Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (307)

Search Parameters:
Keywords = cropland classification

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 1913 KiB  
Article
CropSTS: A Remote Sensing Foundation Model for Cropland Classification with Decoupled Spatiotemporal Attention
by Jian Yan, Xingfa Gu and Yuxing Chen
Remote Sens. 2025, 17(14), 2481; https://doi.org/10.3390/rs17142481 - 17 Jul 2025
Viewed by 281
Abstract
Recent progress in geospatial foundation models (GFMs) has demonstrated strong generalization capabilities for remote sensing downstream tasks. However, existing GFMs still struggle with fine-grained cropland classification due to ambiguous field boundaries, insufficient and low-efficient temporal modeling, and limited cross-regional adaptability. In this paper, [...] Read more.
Recent progress in geospatial foundation models (GFMs) has demonstrated strong generalization capabilities for remote sensing downstream tasks. However, existing GFMs still struggle with fine-grained cropland classification due to ambiguous field boundaries, insufficient and low-efficient temporal modeling, and limited cross-regional adaptability. In this paper, we propose CropSTS, a remote sensing foundation model designed with a decoupled temporal–spatial attention architecture, specifically tailored for the temporal dynamics of cropland remote sensing data. To efficiently pre-train the model under limited labeled data, we employ a hybrid framework combining joint-embedding predictive architecture with knowledge distillation from web-scale foundation models. Despite being trained on a small dataset and using a compact model, CropSTS achieves state-of-the-art performance on the PASTIS-R benchmark in terms of mIoU and F1-score. Our results validate that structural optimization for temporal encoding and cross-modal knowledge transfer constitute effective strategies for advancing GFM design in agricultural remote sensing. Full article
(This article belongs to the Special Issue Advanced AI Technology for Remote Sensing Analysis)
Show Figures

Figure 1

27 pages, 7808 KiB  
Article
Phenology-Aware Transformer for Semantic Segmentation of Non-Food Crops from Multi-Source Remote Sensing Time Series
by Xiongwei Guan, Meiling Liu, Shi Cao and Jiale Jiang
Remote Sens. 2025, 17(14), 2346; https://doi.org/10.3390/rs17142346 - 9 Jul 2025
Viewed by 263
Abstract
Accurate identification of non-food crops underpins food security by clarifying land-use dynamics, promoting sustainable farming, and guiding efficient resource allocation. Proper identification and management maintain the balance between food and non-food cropping, a prerequisite for ecological sustainability and a healthy agricultural economy. Distinguishing [...] Read more.
Accurate identification of non-food crops underpins food security by clarifying land-use dynamics, promoting sustainable farming, and guiding efficient resource allocation. Proper identification and management maintain the balance between food and non-food cropping, a prerequisite for ecological sustainability and a healthy agricultural economy. Distinguishing large-scale non-food crops—such as oilseed rape, tea, and cotton—remains challenging because their canopy reflectance spectra are similar. This study proposes a novel phenology-aware Vision Transformer Model (PVM) for accurate, large-scale non-food crop classification. PVM incorporates a Phenology-Aware Module (PAM) that fuses multi-source remote-sensing time series with crop-growth calendars. The study area is Hunan Province, China. We collected Sentinel-1 SAR and Sentinel-2 optical imagery (2021–2022) and corresponding ground-truth samples of non-food crops. The model uses a Vision Transformer (ViT) backbone integrated with PAM. PAM dynamically adjusts temporal attention using encoded phenological cues, enabling the network to focus on key growth stages. A parallel Multi-Task Attention Fusion (MTAF) mechanism adaptively combines Sentinel-1 and Sentinel-2 time-series data. The fusion exploits sensor complementarity and mitigates cloud-induced data gaps. The fused spatiotemporal features feed a Transformer-based decoder that performs multi-class semantic segmentation. On the Hunan dataset, PVM achieved an F1-score of 74.84% and an IoU of 61.38%, outperforming MTAF-TST and 2D-U-Net + CLSTM baselines. Cross-regional validation on the Canadian Cropland Dataset confirmed the model’s generalizability, with an F1-score of 71.93% and an IoU of 55.94%. Ablation experiments verified the contribution of each module. Adding PAM raised IoU by 8.3%, whereas including MTAF improved recall by 8.91%. Overall, PVM effectively integrates phenological knowledge with multi-source imagery, delivering accurate and scalable non-food crop classification. Full article
Show Figures

