Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (58)

Search Parameters:
Keywords = cover delamination

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
36 pages, 4967 KiB  
Review
Mechanical Behavior of Adhesively Bonded Joints Under Tensile Loading: A Synthetic Review of Configurations, Modeling, and Design Considerations
by Leila Monajati, Aurelian Vadean and Rachid Boukhili
Materials 2025, 18(15), 3557; https://doi.org/10.3390/ma18153557 - 29 Jul 2025
Viewed by 387
Abstract
This review presents a comprehensive synthesis of recent advances in the tensile performance of adhesively bonded joints, focusing on applied aspects and modeling developments rather than providing a full theoretical analysis. Although many studies have addressed individual joint types or modeling techniques, an [...] Read more.
This review presents a comprehensive synthesis of recent advances in the tensile performance of adhesively bonded joints, focusing on applied aspects and modeling developments rather than providing a full theoretical analysis. Although many studies have addressed individual joint types or modeling techniques, an integrated review that compares joint configurations, modeling strategies, and performance optimization methods under tensile loading remains lacking. This work addresses that gap by examining the mechanical behavior of key joint types, namely, single-lap, single-strap, and double-strap joints, and highlighting their differences in stress distribution, failure mechanisms, and structural efficiency. Modeling and simulation approaches, including cohesive zone modeling, extended finite element methods, and virtual crack closure techniques, are assessed for their predictive accuracy and applicability to various joint geometries. This review also covers material and geometric enhancements, such as adherend tapering, fillets, notching, bi-adhesives, functionally graded bondlines, and nano-enhanced adhesives. These strategies are evaluated in terms of their ability to reduce stress concentrations and improve damage tolerance. Failure modes, adhesive and adherend defects, and delamination risks are also discussed. Finally, comparative insights into different joint configurations illustrate how geometry and adhesive selection influence strength, energy absorption, and weight efficiency. This review provides design-oriented guidance for optimizing bonded joints in aerospace, automotive, and structural engineering applications. Full article
(This article belongs to the Special Issue Advanced Materials and Processing Technologies)
Show Figures

Figure 1

14 pages, 3260 KiB  
Article
Performance of Hybrid Strengthening System for Reinforced Concrete Member Using CFRP Composites Inside and over Transverse Groove Technique
by Ahmed H. Al-Abdwais and Adil K. Al-Tamimi
Fibers 2025, 13(7), 93; https://doi.org/10.3390/fib13070093 - 8 Jul 2025
Viewed by 289
Abstract
The use of a carbon-fiber-reinforced polymer (CFRP) for structural strengthening has been widely adopted in recent decades. Early studies focused on externally bonded (EB) techniques, but premature delamination of CFRP from concrete surfaces often limited their efficiency. To address this, alternative methods, such [...] Read more.
The use of a carbon-fiber-reinforced polymer (CFRP) for structural strengthening has been widely adopted in recent decades. Early studies focused on externally bonded (EB) techniques, but premature delamination of CFRP from concrete surfaces often limited their efficiency. To address this, alternative methods, such as Externally Bonded Reinforcement Over Grooves (EBROG) and Externally Bonded Reinforcement Inside Grooves (EBRIG), were developed to enhance the bond strength and delay delamination. While most research has examined longitudinal groove layouts, this study investigates a hybrid system combining a CFRP fabric bonded inside transverse grooves (EBRITG) with externally bonded layers over the grooves (EBROTG). The system leverages the grooves’ surface area to anchor the CFRP and improve the bonding strength. Seven RC beams were tested in two stages: five beams with varied strengthening methods (EBROG, EBRIG, and hybrid) in the first stage and two beams with a hybrid system and concrete cover anchorage in the second stage. Results demonstrated significant flexural capacity improvement—57% and 72.5% increase with two and three CFRP layers, respectively—compared to the EBROG method, confirming the hybrid system’s superior bonding efficiency. Full article
Show Figures

