Investigation of Temperature at Al/Glass Fiber-Reinforced Polymer Interfaces When Drilling Composites of Different Stacking Arrangements
Abstract
:1. Introduction
2. Materials and Methods
2.1. Specimen Preparation
2.2. Experimental Setup
2.3. Measurement of Delamination Factor
3. Results and Discussion
3.1. Drilling Forces
3.1.1. Thrust Force vs. Cutting Stages
3.1.2. Thrust Force vs. Cutting Speed
3.2. Drilling Temperatures
3.2.1. Tool Temperature Analysis
Temperature History vs. Stacking Arrangement
Tool Temperature vs. Cutting Speed
3.2.2. Workpiece Temperature
3.3. Damage Analysis
3.3.1. Delamination Factor vs. Stacking Arrangement
3.3.2. Damage Inspections
4. Conclusions
- The drilling process involves seven distinct thermal stages based on the specific characteristics of the tool–material interaction. The most challenging stages are typically detected at interfaces owing to the sudden transition of the tool from composite to metallic phase or vice versa. In fact, coupled chip separation modes and severe transitions of mechanical and physical responses yield serious thermomechanical discontinuities at interfaces.
- Irrespective of the stacking arrangement, the thrust force developed in GFRP phase is lower than that recorded in the Al alloy whatever the cutting speed used. However, the thrust force recorded at the top and bottom phases of the GFRP/Al/GFRP stack drops by 25 and 21%, respectively, while it falls by only 8% at the intermediate phase of Al/GFRP/Al when the cutting speed varies from 71 to 142 m min−1.
- The temperature history at the tool tip is measured using a wireless telemetry rotational device. The highest peak values are obtained at hole exit regardless of the stacking arrangement and speed. However, the highest temperature increment is recorded when engaging the top interface of the GFRP/Al/GFRP stack. In fact, peak values increase abnormally by 53% while the cutting speed varies from 71 to 142 m min−1.
- The delamination factor increases with increasing cutting speed. Serious delamination defects occurred at the hole exit of the GFRP/Al/GFRP stack as the composite phase is free from external reactions. Significant burning is detected at the hole entry within the GFRP plate, while uncut fibers owing to relatively low cutting speeds are observed at the hole exit of GFRP/Al/GFRP.
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Vlot, A.; Vogelesang, L.B.; de Vries, T.J. Towards application of fibre metal laminates in large aircraft. Aircr. Eng. Aerosp. Technol. 1999, 71, 558–570. [Google Scholar] [CrossRef]
- Bonhin, E.P.; David-Müzel, S.; de Sampaio Alves, M.C.; Botelho, E.C.; Ribeiro, M.V. A review of mechanical drilling on fiber metal laminates. J. Compos. Mater. 2021, 55, 843–869. [Google Scholar] [CrossRef]
- Dang, J.; Zou, F.; Cai, X.; An, Q.; Ming, W.; Chen, M. Experimental investigation on mechanical drilling of a newly developed CFRP/Al co-cured material. Int. J. Adv. Manuf. Technol. 2020, 106, 993–1004. [Google Scholar] [CrossRef]
- Kuo, C.L.; Soo, S.L.; Aspinwall, D.K.; Thomas, W.; Bradley, S.; Pearson, D.; M’Saoubi, R.; Leahy, W. The effect of cutting speed and feed rate on hole surface integrity in single-shot drilling of metallic composite stacks. Procedia CIRP 2014, 13, 405–410. [Google Scholar] [CrossRef]
- Brinksmeier, E.; Fangmann, S.; Rentsch, R. Drilling of composites and resulting surface integrity. CIRP Ann. Manuf. Technol. 2011, 60, 57–60. [Google Scholar] [CrossRef]
- Franz, G.; Vantomme, P.; Hassan, M.H. A Review on drilling of multilayer fiber-reinforced polymer composites and aluminum stacks: Optimization of strategies for improving the drilling performance of aerospace assemblies. Fibers 2022, 10, 78. [Google Scholar] [CrossRef]
- Zitoune, R.; Krishnaraj, V.; Collombet, F. Study of drilling of composite material and aluminum stack. Compos. Struct. 2010, 92, 1246–1255. [Google Scholar] [CrossRef]
- Kim, D.; Ramulu, M. Study on the drilling of titanium/graphite hybrid composites. Int. Mech. Eng. Congr. Expo. Mater. ASME 2005, 5–11, 99–106. [Google Scholar] [CrossRef]
- Chen, C.; Wang, A.; Zheng, Z.; Zhao, Q.; Shi, Z.; Bao, Y. A study on drilling of CFRP/Ti stacks: Temperature field and thermal damage of the interface region. Materials 2023, 16, 2586. [Google Scholar] [CrossRef]
- Wang, C.Y.; Chen, Y.H.; An, Q.L.; Cai, X.J.; Ming, W.W.; Chen, M. Drilling temperature and hole quality in drilling of CFRP/aluminum stacks using diamond coated drill. Int. J. Precis. Eng. Manuf. 2015, 16, 1689–1697. [Google Scholar] [CrossRef]