Figure 1

35 pages, 4572 KiB  
Review
Land Use and Land Cover Products for Agricultural Mapping Applications in Brazil: Challenges and Limitations
by Priscilla Azevedo dos Santos, Marcos Adami, Michelle Cristina Araujo Picoli, Victor Hugo Rohden Prudente, Júlio César Dalla Mora Esquerdo, Gilberto Ribeiro de Queiroz, Cleverton Tiago Carneiro de Santana and Michel Eustáquio Dantas Chaves
Remote Sens. 2025, 17(13), 2324; https://doi.org/10.3390/rs17132324 - 7 Jul 2025
Viewed by 1096
Abstract
Reliable remote sensing-based Land Use and Land Cover (LULC) information is crucial for assessing Earth’s surface activities. Brazil’s agricultural dynamics, including year-round cropping, multiple cropping, and regional climate variability, make LULC monitoring a highly challenging task. The country has thirteen remote sensing-based LULC [...] Read more.
Reliable remote sensing-based Land Use and Land Cover (LULC) information is crucial for assessing Earth’s surface activities. Brazil’s agricultural dynamics, including year-round cropping, multiple cropping, and regional climate variability, make LULC monitoring a highly challenging task. The country has thirteen remote sensing-based LULC products specifically tailored for this purpose. However, the differences and the results of these products have not yet been synthesized to provide coherent guidance in assessing their spatio-temporal agricultural dynamics and identifying promising approaches and issues that affect LULC analysis. This review represents the first comprehensive assessment of the advantages, challenges, and limitations, highlighting the main issues when dealing with contrasting LULC maps. These challenges include incompatibility, a lack of updates, non-systematic classification ontologies, and insufficient data to monitor Brazilian LULC information. The consequences include impacts on intercropping estimation, diminished representation or misrepresentation of croplands; temporal discontinuity; an insufficient number of classes for subannual cropping evaluation; and reduced compatibility, comparability, and spectral separability. The study provides insights into the use of these products as primary input data for remote sensing-based applications. Moreover, it provides prospects for enhancing existing mapping efforts or developing new national-level initiatives to represent the spatio-temporal variation of Brazilian agriculture. Full article
Show Figures

Figure 1

24 pages, 12865 KiB  
Article
Mapping Crop Types and Cropping Patterns Using Multiple-Source Satellite Datasets in Subtropical Hilly and Mountainous Region of China
by Yaoliang Chen, Zhiying Xu, Hongfeng Xu, Zhihong Xu, Dacheng Wang and Xiaojian Yan
Remote Sens. 2025, 17(13), 2282; https://doi.org/10.3390/rs17132282 - 3 Jul 2025
Viewed by 417
Abstract
A timely and accurate distribution of crop types and cropping patterns provides a crucial reference for the management of agriculture and food security. However, accurately mapping crop types and cropping patterns in subtropical hilly and mountainous areas often face challenges such as mixed [...] Read more.
A timely and accurate distribution of crop types and cropping patterns provides a crucial reference for the management of agriculture and food security. However, accurately mapping crop types and cropping patterns in subtropical hilly and mountainous areas often face challenges such as mixed pixels resulted from fragmented patches and difficulty in obtaining optical satellites due to a frequently cloudy and rainy climate. Here we propose a crop type and cropping pattern mapping framework in subtropical hilly and mountainous areas, considering multiple sources of satellites (i.e., Landsat 8/9, Sentinel-2, and Sentinel-1 images and GF 1/2/7). To develop this framework, six types of variables from multi-sources data were applied in a random forest classifier to map major summer crop types (singe-cropped rice and double-cropped rice) and winter crop types (rapeseed). Multi-scale segmentation methods were applied to improve the boundaries of the classified results. The results show the following: (1) Each type of satellite data has at least one variable selected as an important feature for both winter and summer crop type classification. Apart from the endmember variables, the other five extracted variable types are selected by the RF classifier for both winter and summer crop classifications. (2) SAR data can capture the key information of summer crops when optical data is limited, and the addition of SAR data can significantly improve the accuracy as to summer crop types. (3) The overall accuracy (OA) of both summer and winter crop type mapping exceeded 95%, with clear and relatively accurate cropland boundaries. Area evaluation showed a small bias in terms of the classified area of rapeseed, single-cropped rice, and double-cropped rice from statistical records. (4) Further visual examination of the spatial distribution showed a better performance of the classified crop types compared to three existing products. The results suggest that the proposed method has great potential in accurately mapping crop types in a complex subtropical planting environment. Full article
Show Figures