Figure 1

18 pages, 3706 KiB  
Article
Shear Performance of RC Beams Reinforced by Thin Layer of Epoxy Mortar with High Strength and High Toughness
by Weizhao Li, Tianhao Wen, Lingye Li and Chenggui Jing
Appl. Sci. 2025, 15(11), 6266; https://doi.org/10.3390/app15116266 - 3 Jun 2025
Viewed by 466
Abstract
This study aims to improve the shear performance of reinforced concrete (RC) beams by utilizing the favorable tensile and shear deformation capabilities of high-strength, high-toughness epoxy mortar. This study investigates the effect of reinforcement layer thickness on the shear failure modes, bearing capacity, [...] Read more.
This study aims to improve the shear performance of reinforced concrete (RC) beams by utilizing the favorable tensile and shear deformation capabilities of high-strength, high-toughness epoxy mortar. This study investigates the effect of reinforcement layer thickness on the shear failure modes, bearing capacity, and deformation capacity of beams through static tests on three specimens reinforced with thin layers of high-strength, high-toughness epoxy mortar and one unreinforced beam. The results show that reinforcing RC beams with thin layers of high-strength, high-toughness epoxy mortar can significantly enhance its shear bearing capacity and deformation capacity. The reinforcement layer of epoxy mortar can partially exert the shear resistance provided by the stirrups. The thicker the reinforcement layer, the more significant the improvement in the shear bearing capacity and deformation capacity of the strengthened beam. The epoxy mortar layer bonds well with the concrete, but delamination between the cover concrete and the core concrete leads to failure of the reinforcement layer, meaning that shear bearing capacity does not increase linearly with the thickness of the epoxy mortar layer. Based on the experimental results, a shear bearing capacity calculation formula for RC beams reinforced with thin layers of high-strength, high-toughness epoxy mortar is proposed, which matches the experimental results well. Full article
Show Figures

Figure 1

23 pages, 8506 KiB  
Article
Destructive and Non-Destructive Analysis of Lightning-Induced Damage in Protected and Painted Composite Aircraft Laminates
by Audrey Bigand, Christine Espinosa and Jean-Marc Bauchire
Aerospace 2025, 12(5), 446; https://doi.org/10.3390/aerospace12050446 - 19 May 2025
Cited by 1 | Viewed by 465
Abstract
The use of CFRP composite increased significantly since the last 40 years for aircraft structure. Unfortunately, such structures are subjected to significant damages if struck by lightning compared to metallic structure. This is mainly due to the low conductivity of this material, which [...] Read more.
The use of CFRP composite increased significantly since the last 40 years for aircraft structure. Unfortunately, such structures are subjected to significant damages if struck by lightning compared to metallic structure. This is mainly due to the low conductivity of this material, which cannot evacuate the current without high Joule heating. Lightning strike-induced damage in a composite laminate is composed of in-depth delamination, fibre breakage, and resin deterioration due to the surface explosion and the core current flow linked to interaction of the arc with the surface. But very rare previous studies dedicated to the analysis of damage as a direct effect of lightning have considered the spurious effect of the paint that always covers real aeronautic structures neither on the thermal nor the mechanical loads that are the root cause of these damages. We present in this paper a coupled non-destructive and destructive damage analysis to support the proposition of damage scenarios depending on the presence and thickness of the paint. The mechanical and thermal sources contribution in the global loading on the core damage is discussed, which confirms previous studies’ analysis and modelling and is in accordance with existing works in the literature. Full article
(This article belongs to the Section Astronautics & Space Science)
Show Figures

