tomography Reveals HSV-1-Induced Remodeling of Human B Cells
by Jian-Hua Chen, Bieke Vanslembrouck, Axel Ekman, Vesa Aho, Carolyn A. Larabell, Mark A. Le Gros, Maija Vihinen-Ranta and Venera Weinhardt
Viruses 2022, 14(12), 2651; https://doi.org/10.3390/v14122651 - 27 Nov 2022
Cited by 7 | Viewed by 3213
Abstract
Upon infection, viruses hijack the cell machinery and remodel host cell structures to utilize them for viral proliferation. Since viruses are about a thousand times smaller than their host cells, imaging virus-host interactions at high spatial resolution is like looking for a needle [...] Read more.
Upon infection, viruses hijack the cell machinery and remodel host cell structures to utilize them for viral proliferation. Since viruses are about a thousand times smaller than their host cells, imaging virus-host interactions at high spatial resolution is like looking for a needle in a haystack. Scouting gross cellular changes with fluorescent microscopy is only possible for well-established viruses, where fluorescent tagging is developed. Soft X-ray tomography (SXT) offers 3D imaging of entire cells without the need for chemical fixation or labeling. Here, we use full-rotation SXT to visualize entire human B cells infected by the herpes simplex virus 1 (HSV-1). We have mapped the temporospatial remodeling of cells during the infection and observed changes in cellular structures, such as the presence of cytoplasmic stress granules and multivesicular structures, formation of nuclear virus-induced dense bodies, and aggregates of capsids. Our results demonstrate the power of SXT imaging for scouting virus-induced changes in infected cells and understanding the orchestration of virus-host remodeling quantitatively. Full article
(This article belongs to the Special Issue Innovative Imaging in Viral Research)
Show Figures

Figure 1

15 pages, 5084 KiB  
Review
Imaging of Virus-Infected Cells with Soft X-ray Tomography
by Damià Garriga, Francisco Javier Chichón, Bárbara M. Calisto, Diego S. Ferrero, Pablo Gastaminza, Eva Pereiro and Ana Joaquina Pérez-Berna
Viruses 2021, 13(11), 2109; https://doi.org/10.3390/v13112109 - 20 Oct 2021
Cited by 11 | Viewed by 3600
Abstract
Viruses are obligate parasites that depend on a host cell for replication and survival. Consequently, to fully understand the viral processes involved in infection and replication, it is fundamental to study them in the cellular context. Often, viral infections induce significant changes in [...] Read more.
Viruses are obligate parasites that depend on a host cell for replication and survival. Consequently, to fully understand the viral processes involved in infection and replication, it is fundamental to study them in the cellular context. Often, viral infections induce significant changes in the subcellular organization of the host cell due to the formation of viral factories, alteration of cell cytoskeleton and/or budding of newly formed particles. Accurate 3D mapping of organelle reorganization in infected cells can thus provide valuable information for both basic virus research and antiviral drug development. Among the available techniques for 3D cell imaging, cryo–soft X-ray tomography stands out for its large depth of view (allowing for 10 µm thick biological samples to be imaged without further thinning), its resolution (about 50 nm for tomographies, sufficient to detect viral particles), the minimal requirements for sample manipulation (can be used on frozen, unfixed and unstained whole cells) and the potential to be combined with other techniques (i.e., correlative fluorescence microscopy). In this review we describe the fundamentals of cryo–soft X-ray tomography, its sample requirements, its advantages and its limitations. To highlight the potential of this technique, examples of virus research performed at BL09-MISTRAL beamline in ALBA synchrotron are also presented. Full article
(This article belongs to the Special Issue Voyages through the Multiple Scales of Virus Biology)
Show Figures

Figure 1

13 pages, 4214 KiB  
Article
Improving a Rapid Alignment Method of Tomography Projections by a Parallel Approach
by Francesco Guzzi, George Kourousias, Alessandra Gianoncelli, Lorella Pascolo, Andrea Sorrentino, Fulvio Billè and Sergio Carrato
Appl. Sci. 2021, 11(16), 7598; https://doi.org/10.3390/app11167598 - 18 Aug 2021
Cited by 3 | Viewed by 3167
Abstract
The high resolution of synchrotron cryo-nano tomography can be easily undermined by setup instabilities and sample stage deficiencies such as runout or backlash. At the cost of limiting the sample visibility, especially in the case of bio-specimens, high contrast nano-beads are often added [...] Read more.
The high resolution of synchrotron cryo-nano tomography can be easily undermined by setup instabilities and sample stage deficiencies such as runout or backlash. At the cost of limiting the sample visibility, especially in the case of bio-specimens, high contrast nano-beads are often added to the solution to provide a set of landmarks for a manual alignment. However, the spatial distribution of these reference points within the sample is difficult to control, resulting in many datasets without a sufficient amount of such critical features for tracking. Fast automatic methods based on tomography consistency are thus desirable, especially for biological samples, where regular, high contrast features can be scarce. Current off-the-shelf implementations of such classes of algorithms are slow if used on a real-world high-resolution dataset. In this paper, we present a fast implementation of a consistency-based alignment algorithm especially tailored to a multi-GPU system. Our implementation is released as open-source. Full article
(This article belongs to the Special Issue X-ray Medical and Biological Imaging)
Show Figures

