Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (66,594)

Search Parameters:
Keywords = couple

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 5623 KB  
Article
Characterizing Spindle–Tool Holder Interfaces for Tool-Point FRF Prediction Using RCSA and Finite Element Modeling
by Jui-Pin Hung, Yung-Chih Lin, Wei-Zhu Lin, Xiao-Jian Xuan and Yu-Sheng Lai
Machines 2026, 14(2), 143; https://doi.org/10.3390/machines14020143 (registering DOI) - 26 Jan 2026
Abstract
The tool-point frequency response function (FRF) of a spindle–tool system plays a crucial role in predicting machining stability. Among the factors influencing the FRF, the interface characteristics between the spindle and the tool holder are particularly significant, especially when different holder designs are [...] Read more.
The tool-point frequency response function (FRF) of a spindle–tool system plays a crucial role in predicting machining stability. Among the factors influencing the FRF, the interface characteristics between the spindle and the tool holder are particularly significant, especially when different holder designs are used. This study focused on identifying these interface characteristics for two common tool holder types—BT and BBT—to improve FRF prediction accuracy. The receptance coupling substructure analysis (RCSA) method was employed in conjunction with finite element modeling (FEM) to characterize the spindle–tool holder interfaces without needing extensive experimental tapping tests. Finite element models were developed to generate receptance components for various tool holder–tool assemblies, enabling efficient and accurate coupling within the RCSA framework. The identified interface parameters were applied to predict the tool-point FRFs of the cutter clamped in a BT tool holder with different overhang lengths. The predicted and measured tool compliances differed by 3–4.6%, demonstrating high agreement and reliability. The proposed methodology provides a powerful tool for predictive modeling of dynamic behavior in spindle–tool systems under varying tooling conditions, enhancing process planning and evaluation of the cutting stability in high-precision machining. Full article
(This article belongs to the Section Advanced Manufacturing)
Show Figures

Figure 1

18 pages, 2811 KB  
Article
Study on Occurrence States of Low-Grade Cu-Zn in Iron Tailings and Changes in Production Flowsheet
by Zhenhong Liao, Wenhao Jia, Junkai Luo, Xiang Wang and Wen Chen
Minerals 2026, 16(2), 131; https://doi.org/10.3390/min16020131 (registering DOI) - 26 Jan 2026
Abstract
Copper (Cu) and zinc (Zn) are critical for global high-tech industries and national economic security. With high-grade mineral depletion, recycling valuable metals from iron ore tailings has become a sustainable solution. A Peruvian mining company’s iron ore tailing reprocessing faces a severe challenge: [...] Read more.
Copper (Cu) and zinc (Zn) are critical for global high-tech industries and national economic security. With high-grade mineral depletion, recycling valuable metals from iron ore tailings has become a sustainable solution. A Peruvian mining company’s iron ore tailing reprocessing faces a severe challenge: surging lead (Pb) content due to increased excavation depth has rendered the original Cu-Zn bulk flotation flowsheet ineffective, causing excessive impurities in concentrates. This study first characterized the occurrence states of Cu, Pb, and Zn via multi-analytical techniques. A novel Cu-Pb-Zn iso-flotation process with step-by-step depression, coupled with optimized reagents, was proposed. It abandons initial CuSO4 activation to reduce separation difficulty and uses targeted depressants for efficient impurity removal. Closed-circuit tests yielded a Cu concentrate (26.57% grade, 56.08% recovery) with Pb/Zn contents reduced to 2.97%/9.80%, and a Zn concentrate (44.95% grade, 75.56% recovery) with Cu/Pb controlled at 1.15%/8.31%. Experimental results demonstrate that this new flowsheet effectively mitigates the impact of high Pb content, restoring production efficiencies and offering a valuable precedent for industrial process modification. Full article
(This article belongs to the Section Mineral Processing and Extractive Metallurgy)
Show Figures