Figure 1

18 pages, 3636 KiB  
Article
The Reconstruction of Various Complex Full-Thickness Skin Defects with a Biodegradable Temporising Matrix: A Case Series
by Julie van Durme, Thibaut Dhont, Ignace De Decker, Michiel Van Waeyenberghe, Kimberly De Mey, Henk Hoeksema, Jozef Verbelen, Petra De Coninck, Nathalie A. Roche, Phillip Blondeel, Stan Monstrey and Karel E. Y. Claes
Eur. Burn J. 2025, 6(2), 24; https://doi.org/10.3390/ebj6020024 - 14 May 2025
Viewed by 1023
Abstract
Background and Objectives: Traditionally, full-thickness skin defects (FTSDs) are covered with split-thickness skin grafts (STSGs). This usually provides an epidermal coverage but entails a high risk of hypertrophic scarring mainly due to the absence of the dermal layer. The Novosorb® Biodegradable Temporising [...] Read more.
Background and Objectives: Traditionally, full-thickness skin defects (FTSDs) are covered with split-thickness skin grafts (STSGs). This usually provides an epidermal coverage but entails a high risk of hypertrophic scarring mainly due to the absence of the dermal layer. The Novosorb® Biodegradable Temporising Matrix (BTM) is a novel synthetic dermal substitute that has been used for the reconstruction of various complex and/or large defects in our center. The aim of this article is to evaluate the clinical performance of the BTM as a synthetic dermal substitute for complex FTSD reconstruction in a European context. Materials and methods: This case series focused on the treatment of complex FTSDs with the BTM. After wound debridement, the BTM was applied according to a defined protocol. Once adequate vascularization was observed, the sealing membrane was removed and the neo-dermis was covered with STSGs. Patient demographics, comorbidities, wound defect localization and etiology, wound bed preparations, time of BTM application and removal, time to complete wound healing after STSG, complications, and HTS formation were recorded. Results: The BTM was used to treat FTSDs in six patients with complex wounds from degloving (3), burns (1), ulcerations (1), and necrotizing fasciitis (1). Successful integration occurred in five cases (83%), with one partial integration. The BTM remained in situ for an average of 20.7 days before delamination and STSG coverage. No major complications occurred, though one case had hypergranulation with secondary STSG infection. Two patients were lost to follow-up, while the remaining four had excellent aesthetic and functional outcomes with good-quality scars. Conclusions: Within the limits of this small and heterogeneous case series, the BTM appears to be a promising option for the reconstruction of complex FTSDs of varying etiologies. Its successful integration in most cases and limited complication rate support its clinical potential. However, given this study’s retrospective design and limited sample size, further prospective studies are required to validate these findings and assess long-term outcomes. Full article
Show Figures

Figure 1

14 pages, 15501 KiB  
Article
Experimental Study on the Burning Characteristics of Photovoltaic Modules with Different Inclination Angles Under the Pool Fire
by Jingwen Xiao, Dong Lin, Jia Zeng, Shuai Zhang and Jinlong Zhao
Fire 2025, 8(4), 143; https://doi.org/10.3390/fire8040143 - 2 Apr 2025
Viewed by 657
Abstract
Mountain photovoltaic (PV) power stations cover vast areas and contain dense equipment. Once direct current arc faults occur in PV modules, they can pose a serious thermal threat to surrounding facilities and combustible materials, potentially resulting in a PV array fire accident. In [...] Read more.
Mountain photovoltaic (PV) power stations cover vast areas and contain dense equipment. Once direct current arc faults occur in PV modules, they can pose a serious thermal threat to surrounding facilities and combustible materials, potentially resulting in a PV array fire accident. In this work, a series of PV module fire experiments were conducted to investigate the burning characteristics of PV modules exposed to the pool fire. The burning process, burning damage extent, and temperature distribution were measured and analyzed. The results showed that the surfaces of PV modules exhibited different burning characteristics due to the pool fire. Based on different characteristics, the front side was classified into four zones: intact zone, delamination zone, carbonization zone and burn-through zone. The back side was similarly divided into four zones: undamaged backsheet zone, burnt TPT zone, cell detachment zone and burn-through zone. Meanwhile, the burning process and surface temperature rise rate of intact PV modules were significantly lower than those of cracked modules at the same inclination angle. Cracked modules exhibited a heightened susceptibility to being rapidly burnt through by the pool fire. As the inclination angle increased from 0° to 60°, the burning damage extent and the expansion rate of high-temperature regions initially ascended and subsequently decreased, reaching their maximum at the inclination angle of 15°. These findings can offer valuable insights that can serve as a reference for the fire protection design and risk assessment of mountain PV power stations, ensuring their safe operation. Full article
(This article belongs to the Special Issue Photovoltaic and Electrical Fires: 2nd Edition)
Show Figures