Figure 1

20 pages, 3731 KiB  
Article
Can Fire Season Type Serve as a Critical Factor in Fire Regime Classification System in China?
by Huijuan Li, Sumei Zhang, Xugang Lian, Yuan Zhang and Fengfeng Zhao
Fire 2025, 8(7), 254; https://doi.org/10.3390/fire8070254 - 28 Jun 2025
Viewed by 258
Abstract
Fire regime (FR) is a key element in the study of ecosystem dynamics, supporting natural resource management planning by identifying gaps in fire patterns in time and space and planning to assess ecological conditions. Due to the insufficient consideration of integrated characterization factors, [...] Read more.
Fire regime (FR) is a key element in the study of ecosystem dynamics, supporting natural resource management planning by identifying gaps in fire patterns in time and space and planning to assess ecological conditions. Due to the insufficient consideration of integrated characterization factors, especially the insufficient research on fire season types (FST), the current understanding of the spatial heterogeneity of fire patterns in China is still limited, and it is necessary to use FST as a key dimension to classify FR zones more accurately. This study extracted 13 fire characteristic variables based on Moderate Resolution Imaging Spectroradiometer (MODIS) burned area data (MCD64A1), active fire data (MODIS Collection 6), and land cover data (MCD12Q1) from 2001 to 2023. The study systematically analyzed the frequency, intensity, spatial distribution and seasonal characteristics of fires across China. By using data normalization and the k-means clustering algorithm, the study area was divided into five types of FR zones (FR 1–5) with significant differences. The burned areas of the five FR zones account for 67.76%, 13.88%, 4.87%, 12.94%, and 0.55% of the total burned area across the country over the 23-year study period, respectively. Among them, fires in the Northeast China Plain and North China Plain cropland areas (FR 1) exhibit a bimodal distribution, with the peak period concentrated in April and June, respectively; the southern forest and savanna region (FR 2) is dominated by high-frequency, small-scale, unimodal fires, peaking in February; the central grassland region (FR 3) experiences high-intensity, low-frequency fires, with a peak in April; the east central forest region (FR 4) is characterized by low-frequency, high-intensity fires; and the western grassland region (FR 5) experiences low-frequency fires with significant inter-annual fluctuations. Among the five zones, FST consistently ranks within the top five contributors, with contribution rates of 0.39, 0.31, 0.44, 0.27, and 0.55, respectively, confirming that the inclusion of FST is a reasonable and necessary choice when constructing FR zones. By integrating multi-source remote sensing data, this study has established a novel FR classification system that encompasses fire frequency, intensity, and particularly FST. This approach transcends the traditional single-factor classification, demonstrating that seasonal characteristics are indispensable for accurately delineating fire conditions. The resultant zoning system effectively overcomes the limitations of traditional methods, providing a scientific basis for localized fire risk warning and differentiated prevention and control strategies. Full article
(This article belongs to the Special Issue Advances in Remote Sensing for Burned Area Mapping)
Show Figures

Figure 1

22 pages, 7753 KiB  
Article
A Full-Life-Cycle Modeling Framework for Cropland Abandonment Detection Based on Dense Time Series of Landsat-Derived Vegetation and Soil Fractions
by Qiangqiang Sun, Zhijun You, Ping Zhang, Hao Wu, Zhonghai Yu and Lu Wang
Remote Sens. 2025, 17(13), 2193; https://doi.org/10.3390/rs17132193 - 25 Jun 2025
Viewed by 302
Abstract
Remotely sensed cropland abandonment monitoring is crucial for providing spatially explicit references for maintaining sustainable agricultural practices and ensuring food security. However, abandoned cropland is commonly detected based on multi-date classification or the dynamics of a single vegetation index, with the interactions between [...] Read more.
Remotely sensed cropland abandonment monitoring is crucial for providing spatially explicit references for maintaining sustainable agricultural practices and ensuring food security. However, abandoned cropland is commonly detected based on multi-date classification or the dynamics of a single vegetation index, with the interactions between vegetation and soil time series often being neglected, leading to a failure to understand its full-life-cycle succession processes. To fill this gap, we propose a new full-life-cycle modeling framework based on the interactive trajectories of vegetation–soil-related endmembers to identify abandoned and reclaimed cropland in Jinan from 2000 to 2022. In this framework, highly accurate annual fractional vegetation- and soil-related endmember time series are generated for Jinan City for the 2000–2022 period using spectral mixture models. These are then used to integrally reconstruct temporal trajectories for complex scenarios (e.g., abandonment, weed invasion, reclamation, and fallow) using logistic and double-logistic models. The parameters of the optimization model (fitting type, change magnitude, start timing, and change duration) are subsequently integrated to develop a rule-based hierarchical identification scheme for cropland abandonment based on these complex scenarios. After applying this scheme, we observed a significant decline in green vegetation (a slope of −0.40% per year) and an increase in the soil fraction (a rate of 0.53% per year). These pathways are mostly linked to a duration between 8 and 15 years, with the beginning of the change trend around 2010. Finally, the results show that our framework can effectively separate abandoned cropland from reclamation dynamics and other classes with satisfactory precision, as indicated by an overall accuracy of 86.02%. Compared to the traditional yearly land cover-based approach (with an overall accuracy of 77.39%), this algorithm can overcome the propagation of classification errors (with product accuracy from 74.47% to 85.11%), especially in terms of improving the ability to capture changes at finer spatial scales. Furthermore, it also provides a better understanding of the whole abandonment process under the influence of multi-factor interactions in the context of specific climatic backgrounds and human disturbances, thus helping to inform adaptive abandonment management and sustainable agricultural policies. Full article
Show Figures