Figure 1

16 pages, 3976 KB  
Article
CeO2 Promoted Ni/Al2O3 Catalyst for the Enhanced Hydrogenolysis of Glucose to 1,2-Propanediol Performance
by Yu Jiang, Xiaoli Pan, Jifeng Pang, Pengfei Wu, Qinggang Liu and Mingyuan Zheng
Molecules 2026, 31(3), 420; https://doi.org/10.3390/molecules31030420 (registering DOI) - 26 Jan 2026
Abstract
The selective hydrogenolysis of glucose into 1,2-propanediol (1,2-PG) constitutes a significant yet challenging transformation in biomass valorization, as it involves a highly coupled network of isomerization, C-C bond cleavage, and hydrogenation steps. Herein, a highly efficient Ni-CeO2 catalyst supported by basic Al [...] Read more.
The selective hydrogenolysis of glucose into 1,2-propanediol (1,2-PG) constitutes a significant yet challenging transformation in biomass valorization, as it involves a highly coupled network of isomerization, C-C bond cleavage, and hydrogenation steps. Herein, a highly efficient Ni-CeO2 catalyst supported by basic Al2O3 is developed via a urea-assisted precipitation strategy. Systematic catalytic evaluation and comprehensive characterization reveal that this synthesis method markedly enhances Ni dispersion and hydrogen activation capacity, while CeO2 modification modulates the electronic state of Ni and introduces strong Lewis basic sites associated with oxygen vacancies. The synergistic interplay between Ni and CeO2 effectively promotes glucose isomerization and retro-aldol condensation while maintaining sufficient hydrogenation activity. As a result, the optimized catalyst achieves a 1,2-PG yield of 45.1% with over 99% glucose conversion under optimal hydrothermal reaction conditions. Moreover, the catalyst exhibits relatively stable catalytic performance over four consecutive runs. This work elucidates key structure–activity relationships in multifunctional Ni-based catalysts and provides design principles for efficient biomass-derived polyol production. Full article
(This article belongs to the Section Nanochemistry)
Show Figures

Figure 1

24 pages, 34167 KB  
Article
A Hybrid Physics–Machine Learning Framework for Landslide Susceptibility Assessment with an Improved Non–Landslide Sampling Strategy
by Dalei Peng, Maoyuan Chen, Yeping Zhou, Pinliang Li, Shihao Xiao, Yuyang Shen, Boren Tan, Linghao Kong and Qiang Xu
Remote Sens. 2026, 18(3), 408; https://doi.org/10.3390/rs18030408 (registering DOI) - 26 Jan 2026
Abstract
Rainfall–triggered clustered landslides pose severe risks to communities and infrastructure in mountainous regions. High–precision susceptibility assessment is essential for early warning and hazard mitigation. The traditional buffering method neglects physical slope stability mechanisms, leading to the misclassification of potentially unstable areas. To improve [...] Read more.
Rainfall–triggered clustered landslides pose severe risks to communities and infrastructure in mountainous regions. High–precision susceptibility assessment is essential for early warning and hazard mitigation. The traditional buffering method neglects physical slope stability mechanisms, leading to the misclassification of potentially unstable areas. To improve susceptibility model accuracy, we propose an improved non–landslide sampling strategy that integrates the physical–model TRIGRS (Transient Rainfall Infiltration and Grid–based Regional Slope–Stability Model) with 50 m buffering constraints. A hybrid physics–machine learning framework is used to evaluate the performance of landslide susceptibility assessment across four machine learning models, such as Multi–Layer Perceptron (MLP), Random Forest (RF), Support Vector Machine (SVM), and Extreme Gradient Boosting (XGBoost). Among the four models, the TRIGRS model integrated with MLP achieves the highest accuracy in susceptibility mapping. The improved non–landslide sampling strategy increased average Area Under the Curve (AUC) by 16.46% in random cross–validation and improved spatial generalization capability by 29% in spatial cross–validation, demonstrating its robustness in unseen areas. SHAP factor analysis further confirms rainfall, groundwater table, and human activity as the primary influencing factors, which aligns with physical mechanisms and improves model interpretability. Therefore, the proposed non–landslide sampling strategy coupled with the TRIGRS and MLP models outperforms traditional buffering method in evaluating regional landslide susceptibility, providing a more physically basis for geohazard risk assessment. Full article
Show Figures