Figure 1

14 pages, 6706 KiB  
Article
A New Type of CuNi/TiB2 Thin-Film Thermocouple Fabricated by Magnetron Sputtering
by Junlong Luo, Zichang Pan, Zhengtao Wu, Haiqing Li, Qimin Wang, Yisong Lin, Liangliang Lin, Aiqin Zheng and Chao Liu
Coatings 2025, 15(2), 142; https://doi.org/10.3390/coatings15020142 - 26 Jan 2025
Viewed by 2852
Abstract
A new CuNi/TiB2 thin-film thermocouple was fabricated using magnetron sputtering. A 400 nm thick CuNi interior layer was deposited on a dielectric substrate initiatory, and then covered by an 800 nm thick TiB2 layer. The tests revealed that the TiB2 [...] Read more.
A new CuNi/TiB2 thin-film thermocouple was fabricated using magnetron sputtering. A 400 nm thick CuNi interior layer was deposited on a dielectric substrate initiatory, and then covered by an 800 nm thick TiB2 layer. The tests revealed that the TiB2 layer had a dense and columnar cross-section. The measured hardness and elastic modulus of the TiB2 layer were ~20.5 and 315.9 GPa, respectively. No cracking or delamination occurred at the CuNi/TiB2 interface. The work functions of the TiB2 and the CuNi layers were calculated to be 4.406 and 4.726 eV, respectively. The difference in work functions between the TiB2 and the CuNi was ~0.3 eV. The CuNi/TiB2 thin-film sensor exhibited a high Seebeck coefficient of 38.07 μV/°C with excellent linearity. The maximum service temperature of the thin-film sensor was evaluated to be ~400 °C. A further increase in temperature degraded the Seebeck coefficient due to oxidation of the TiB2 layer. Full article
(This article belongs to the Special Issue Thin-Film Synthesis, Characterization and Properties)
Show Figures

Figure 1

18 pages, 8651 KiB  
Article
Interlaminar Fracture Toughness Analysis for Reliability Improvement of Wind Turbine Blade Spar Elements Based on Pultruded Carbon Fiber-Reinforced Polymer Plate Manufacturing Method
by Hakgeun Kim, Yunjung Jang, Sejin Lee, Chanwoong Choi and Kiweon Kang
Materials 2025, 18(2), 357; https://doi.org/10.3390/ma18020357 - 14 Jan 2025
Viewed by 1002
Abstract
The key structural components of a wind turbine blade, such as the skin, spar cap, and shear web, are fabricated from fiber-reinforced composite materials. The spar, predominantly manufactured via resin infusion—a process of resin injection and curing in carbon fibers—is prone to initial [...] Read more.
The key structural components of a wind turbine blade, such as the skin, spar cap, and shear web, are fabricated from fiber-reinforced composite materials. The spar, predominantly manufactured via resin infusion—a process of resin injection and curing in carbon fibers—is prone to initial defects, such as pores, wrinkles, and delamination. This study suggests employing the pultrusion technique for spar production to consistently obtain a uniform cross-section and augment the reliability of both the manufacturing process and the design. In this context, this study introduces carbon fiber-reinforced polymer (CFRP/CFRP) and glass fiber-reinforced polymer (GFRP/CFRP) test specimens, which mimic the bonding structure of the spar cap, utilizing pultruded CFRP in accordance with ASTM standards to analyze the delamination traits of the spar. Delamination tests—covering Mode I (double cantilever beam), Mode II (end-notched flexure), and mixed mode (mixed-mode bending)—were performed to gauge displacement, load, and crack growth length. Through this crack growth mechanism, the interlaminar fracture toughness derived was examined, and the stiffness and strength changes compared to CFRP based on the existing prepreg manufacturing method were analyzed. In addition, the interlaminar fracture toughness for GFRP, which is a material in contact with the spar structure, was analyzed, and through this, it was confirmed that the crack behavior has less deviation compared to a single CFRP material depending on the stiffness difference between the materials when joining dissimilar materials. This means that the higher the elasticity of the high-stiffness material, the higher the initial crack resistance, but the crack growth behavior shows non-uniform characteristics thereafter. This comparison provides information for predicting interlaminar delamination damage within the interior and bonding area of the spar and skin and provides insight for securing the reliability of the design life. Full article
(This article belongs to the Section Advanced Composites)
Show Figures