Figure 1

7 pages, 3442 KiB  
Proceeding Paper
Monitoring Ecosystem Dynamics Using Machine Learning: Random Forest-Based LULC Analysis in Dinder Biosphere Reserve, Sudan
by Ahmed M. M. Hasoba, Emad H. E. Yasin, Mohamed B. O. Osman and Kornel Czimber
Eng. Proc. 2025, 94(1), 2; https://doi.org/10.3390/engproc2025094002 - 16 Jun 2025
Viewed by 315
Abstract
Dinder Biosphere Reserve (DBR), a UNESCO-recognized biodiversity hotspot in Sudan, faces escalating land-use pressure. We analyzed land cover changes from 2019 to 2024 using Sentinel-2 imagery processed in Google Earth Engine. A Random Forest classifier identified five land cover classes: water, built-up areas, [...] Read more.
Dinder Biosphere Reserve (DBR), a UNESCO-recognized biodiversity hotspot in Sudan, faces escalating land-use pressure. We analyzed land cover changes from 2019 to 2024 using Sentinel-2 imagery processed in Google Earth Engine. A Random Forest classifier identified five land cover classes: water, built-up areas, vegetation, bare land, and crops. The transition matrix revealed significant changes over this period. About 1501 km2 of vegetation and 1648 km2 of cropland were converted to bare land. Built-up areas lost 95 km2 to bare land. Bare land remained largely unchanged (4749 km2), while water bodies were the most stable (13,473 km2 unchanged). Only minor transitions involved water (27.6 km2 to vegetation, 15.2 km2 to bare land). Notably, 411 km2 of cropland and 1773 km2 of bare land transitioned to vegetation, indicating some regrowth. These land cover changes reflect a dynamic interplay between degradation and recovery processes; however, the results should be interpreted with caution due to potential classification inaccuracies, seasonal variation in imagery, and absence of field validation. Continued satellite monitoring is essential to guide adaptive land management and safeguard ecosystem function in DBR. Full article
Show Figures