Figure 1

13 pages, 6252 KiB  
Article
Single Cell Cryo-Soft X-ray Tomography Shows That Each Chlamydia Trachomatis Inclusion Is a Unique Community of Bacteria
by Patrick Phillips, James M. Parkhurst, Ilias Kounatidis, Chidinma Okolo, Thomas M. Fish, James H. Naismith, Martin A. Walsh, Maria Harkiolaki and Maud Dumoux
Life 2021, 11(8), 842; https://doi.org/10.3390/life11080842 - 18 Aug 2021
Cited by 4 | Viewed by 4904
Abstract
Chlamydiae are strict intracellular pathogens residing within a specialised membrane-bound compartment called the inclusion. Therefore, each infected cell can, be considered as a single entity where bacteria form a community within the inclusion. It remains unclear as to how the population of bacteria [...] Read more.
Chlamydiae are strict intracellular pathogens residing within a specialised membrane-bound compartment called the inclusion. Therefore, each infected cell can, be considered as a single entity where bacteria form a community within the inclusion. It remains unclear as to how the population of bacteria within the inclusion influences individual bacterium. The life cycle of Chlamydia involves transitioning between the invasive elementary bodies (EBs) and replicative reticulate bodies (RBs). We have used cryo-soft X-ray tomography to observe individual inclusions, an approach that combines 40 nm spatial resolution and large volume imaging (up to 16 µm). Using semi-automated segmentation pipeline, we considered each inclusion as an individual bacterial niche. Within each inclusion, we identifyed and classified different forms of the bacteria and confirmed the recent finding that RBs have a variety of volumes (small, large and abnormal). We demonstrate that the proportions of these different RB forms depend on the bacterial concentration in the inclusion. We conclude that each inclusion operates as an autonomous community that influences the characteristics of individual bacteria within the inclusion. Full article
(This article belongs to the Section Microbiology)
Show Figures

Figure 1

16 pages, 4860 KiB  
Article
Calcite as a Precursor of Hydroxyapatite in the Early Biomineralization of Differentiating Human Bone-Marrow Mesenchymal Stem Cells
by Andrea Sorrentino, Emil Malucelli, Francesca Rossi, Concettina Cappadone, Giovanna Farruggia, Claudia Moscheni, Ana J. Perez-Berna, Jose Javier Conesa, Chiara Colletti, Norberto Roveri, Eva Pereiro and Stefano Iotti
Int. J. Mol. Sci. 2021, 22(9), 4939; https://doi.org/10.3390/ijms22094939 - 6 May 2021
Cited by 18 | Viewed by 3393
Abstract
Biomineralization is the process by which living organisms generate organized mineral crystals. In human cells, this phenomenon culminates with the formation of hydroxyapatite, which is a naturally occurring mineral form of calcium apatite. The mechanism that explains the genesis within the cell and [...] Read more.
Biomineralization is the process by which living organisms generate organized mineral crystals. In human cells, this phenomenon culminates with the formation of hydroxyapatite, which is a naturally occurring mineral form of calcium apatite. The mechanism that explains the genesis within the cell and the propagation of the mineral in the extracellular matrix still remains largely unexplained, and its characterization is highly controversial, especially in humans. In fact, up to now, biomineralization core knowledge has been provided by investigations on the advanced phases of this process. In this study, we characterize the contents of calcium depositions in human bone mesenchymal stem cells exposed to an osteogenic cocktail for 4 and 10 days using synchrotron-based cryo-soft-X-ray tomography and cryo-XANES microscopy. The reported results suggest crystalline calcite as a precursor of hydroxyapatite depositions within the cells in the biomineralization process. In particular, both calcite and hydroxyapatite were detected within the cell during the early phase of osteogenic differentiation. This striking finding may redefine most of the biomineralization models published so far, taking into account that they have been formulated using murine samples while studies in human cell lines are still scarce. Full article
Show Figures

Figure 1

15 pages, 5456 KiB  
Article
3D Quantitative and Ultrastructural Analysis of Mitochondria in a Model of Doxorubicin Sensitive and Resistant Human Colon Carcinoma Cells
by Claudia Moscheni, Emil Malucelli, Sara Castiglioni, Alessandra Procopio, Clara De Palma, Andrea Sorrentino, Patrizia Sartori, Laura Locatelli, Eva Pereiro, Jeanette A. Maier and Stefano Iotti
Cancers 2019, 11(9), 1254; https://doi.org/10.3390/cancers11091254 - 27 Aug 2019
Cited by 18 | Viewed by 5640
Abstract
Drug resistance remains a major obstacle in cancer treatment. Because mitochondria mediate metabolic reprogramming in cancer drug resistance, we focused on these organelles in doxorubicin sensitive and resistant colon carcinoma cells. We employed soft X-ray cryo nano-tomography to map three-dimensionally these cells at [...] Read more.
Drug resistance remains a major obstacle in cancer treatment. Because mitochondria mediate metabolic reprogramming in cancer drug resistance, we focused on these organelles in doxorubicin sensitive and resistant colon carcinoma cells. We employed soft X-ray cryo nano-tomography to map three-dimensionally these cells at nanometer-resolution and investigate the correlation between mitochondrial morphology and drug resistance phenotype. We have identified significant structural differences in the morphology of mitochondria in the two strains of cancer cells, as well as lower amounts of Reactive oxygen species (ROS) in resistant than in sensitive cells. We speculate that these features could elicit an impaired mitochondrial communication in resistant cells, thus preventing the formation of the interconnected mitochondrial network as clearly detected in the sensitive cells. In fact, the qualitative and quantitative three-dimensional assessment of the mitochondrial morphology highlights a different structural organization in resistant cells, which reflects a metabolic cellular adaptation functional to survive to the offense exerted by the antineoplastic treatment. Full article
(This article belongs to the Special Issue Mitochondria and Cancer)
Show Figures

Figure 1

Back to TopTop