Figure 1

17 pages, 16217 KiB  
Article
Investigation of Temperature at Al/Glass Fiber-Reinforced Polymer Interfaces When Drilling Composites of Different Stacking Arrangements
by Brahim Salem, Ali Mkaddem, Malek Habak, Yousef Dobah, Makram Elfarhani and Abdessalem Jarraya
Polymers 2024, 16(19), 2823; https://doi.org/10.3390/polym16192823 - 6 Oct 2024
Cited by 2 | Viewed by 3302
Abstract
This attempt covers an investigation of cutting temperature at interfaces of Fiber Metal Laminates (FMLs) made of glass fiber-reinforced polymer (GFRP) stacked with an Al2020 alloy. GFRP/Al/GFRP and Al/GFRP/Al composite stacks are both investigated to highlight the effect of stacking arrangement on thermal [...] Read more.
This attempt covers an investigation of cutting temperature at interfaces of Fiber Metal Laminates (FMLs) made of glass fiber-reinforced polymer (GFRP) stacked with an Al2020 alloy. GFRP/Al/GFRP and Al/GFRP/Al composite stacks are both investigated to highlight the effect of stacking arrangement on thermal behavior within the interfaces. In a first test series, temperature history is recorded within the metal/composite stack interfaces using preinstalled thermocouples. In a second test series, a wireless telemetry system connected to K-type thermocouples implanted adjacent to the cutting edge of the solid carbide drill is used to record temperature evolution at the tool tip. Focus is put on the effects of cutting speed and stacking arrangement on the thrust force, drilling temperature, and delamination. From findings, the temperature histories show high sensitivity to the cutting speed. When cutting Al/GFRP/Al, the peak temperature is found to be much higher than that recorded in GFRP/Al/GFRP and exceeds the glass transition point of the GFRP matrix under critical cutting speeds. However, thrust force obtained at constitutive phases exhibits close magnitude when the stacking arrangement varies, regardless of cutting speed. Damage analysis is also discussed through the delamination factor at different stages of FML thickness. Full article
Show Figures