Figure 1

29 pages, 5669 KiB  
Article
Research on Machine Learning-Based Extraction and Classification of Crop Planting Information in Arid Irrigated Areas Using Sentinel-1 and Sentinel-2 Time-Series Data
by Lixiran Yu, Hongfei Tao, Qiao Li, Hong Xie, Yan Xu, Aihemaiti Mahemujiang and Youwei Jiang
Agriculture 2025, 15(11), 1196; https://doi.org/10.3390/agriculture15111196 - 30 May 2025
Viewed by 516
Abstract
Irrigation areas in arid regions are vital production areas for grain and cash crops worldwide. Grasping the temporal and spatial evolution of planting configurations across several years is crucial for effective regional agricultural and resource management. In view of problems such as insufficient [...] Read more.
Irrigation areas in arid regions are vital production areas for grain and cash crops worldwide. Grasping the temporal and spatial evolution of planting configurations across several years is crucial for effective regional agricultural and resource management. In view of problems such as insufficient optical images caused by cloudy weather in arid regions and the unclear spatiotemporal evolution patterns of the planting structures in irrigation areas over the years, in this study, we took the Santun River Irrigation Area, a typical arid region in Xinjiang, China, as an example. By leveraging long time-series remote sensing images from Sentinel-1 and Sentinel-2, the spectral, index, texture, and polarization features of the ground objects in the study area were extracted. When analyzing the index characteristics, we considered several widely used global vegetation indices, including the Normalized Difference Vegetation Index (NDVI), Enhanced Vegetation Index (EVI), Soil Adjusted Vegetation Index (SAVI), and Global Environment Monitoring Index (GEMI). Additionally, we integrated the vertical–vertical and vertical–horizontal polarization data obtained from synthetic aperture radar (SAR) satellite systems. Machine learning algorithms, including the random forest algorithm (RF), Classification and Regression Trees (CART), and Support Vector Machines (SVM), were employed for planting structure classification. The optimal classification model selected was subjected to inter-annual transfer to obtain the planting structures over multiple years. The research findings are as follows: (1) The RF classification algorithm outperforms CART and SVM algorithms in terms of classification accuracy, achieving an overall accuracy (OA) of 0.84 and a kappa coefficient of 0.805. (2) The cropland area classified by the RF algorithm exhibited a high degree of consistency with statistical yearbook data (R2 = 0.82–0.91). Significant differences are observed in the estimated planting areas of cotton, maize, tomatoes, and wheat, while differences in other crops are not statistically significant. (3) From 2019 to 2024, cotton remained the dominant crop, although its proportional area fluctuated considerably, while the areas of maize and wheat tended to remain stable, and those of tomato and melon showed relatively minor changes. Overall, the region demonstrates a cotton-dominated, stable cropping structure for other crops. The newly developed framework exhibits exceptional precision in categorization while maintaining impressive adaptability, offering crucial insights for optimizing agricultural operations and sustainable resource allocation in irrigation-dependent arid zones. Full article
(This article belongs to the Section Digital Agriculture)
Show Figures

Figure 1

22 pages, 8978 KiB  
Article
Assessing the Accuracy and Consistency of Cropland Datasets and Their Influencing Factors on the Tibetan Plateau
by Fuyao Zhang, Xue Wang, Liangjie Xin and Xiubin Li
Remote Sens. 2025, 17(11), 1866; https://doi.org/10.3390/rs17111866 - 27 May 2025
Viewed by 311
Abstract
With advancements in cloud computing and machine learning algorithms, an increasing number of cropland datasets have been developed, including the China land-cover dataset (CLCD) and GlobeLand30 (GLC). The unique climatic conditions of the Tibetan Plateau (TP) introduce significant differences and uncertainties to these [...] Read more.
With advancements in cloud computing and machine learning algorithms, an increasing number of cropland datasets have been developed, including the China land-cover dataset (CLCD) and GlobeLand30 (GLC). The unique climatic conditions of the Tibetan Plateau (TP) introduce significant differences and uncertainties to these datasets. Here, we used a quantitative and visual integrated assessment approach to assess the accuracy and spatial consistency of five cropland datasets around 2020 in the TP, namely the CLCD, GLC30, land-use remote sensing monitoring dataset in China (CNLUCC), Global Land Analysis and Discovery (GLAD), and global land-cover product with a fine classification system (GLC_FCS). We analyzed the impact of terrain, climate, population, and vegetation indices on cropland spatial consistency using structural equation modeling (SEM). In this study, the GLAD cropland area had the highest fit with the national land survey (R2 = 0.88). County-level analysis revealed that the CLCD and GLC_FCS underestimated cropland areas in high-elevation counties, whereas the GLC and CNLUCC tended to overestimate cropland areas on the TP. Considering overall accuracy, GLC and GLAD performed the best with scores of 0.76 and 0.75, respectively. In contrast, CLCD (0.640), GLC_FCS (0.640), and CNLUCC (0.620) exhibited poor overall accuracy. This study highlights the significantly low spatial consistency of croplands on the TP, with only 10.60% consistency in high and complete agreement. The results showed substantial differences in spatial accuracy among zones, with relatively higher consistency observed in low-altitude zones and notably poorer accuracy in zones with sparse or fragmented cropland. The SEM results indicated that elevation and slope directly influenced cropland consistency, whereas temperature and precipitation indirectly affected cropland consistency by influencing vegetation indices. This study provides a valuable reference for implementing cropland datasets and future cropland mapping studies on the TP region. Full article
(This article belongs to the Special Issue Mapping Essential Elements of Agricultural Land Using Remote Sensing)
Show Figures