Figure 1

16 pages, 3393 KB  
Article
Far-Field Super-Resolution via Longitudinal Nano-Optical Field: A Combined Theoretical and Numerical Investigation
by Aiqin Zhang, Kunyang Li and Jianying Zhou
Photonics 2026, 13(2), 114; https://doi.org/10.3390/photonics13020114 (registering DOI) - 26 Jan 2026
Abstract
We present a theoretical and numerical investigation of a far-field super-resolution dark-field microscopy technique based on longitudinal nano-optical field excitation and detection. This method is implemented by integrating vector optical field modulation into a back-scattering confocal laser scanning microscope. A complete forward theoretical [...] Read more.
We present a theoretical and numerical investigation of a far-field super-resolution dark-field microscopy technique based on longitudinal nano-optical field excitation and detection. This method is implemented by integrating vector optical field modulation into a back-scattering confocal laser scanning microscope. A complete forward theoretical imaging framework that rigorously accounts for light–matter interactions is adopted and validated. The weak interaction model and general model are both considered. For the weak interaction model, e.g., multiple discrete dipole sources with a uniform or modulated responding intensity are utilized to fundamentally demonstrate the relationship between the sample and the imaging information. For continuous nanostructures, the finite-difference time-domain simulation results of the interaction-induced optical fields in the imaging model show that the captured image information is not determined solely by system resolution and sample geometry, but also arises from a combination of sample-dependent factors, including material composition, the local density of optical states, and intrinsic physical properties such as the complex refractive index. Unlike existing studies, which predominantly focus on system design or rely on simplified assumptions of weak interactions, this paper achieves quantitative characterization and precise regulation of nanoscale vector optical fields and samples under strong interactions through a comprehensive analytical–numerical imaging model based on rigorous vector diffraction theory and strong near-field coupling interactions, thereby overcoming the limitations of traditional methods. Full article
(This article belongs to the Special Issue Optical Imaging Innovations and Applications)
Show Figures

Figure 1

25 pages, 2186 KB  
Review
Bio-Oil from Phototrophic Microorganisms: Innovative Technologies and Strategies
by Kenzhegul Bolatkhan, Ardak B. Kakimova, Bolatkhan K. Zayadan, Akbota Kabayeva, Sandugash K. Sandybayeva, Aliyam A. Dauletova and Tatsuya Tomo
BioTech 2026, 15(1), 11; https://doi.org/10.3390/biotech15010011 (registering DOI) - 26 Jan 2026
Abstract
The transition to low-carbon energy systems requires scalable and energy-efficient routes for producing liquid biofuels that are compatible with existing fuel infrastructures. This review focuses on bio-oil production from phototrophic microorganisms, highlighting their high biomass productivity, rapid growth, and inherent capacity for carbon [...] Read more.
The transition to low-carbon energy systems requires scalable and energy-efficient routes for producing liquid biofuels that are compatible with existing fuel infrastructures. This review focuses on bio-oil production from phototrophic microorganisms, highlighting their high biomass productivity, rapid growth, and inherent capacity for carbon dioxide fixation as key advantages over conventional biofuel feedstocks. Recent progress in thermochemical conversion technologies, particularly hydrothermal liquefaction (HTL) and fast pyrolysis, is critically assessed with respect to their suitability for wet and dry algal biomass, respectively. HTL enables direct processing of high-moisture biomass while avoiding energy-intensive drying, whereas fast pyrolysis offers high bio-oil yields from lipid-rich feedstocks. In parallel, catalytic upgrading strategies, including hydrodeoxygenation and related hydroprocessing routes, are discussed as essential steps for improving bio-oil stability, heating value, and fuel compatibility. Beyond conversion technologies, innovative biological and biotechnological strategies, such as strain optimization, stress induction, co-cultivation, and synthetic biology approaches, are examined for their role in tailoring biomass composition and enhancing bio-oil precursors. The integration of microalgal cultivation with wastewater utilization is briefly considered as a supporting strategy to reduce production costs and improve overall sustainability. Overall, this review emphasizes that the effective coupling of advanced thermochemical conversion with targeted biological optimization represents the most promising pathway for scalable bio-oil production from phototrophic microorganisms, positioning algal bio-oil as a viable contributor to future low-carbon energy systems. Full article
Show Figures

Figure 1

23 pages, 60825 KB  
Article
A Compact Aperture-Slot Antipodal Vivaldi Antenna for GPR Systems
by Feng Shen, Ninghe Yang, Chao Xia, Tong Wan and Jiaheng Kang
Sensors 2026, 26(3), 810; https://doi.org/10.3390/s26030810 (registering DOI) - 26 Jan 2026
Abstract
Compact antennas with ultra-wideband operation and stable radiation are essential for portable and airborne ground-penetrating radar (GPR), yet miniaturization in the sub 3 GHz region is strongly constrained by the wavelength-driven aperture requirement and often leads to impedance discontinuity and radiation instability. This [...] Read more.
Compact antennas with ultra-wideband operation and stable radiation are essential for portable and airborne ground-penetrating radar (GPR), yet miniaturization in the sub 3 GHz region is strongly constrained by the wavelength-driven aperture requirement and often leads to impedance discontinuity and radiation instability. This paper presents a compact aperture-slot antipodal Vivaldi antenna (AS-AVA) designed under a radiation stability-driven co-design strategy, where the miniaturization features are organized along the energy propagation path from the feed to the flared aperture. The proposed structure combines (i) aperture-slot current-path engineering with controlled meandering to extend the low-frequency edge, (ii) four tilted rectangular slots near the aperture to restrain excessive edge currents and suppress sidelobes, and (iii) back-loaded parasitic patches for coupling-based impedance refinement to eliminate residual mismatch pockets. A fabricated prototype on FR-4 (thickness 1.93 mm) occupies 111.15×156.82 mm2 and achieves a measured S11 below 10 dB from 0.63 to 2.03 GHz (fractional bandwidth 105.26%). The measured realized gain increases from 2.1 to 7.5 dBi across the operating band, with stable far-field radiation patterns; the group delay measured over 0.6–2.1 GHz remains within 4–8 ns, indicating good time-domain fidelity for stepped-frequency continuous-wave (SFCW) operation. Finally, the antenna pair is integrated into an SFCW-GPR testbed and validated in sandbox and outdoor experiments, where buried metallic targets and a subgrade void produce clear B-scan signatures after standard processing. These results confirm that the proposed AS-AVA provides a practical trade-off among miniaturization, broadband matching, and radiation robustness for compact sub 3 GHz GPR platforms. Full article
Show Figures