Figure 1

19 pages, 6946 KiB  
Article
Fatigue Behaviour of High-Performance Green Epoxy Biocomposite Laminates Reinforced by Optimized Long Sisal Fibers
by B. Zuccarello, C. Militello and F. Bongiorno
Polymers 2024, 16(18), 2630; https://doi.org/10.3390/polym16182630 - 18 Sep 2024
Cited by 5 | Viewed by 1621
Abstract
In recent decades, in order to replace traditional synthetic polymer composites, engineering research has focused on the development of new alternatives such as green biocomposites constituted by an eco-sustainable matrix reinforced by natural fibers. Such innovative biocomposites are divided into two different typologies: [...] Read more.
In recent decades, in order to replace traditional synthetic polymer composites, engineering research has focused on the development of new alternatives such as green biocomposites constituted by an eco-sustainable matrix reinforced by natural fibers. Such innovative biocomposites are divided into two different typologies: random short fiber biocomposites characterized by low mechanical strength, used for non-structural applications such as covering panels, etc., and high-performance biocomposites reinforced by long fibers that can be used for semi-structural and structural applications by replacing traditional materials such as metal (carbon steel and aluminum) or synthetic composites such as fiberglass. The present research work focuses on the high-performance biocomposites reinforced by optimized sisal fibers. In detail, in order to contribute to the extension of their application under fatigue loading, a systematic experimental fatigue test campaign has been accomplished by considering four different lay-up configurations (unidirectional, cross-ply, angle-ply and quasi-isotropic) with volume fraction Vf = 70%. The results analysis found that such laminates exhibit good fatigue performance, with fatigue ratios close to 0.5 for unidirectional and angle-ply (±7.5°) laminates. However, by passing from isotropic to unidirectional lay-up, the fatigue strength increases significantly by about four times; higher increases are revealed in terms of fatigue life. In terms of damage, it has been observed that, thanks to the high quality of the proposed laminates, in any case, the fatigue failure involves the fiber failure, although secondary debonding and delamination can occur, especially in orthotropic and cross-ply lay-up. The comparison with classical synthetic composites and other similar biocomposite has shown that in terms of fatigue ratio, the examined biocomposites exhibit performance comparable with the biocomposites reinforced by the more expensive flax and with common fiberglass. Finally, appropriate models, that can be advantageously used at the design stage, have also been proposed to predict the fatigue behavior of the laminates analyzed. Full article
(This article belongs to the Special Issue Epoxy Polymers and Composites)
Show Figures

Figure 1

18 pages, 1585 KiB  
Review
Technological Advancement in Solar Photovoltaic Recycling: A Review
by Monserrat Martínez, Yahaira Barrueto, Yecid P. Jimenez, Dennis Vega-Garcia and Ingrid Jamett
Minerals 2024, 14(7), 638; https://doi.org/10.3390/min14070638 - 22 Jun 2024
Cited by 10 | Viewed by 5617
Abstract
This review examines the technological surveillance of photovoltaic panel recycling through a bibliometric study of articles and patents. The analysis considered the number of articles and patents published per year, per country, and, in the case of patents, per applicant. This analysis revealed [...] Read more.
This review examines the technological surveillance of photovoltaic panel recycling through a bibliometric study of articles and patents. The analysis considered the number of articles and patents published per year, per country, and, in the case of patents, per applicant. This analysis revealed that panel recycling is an increasingly prominent research area. However, the number of patents filed annually has varied in recent years, averaging fewer than 200 per year. The state-of-the-art review identified three main types of treatment for photovoltaic panel recycling: mechanical, chemical, and thermal. Among these, mechanical treatment serves as a preliminary stage before the recovery of valuable elements, which is achieved through chemical or thermal processes. The articles reviewed cover a range of processes, including hydrometallurgical and pyrometallurgical methods, and explore various classification processes, solvents, and oxidizing agents. In contrast, patents predominantly focus on pyrometallurgical processes. This analysis is supplemented by a survey of market-ready technologies, many of which include stages such as size reduction or delamination followed by pyrometallurgical processes. Additionally, the review highlights the collection processes implemented by some companies, noting that the volume of panels considered waste is currently insufficient to maintain a continuous and year-round operational process. This study identifies key challenges such as (i) reducing solar panel size due to the EVA polymer complicating conventional machinery use, (ii) high process costs from the need for high temperatures and costly additives, (iii) the environmental impact of thermal treatments with high energy consumption and air pollution, and (iv) the necessity for environmentally friendly solvents in hydrometallurgical treatments to reduce contamination during recycling. Future directions include developing specific machinery for panel size reduction, either creating or modifying a polymer to replace EVA for easier treatment, adopting hydrometallurgical treatments with green solvents proven effective in recycling minerals and electronic waste, and addressing the lack of detailed information on industrial processes to make more precise recommendations. Full article
(This article belongs to the Section Mineral Processing and Extractive Metallurgy)
Show Figures