Figure 1

21 pages, 7835 KiB  
Article
Extraction of Cropland Based on Multi-Source Remote Sensing and an Improved Version of the Deep Learning-Based Segment Anything Model (SAM)
by Kunjian Tao, He Li, Chong Huang, Qingsheng Liu, Junyan Zhang and Ruoqi Du
Agronomy 2025, 15(5), 1139; https://doi.org/10.3390/agronomy15051139 - 6 May 2025
Viewed by 705
Abstract
Fine extraction of cropland parcels is an essential prerequisite for achieving precision agriculture. Remote sensing technology, due to its large-scale and multi-dimensional characteristics, can effectively enhance the efficiency of collecting information on agricultural land parcels. Currently, semantic segmentation models based on high-resolution remote [...] Read more.
Fine extraction of cropland parcels is an essential prerequisite for achieving precision agriculture. Remote sensing technology, due to its large-scale and multi-dimensional characteristics, can effectively enhance the efficiency of collecting information on agricultural land parcels. Currently, semantic segmentation models based on high-resolution remote sensing imagery utilize limited spectral information and rely heavily on a large amount of fine data annotation, while pixel classification models based on medium-to-low-resolution multi-temporal remote sensing imagery are limited by the mixed pixel problem. To address this, the study utilizes GF-2 high-resolution imagery and Sentinel-2 multi-temporal data, in conjunction with the basic image segmentation model SAM, by additionally introducing a prompt generation module (Box module and Auto module) to achieve automatic fine extraction of cropland parcels. The research results indicate the following: (1) The mIoU of SAM with the Box module is 0.711, and the OA is 0.831, showing better performance, while the mIoU of SAM with the Auto module is 0.679, and the OA is 0.81, yielding higher-quality cropland masks; (2) The combination of various prompts (box, point, and mask), along with the hierarchical extraction strategy, can effectively improve the performance of Box module SAM; (3) Employing a more accurate prompt data source can significantly boost model performance. The mIoU of the superior-performing Box module SAM is increased to 0.920, and the OA is raised to 0.958. Overall, the improved SAM, while reducing the demand for mask annotation and model training, can achieve high-precision extraction results for cropland parcels. Full article
(This article belongs to the Section Precision and Digital Agriculture)
Show Figures

Figure 1

32 pages, 54468 KiB  
Article
Importance of Spectral Information, Seasonality, and Topography on Land Cover Classification of Tropical Land Cover Mapping
by Chansopheaktra Sovann, Stefan Olin, Ali Mansourian, Sakada Sakhoeun, Sovann Prey, Sothea Kok and Torbern Tagesson
Remote Sens. 2025, 17(9), 1551; https://doi.org/10.3390/rs17091551 - 27 Apr 2025
Viewed by 2212
Abstract
Tropical forests provide essential ecosystem services, playing a critical role in climate regulation, biodiversity conservation, and regional hydrological cycles while also supporting livelihoods. However, they are increasingly threatened by deforestation and land-use change. Accurate land cover (LC) mapping is vital to monitor these [...] Read more.
Tropical forests provide essential ecosystem services, playing a critical role in climate regulation, biodiversity conservation, and regional hydrological cycles while also supporting livelihoods. However, they are increasingly threatened by deforestation and land-use change. Accurate land cover (LC) mapping is vital to monitor these changes, but mapping tropical forests is challenging due to complex spatial patterns, spectral similarities, and frequent cloud cover. This study aims to improve LC classification accuracy in such a heterogeneous tropical forest region in Southeast Asia, namely Kulen, Cambodia, which is characterized by natural forests, regrowth forests, and agricultural lands including cashew plantations and croplands, using Sentinel-2 imagery, recursive feature elimination (RFE), and Random Forest. We generated 65 variables of spectral bands, indices, bi-seasonal differences, and topographic data from Sentinel-2 Level-2A and Shuttle Radar Topography Mission datasets. These variables were extracted from 1000 random points per 12 LC classes from reference polygons based on observed GPS points, Uncrewed Aerial Vehicle imagery, and high-resolution satellite data. The random forest models were optimized through correlation-based filtering and recursive feature elimination with hyperparameter tuning to improve classification accuracy, validated via confusion matrices and comparisons with global and national-scale products. Our results highlight the significant role of topographic variables such as elevation and slope, along with red-edge spectral bands and spectral indices related to tillage, leaf water content, greenness, chlorophyll, and tasseled cap transformation for tropical land cover mapping. The integration of bi-seasonal datasets improved classification accuracy, particularly for challenging classes like semi-evergreen and deciduous forests. Furthermore, correlation-based filtering and recursive feature elimination reduced the variable set from 65 to 19, improving model efficiency without sacrificing accuracy. Combining these variable selection methods with hyperparameter tuning optimized the classification, providing a more reliable LC product that outperforms existing LC products and proves valuable for deforestation monitoring, forest management, biodiversity conservation, and land use studies. Full article
Show Figures