- Hassan, M.H.; Abdullah, J.; Franz, G. Multi-objective optimization in single-shot drilling of CFRP/Al stacks using customized twist drill. Materials 2022, 15, 1981. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Qi, C.; Wu, F.; Zhang, X.; Zhu, X. Analysis of thrust force and delamination in drilling GFRP composites with candle stick drills. Int. J. Adv. Manuf. Technol. 2018, 95, 2585–2600. [Google Scholar] [CrossRef]
- Wang, H.; Wu, Y.; Zhang, Y.; Zhang, X. Influence of the temperature-dependent characteristics of cfrp mechanical properties on the critical axial force of drilling delamination. Polymers 2023, 15, 680. [Google Scholar] [CrossRef] [PubMed]
- Khashaba, U.A.; El-Sonbaty, I.A.; Selmy, A.I.; Megahed, A.A. Machinability analysis in drilling woven GFR/Epoxy composites: Part II—Effect of drill wear. Compos. Part A Appl. Sci. Manuf. 2010, 41, 1130–1137. [Google Scholar] [CrossRef]
- Salem, B.; Mkaddem, A.; Ghazali, S.; Habak, M.; Felemban, B.F.; Jarraya, A. Towards an advanced modeling of hybrid composite cutting: Heat discontinuity at interface region. Polymers 2023, 15, 1955. [Google Scholar] [CrossRef]
- Khashaba, U.A.; Abd-Elwahed, M.S.; Najjar, I.; Melaibari, A.; Ahmed, K.I.; Zitoune, R.; Eltaher, M.A. Heat-affected zone and mechanical analysis of GFRP composites with different thicknesses in drilling processes. Polymers 2021, 13, 2246. [Google Scholar] [CrossRef]
- Ostapiuk, M.; Bienia’s, J. Fracture analysis and shear strength of Aluminum/CFRP and GFRP adhesive joint in fiber metal laminates. Materials 2020, 13, 7. [Google Scholar] [CrossRef] [PubMed]
- Joshi, S.; Rawat, K.; Balan, A.S.S. A novel approach to predict the delamination factor for dry and cryogenic drilling of CFRP. J. Mater. Process. Technol. 2018, 262, 521–531. [Google Scholar] [CrossRef]
- Mahdi, A.; Turki, Y.; Habak, M.; Salem, M.; Bouaziz, Z. Experimental study of thrust force and surface quality when drilling hybrid stacks. Int. J. Adv. Manuf. Technol. 2020, 107, 3981–3994. [Google Scholar] [CrossRef]
- Liu, D.F.; Tang, Y.J.; Cong, W.L. A review of mechanical drilling for composite laminates. Compos. Struct. 2012, 94, 1265–1279. [Google Scholar] [CrossRef]
- Guesmi, F.; Elfarhani, M.; Mkaddem, A.; Ghazali, S.; Bin Mahfouz, A.S.; Jarraya, A. Heat analysis of thermal conductive polymer composites: Reference temperature history in pure polymers matrices. Polymers 2022, 14, 2084. [Google Scholar] [CrossRef] [PubMed]
- Elfarhani, M.; Guesmi, F.; Mkaddem, A.; Ghazali, S.; Rubaiee, S.; Abdessalem, J. Thermal aspects in edge trimming of bio-filled GFRP: Influence of fiber orientation and silica sand filler in heat generation. Materials 2022, 15, 4792. [Google Scholar] [CrossRef] [PubMed]
- Soldani, X.; Santiuste, C.; Muñoz-Sánchez, A.; Miguélez, M.H. Influence of tool geometry and numerical parameters when modeling orthogonal cutting of LFRP composites. Compos. Part-A Appl. Sci. Manuf. 2011, 42, 1205–1216. [Google Scholar] [CrossRef]
- Haddag, B.; Atlati, S.; Nouari, M.; Moufki, A. Dry machining aeronautical aluminum alloy AA2024-T351: Analysis of cutting forces, chip segmentation and built-up edge formation. Metals 2016, 6, 197. [Google Scholar] [CrossRef]
Cutting Speed | Hole Entry | Top GFRP Interface | Bottom GFRP Interface | Hole Exit |
---|---|---|---|---|
71 m min−1 | ||||
95 m min−1 | ||||
119 m min−1 | ||||
142 m min−1 |
Top GFRP interface | ||||
Bottom GFRP interface |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Salem, B.; Mkaddem, A.; Habak, M.; Dobah, Y.; Elfarhani, M.; Jarraya, A. Investigation of Temperature at Al/Glass Fiber-Reinforced Polymer Interfaces When Drilling Composites of Different Stacking Arrangements. Polymers 2024, 16, 2823. https://doi.org/10.3390/polym16192823
Salem B, Mkaddem A, Habak M, Dobah Y, Elfarhani M, Jarraya A. Investigation of Temperature at Al/Glass Fiber-Reinforced Polymer Interfaces When Drilling Composites of Different Stacking Arrangements. Polymers. 2024; 16(19):2823. https://doi.org/10.3390/polym16192823
Chicago/Turabian StyleSalem, Brahim, Ali Mkaddem, Malek Habak, Yousef Dobah, Makram Elfarhani, and Abdessalem Jarraya. 2024. "Investigation of Temperature at Al/Glass Fiber-Reinforced Polymer Interfaces When Drilling Composites of Different Stacking Arrangements" Polymers 16, no. 19: 2823. https://doi.org/10.3390/polym16192823
APA StyleSalem, B., Mkaddem, A., Habak, M., Dobah, Y., Elfarhani, M., & Jarraya, A. (2024). Investigation of Temperature at Al/Glass Fiber-Reinforced Polymer Interfaces When Drilling Composites of Different Stacking Arrangements. Polymers, 16(19), 2823. https://doi.org/10.3390/polym16192823