Figure 1

34 pages, 2550 KiB  
Review
Additive Manufacturing of Continuous Fiber-Reinforced Polymer Composites via Fused Deposition Modelling: A Comprehensive Review
by Muhammad Azfar Jamal, Owaisur Rahman Shah, Usman Ghafoor, Yumna Qureshi and M. Raheel Bhutta
Polymers 2024, 16(12), 1622; https://doi.org/10.3390/polym16121622 - 7 Jun 2024
Cited by 14 | Viewed by 5623
Abstract
Additive manufacturing (AM) has arisen as a transformative technology for manufacturing complex geometries with enhanced mechanical properties, particularly in the realm of continuous fiber-reinforced polymer composites (CFRPCs). Among various AM techniques, fused deposition modeling (FDM) stands out as a promising method for the [...] Read more.
Additive manufacturing (AM) has arisen as a transformative technology for manufacturing complex geometries with enhanced mechanical properties, particularly in the realm of continuous fiber-reinforced polymer composites (CFRPCs). Among various AM techniques, fused deposition modeling (FDM) stands out as a promising method for the fabrication of CFRPCs due to its versatility, ease of use, flexibility, and cost-effectiveness. Several research papers on the AM of CFRPs via FDM were summarized and therefore this review paper provides a critical examination of the process-printing parameters influencing the AM process, with a focus on their impact on mechanical properties. This review covers details of factors such as fiber orientation, layer thickness, nozzle diameter, fiber volume fraction, printing temperature, and infill design, extracted from the existing literature. Through a visual representation of the process parameters (printing and material) and properties (mechanical, physical, and thermal), this paper aims to separate out the optimal processing parameters that have been inferred from various research studies. Furthermore, this analysis critically evaluates the current state-of-the-art research, highlighting advancements, applications, filament production methods, challenges, and opportunities for further development in this field. In comparison to short fibers, continuous fiber filaments can render better strength; however, delamination issues persist. Various parameters affect the printing process differently, resulting in several limitations that need to be addressed. Signifying the relationship between printing parameters and mechanical properties is vital for optimizing CFRPC fabrication via FDM, enabling the realization of lightweight, high-strength components for various industrial applications. Full article
(This article belongs to the Special Issue Fiber Reinforced Polymer Composites)
Show Figures

Figure 1

20 pages, 8412 KiB  
Article
Delamination Assessment in Composite Laminates through Local Impulse Excitation Technique (IET)
by Carlo Boursier Niutta, Pierpaolo Padula, Andrea Tridello, Marco Boccaccio, Francesco Acerra and Davide S. Paolino
Appl. Sci. 2024, 14(7), 3023; https://doi.org/10.3390/app14073023 - 3 Apr 2024
Cited by 2 | Viewed by 1220
Abstract
This paper deals with an innovative nondestructive technique for composites (local-IET), which is based on the Impulse Excitation Technique (IET) and, in the presence of damage, assesses the degradation of the elastic properties of a local region of the laminate by reversibly clamping [...] Read more.
This paper deals with an innovative nondestructive technique for composites (local-IET), which is based on the Impulse Excitation Technique (IET) and, in the presence of damage, assesses the degradation of the elastic properties of a local region of the laminate by reversibly clamping its boundaries. In this paper, a numerical analysis of the sensitivity of the local-IET to the delamination damage mechanism is conducted. Firstly, a Finite Element (FE) model of the local-IET test is determined through experimental investigations on undamaged composite laminates, which cover a wide range and are made of glass or carbon fibers, through resin infusion or pre-preg consolidation and with unidirectional or fabric textures. The vibrational response of a glass fiber composite with local delamination is then assessed with the local-IET. By modeling the delamination in the simulation environment, the effectiveness of the FE model in replicating the vibrational response, even in the presence of delamination, is shown through a comparison with the experimental results. Finally, the FE model is exploited to perform a sensitivity analysis, showing that the technique is able to detect the presence of delamination. Full article
Show Figures