Figure 1

27 pages, 27375 KiB  
Article
Enhancing Crop Type Mapping in Data-Scarce Regions Through Transfer Learning: A Case Study of the Hexi Corridor
by Jingjing Mai, Qisheng Feng, Shuai Fu, Ruijing Wang, Shuhui Zhang, Ruoqi Zhang and Tiangang Liang
Remote Sens. 2025, 17(9), 1494; https://doi.org/10.3390/rs17091494 - 23 Apr 2025
Viewed by 762
Abstract
Timely and accurate crop mapping is crucial for providing essential data support for agricultural production management. Reliable ground truth samples form the foundation for crop mapping using remote sensing imagery, a task that presents significant challenges in regions with limited sample availability. To [...] Read more.
Timely and accurate crop mapping is crucial for providing essential data support for agricultural production management. Reliable ground truth samples form the foundation for crop mapping using remote sensing imagery, a task that presents significant challenges in regions with limited sample availability. To address this issue, this study evaluates instance-based transfer learning methods, using the Hexi Corridor as a case study to explore crop mapping strategies in areas with scarce samples. High-confidence pixels from the United States Cropland Data Layer (CDL), along with high-density time series data derived from Sentinel-1, Sentinel-2, and Landsat-8 satellite imagery, as well as key vegetation indices, were selected as training samples for the source domain. Various algorithms, including Random Forest (RF), Extreme Gradient Boosting (XGBoost), and TrAdaBoost, were employed to transfer knowledge from the source domain to the target domain for crop type mapping. The results demonstrated that during the transfer learning process using only source domain data—without utilizing any target domain data—the overall classification accuracy reached 73.88%, with optimal accuracies for maize and alfalfa at 88.97% and 85.23%, respectively. As target domain data were gradually incorporated, the total accuracy for all models ranged from 0.77 to 0.92, with F1-scores ranging from 0.76 to 0.92, showing a consistent improvement in model performance. This study highlights the feasibility of employing transfer learning for crop mapping in the Hexi Corridor, demonstrating its potential to reduce labeling costs for target domain samples and providing a valuable reference for crop mapping in regions with limited sample availability. Full article
(This article belongs to the Section Remote Sensing in Agriculture and Vegetation)
Show Figures

Figure 1

30 pages, 56050 KiB  
Article
Assessing Habitat Quality on Synergetic Land-Cover Dataset Across the Greater Mekong Subregion over the Last Four Decades
by Shu’an Liu, Tianle Sun, Philippe Ciais, Huifang Zhang, Junjun Fang, Jingchun Fang, Tewekel Melese Gemechu and Baozhang Chen
Remote Sens. 2025, 17(8), 1467; https://doi.org/10.3390/rs17081467 - 20 Apr 2025
Cited by 1 | Viewed by 1038
Abstract
In the face of rapid infrastructure expansion and escalating anthropogenic activities, it becomes imperative to prioritize the examination of long-term transformations in land cover and ecological quality within the Greater Mekong Subregion (GMS). We developed an ecological evaluation system integrating the land cover [...] Read more.
In the face of rapid infrastructure expansion and escalating anthropogenic activities, it becomes imperative to prioritize the examination of long-term transformations in land cover and ecological quality within the Greater Mekong Subregion (GMS). We developed an ecological evaluation system integrating the land cover data assimilation framework (LCDAF) with the InVEST model to accomplish this goal. The LCDAF compensates for the disadvantages of weather interference, difficulty in recognizing complex scenes, and poor generalization in remote sensing image classification, and also adds temporal continuity that other fusion methods do not have. The synthesized land cover dataset demonstrates superior overall accuracy compared to five existing global products. This enhanced dataset provides a robust foundation for comprehensive analysis and decision making within the ecological evaluation system. We implemented a rigorous and quantitative assessment of changes in land cover and habitat quality spanning 1980 to 2020. The land cover analysis unveiled a noteworthy trend that surfaced in the dynamic interplay between forested areas and croplands, highlighting simultaneous processes of forest restoration and agricultural expansion, albeit at varying rates. Further analysis of habitat quality showed that the GMS generally sustained a moderate level with a slight downward trend observed over the period. Significantly, Laos attained the highest ranking in habitat quality, succeeded by Myanmar, China, Cambodia, Vietnam, and Thailand. In human factors, land use intensity and landscape fragmentation emerge as contributors with detrimental effects on habitat quality. Substantial progress was achieved in implementing forestland conservation measures, exemplified in regions such as Cambodia and Guangxi Province of China, where these endeavors proved effective in mitigating habitat degradation. Despite these positive endeavors, the GMS’s overall habitat quality did not significantly improve. It emphasizes the enduring challenges confronted by the region in terms of ecological management and habitat conservation. Full article
Show Figures

Figure 1

33 pages, 33351 KiB  
Article
A Deep Learning Method for Land Use Classification Based on Feature Augmentation
by Yue Wang, Wanshun Zhang, Xin Liu, Hong Peng, Minbo Lin, Ao Li, Anna Jiang, Ning Ma and Lu Wang
Remote Sens. 2025, 17(8), 1398; https://doi.org/10.3390/rs17081398 - 14 Apr 2025
Viewed by 742
Abstract
Land use monitoring by satellite remote sensing can improve the capacity of ecosystem resources management. The satellite source, bandwidth, computing speed, data storage and cost constrain the development and application in the field. A novel deep learning classification method based on feature augmentation [...] Read more.
Land use monitoring by satellite remote sensing can improve the capacity of ecosystem resources management. The satellite source, bandwidth, computing speed, data storage and cost constrain the development and application in the field. A novel deep learning classification method based on feature augmentation (CNNs-FA) is developed in this paper, which offers a robust avenue to realize regional low-cost and high-precision land use monitoring. Twenty-two spectral indices are integrated to augment vegetation, soil and water features, which are used for convolutional neural networks (CNNs) learning to effectively differentiate seven land use types, including cropland, forest, grass, built-up, bare, wetland and water. Results indicated that multiple spectral indices can effectively distinguish land uses with a similar reflectance, achieving an overall accuracy of 99.70%, 94.81% and 90.07%, respectively, and a kappa coefficient of 99.96%, 98.62% and 99.76%, respectively, for Bayannur, Ordos and the Hong Lake Basin (HLB). The overall accuracy of 98.18% for the field investigation demonstrated that the accuracy of the classification in wet areas and ecologically sensitive areas was characterized by significant desert–grassland interspersion. Full article
Show Figures

Figure 1

25 pages, 6362 KiB  
Article
Assessing Climate Change Impacts on Cropland and Greenhouse Gas Emissions Using Remote Sensing and Machine Learning
by Nehir Uyar and Azize Uyar
Atmosphere 2025, 16(4), 418; https://doi.org/10.3390/atmos16040418 - 3 Apr 2025
Cited by 1 | Viewed by 996
Abstract
This study investigated the impact of grassland and cropland expansion on carbon (C) and nitrous oxide (N2O) emissions using remote sensing data and machine learning models. The research focused on agricultural land-use changes in South Sumatra from 1992 to 2018, utilizing [...] Read more.
This study investigated the impact of grassland and cropland expansion on carbon (C) and nitrous oxide (N2O) emissions using remote sensing data and machine learning models. The research focused on agricultural land-use changes in South Sumatra from 1992 to 2018, utilizing Landsat satellite imagery and Google Earth Engine (GEE) for spatial and temporal analysis. Machine learning algorithms, including gradient boosting trees (GBT), random forest (RF), support vector machines (SVM), and classification and regression trees (CART), were employed to estimate greenhouse gas emissions based on multiple environmental parameters. These parameters include enhanced vegetation index (EVI), land surface temperature (LST), normalized difference vegetation index (NDVI), albedo, elevation, humidity, population density, precipitation, soil moisture, and wind speed. The results revealed a strong correlation between agricultural expansion and increased C and N2O emissions, with RF and GBT models demonstrating superior predictive accuracy. Specifically, GBT and RF achieved the highest R2 value (0.71, 0.59) and the lowest error metrics in modeling emissions, whereas SVM performed poorly across all cases. The study highlights the effectiveness of machine learning in quantifying emission dynamics and underscores the necessity of sustainable land management strategies to mitigate greenhouse gas emissions. By integrating remote sensing and data-driven methodologies, this research contributes to climate change mitigation policies and precision agriculture strategies aimed at balancing food security and environmental sustainability. Full article
(This article belongs to the Special Issue Observation of Climate Change and Cropland with Satellite Data)
Show Figures

Figure 1

Back to TopTop