Figure 1

14 pages, 2650 KiB  
Article
An Optimized Method for Evaluating the Potential Gd-Nanoparticle Dose Enhancement Produced by Electronic Brachytherapy
by Melani Fuentealba, Alejandro Ferreira, Apolo Salgado, Christopher Vergara, Sergio Díez and Mauricio Santibáñez
Nanomaterials 2024, 14(5), 430; https://doi.org/10.3390/nano14050430 - 27 Feb 2024
Cited by 1 | Viewed by 1443
Abstract
This work reports an optimized method to experimentally quantify the Gd-nanoparticle dose enhancement generated by electronic brachytherapy. The dose enhancement was evaluated considering energy beams of 50 kVp and 70 kVp, determining the Gd-nanoparticle concentration ranges that would optimize the process for each [...] Read more.
This work reports an optimized method to experimentally quantify the Gd-nanoparticle dose enhancement generated by electronic brachytherapy. The dose enhancement was evaluated considering energy beams of 50 kVp and 70 kVp, determining the Gd-nanoparticle concentration ranges that would optimize the process for each energy. The evaluation was performed using delaminated radiochromic films and a Poly(methyl methacrylate) (PMMA) phantom covered on one side by a thin 2.5 μm Mylar filter acting as an interface between the region with Gd suspension and the radiosensitive film substrate. The results for the 70 kVp beam quality showed dose increments of 6±6%, 22±7%, and 9±7% at different concentrations of 10, 20, and 30 mg/mL, respectively, verifying the competitive mechanisms of enhancement and attenuation. For the 50 kVp beam quality, no increase in dose was recorded for the concentrations studied, indicating that the major contribution to enhancement is from the K-edge interaction. In order to separate the contributions of attenuation and enhancement to the total dose, measurements were replicated with a 12 μm Mylar filter, obtaining a dose enhancement attributable to the K-edge of 29±7% and 34±7% at 20 and 30 mg/mL, respectively, evidencing a significant additional dose proportional to the Gd concentration. Full article
Show Figures

Figure 1

23 pages, 10816 KiB  
Article
Integrating Data from Multiple Nondestructive Evaluation Technologies Using Machine Learning Algorithms for the Enhanced Assessment of a Concrete Bridge Deck
by Mustafa Khudhair and Nenad Gucunski
Signals 2023, 4(4), 836-858; https://doi.org/10.3390/signals4040046 - 4 Dec 2023
Cited by 2 | Viewed by 1569
Abstract
Several factors impact the durability of concrete bridge decks, including traffic loads, fatigue, temperature changes, environmental stress, and maintenance activities. Detecting problems such as corrosion, delamination, or concrete degradation early on can lower maintenance costs. Nondestructive evaluation (NDE) techniques can detect these issues [...] Read more.
Several factors impact the durability of concrete bridge decks, including traffic loads, fatigue, temperature changes, environmental stress, and maintenance activities. Detecting problems such as corrosion, delamination, or concrete degradation early on can lower maintenance costs. Nondestructive evaluation (NDE) techniques can detect these issues at early stages. Each NDE method, meanwhile, has limitations that reduce the accuracy of the assessment. In this study, multiple NDE technologies were combined with machine learning algorithms to improve the interpretation of half-cell potential (HCP) and electrical resistivity (ER) measurements. A parametric study was performed to analyze the influence of five parameters on HCP and ER measurements, such as the degree of saturation, corrosion length, delamination depth, concrete cover, and moisture condition of delamination. The results were obtained through finite element simulations and used to build two machine learning algorithms, a classification algorithm and a regression algorithm, based on Random Forest methodology. The algorithms were tested using data collected from a bridge deck in the BEAST® facility. Both machine learning algorithms were effective in improving the interpretation of the ER and HCP measurements using data from multiple NDE technologies. Full article
Show Figures

Figure 1

Back to TopTop