Figure 1

40 pages, 9833 KB  
Article
Decision-Level Fusion of PS-InSAR and Optical Data for Landslide Susceptibility Mapping Using Wavelet Transform and MAMBA
by Hongyi Guo, Antonio M. Martínez-Graña, Leticia Merchán, Agustina Fernández and Manuel Casado
Land 2026, 15(2), 211; https://doi.org/10.3390/land15020211 - 26 Jan 2026
Abstract
Landslides remain a critical geohazard in mountainous regions, where intensified extreme rainfall and rapid land-use changes exacerbate slope instability, challenging the reliability of traditional single-sensor susceptibility assessments. To overcome the limitations of data heterogeneity and noise, this study presents a decision-level fusion strategy [...] Read more.
Landslides remain a critical geohazard in mountainous regions, where intensified extreme rainfall and rapid land-use changes exacerbate slope instability, challenging the reliability of traditional single-sensor susceptibility assessments. To overcome the limitations of data heterogeneity and noise, this study presents a decision-level fusion strategy integrating Permanent Scatterer InSAR (PS-InSAR) deformation dynamics with multi-source optical remote sensing indicators via a Wavelet Transform (WT) enhanced Multi-source Additive Model Based on Bayesian Analysis (MAMBA). San Martín del Castañar (Spain), a region characterized by rugged terrain and active deformation, served as the study area. We utilized Sentinel-1A C-band datasets (January 2020–February 2025) as the primary source for continuous monitoring, complemented by L-band ALOS-2 observations to ensure coherence in vegetated zones, yielding 24,102 high-quality persistent scatterers. The WT-based multi-scale enhancement improved the signal-to-noise ratio by 23.5% and increased deformation anomaly detection by 18.7% across 24,102 validated persistent scatterers. Bayesian fusion within MAMBA produced high-resolution susceptibility maps, indicating that very-high and high susceptibility zones occupy 24.0% of the study area while capturing 84.5% of the inventoried landslides. Quantitative validation against 1247 landslide events (2020–2025) achieved an AUC of 0.912, an overall accuracy of 87.3%, and a recall of 84.5%, outperforming Random Forest, Logistic Regression, and Frequency Ratio models by 6.8%, 10.8%, and 14.3%, respectively (p < 0.001). Statistical analysis further demonstrates a strong geo-ecological coupling, with landslide susceptibility significantly correlated with ecological vulnerability (r = 0.72, p < 0.01), while SHapley Additive exPlanations identify land-use type, rainfall, and slope as the dominant controlling factors. Full article
(This article belongs to the Special Issue Ground Deformation Monitoring via Remote Sensing Time Series Data)
Show Figures

Figure 1

22 pages, 2341 KB  
Article
Quantitative Detection of High-Strength Bolt Loosening Based on Self-Magnetic Flux Leakage
by Shangkai Liu, Kai Tong, Fengmin Chen, Senhua Zhang and Runchan Xia
Buildings 2026, 16(3), 497; https://doi.org/10.3390/buildings16030497 (registering DOI) - 26 Jan 2026
Abstract
The reliability of high-strength bolted connections is critical to the safety of large-scale engineering structures. This study proposes a non-contact quantitative method for detecting bolt loosening based on the self-magnetic flux leakage (SMFL) effect. Systematic experiments were carried out on M14-12.9 bolts, using [...] Read more.
The reliability of high-strength bolted connections is critical to the safety of large-scale engineering structures. This study proposes a non-contact quantitative method for detecting bolt loosening based on the self-magnetic flux leakage (SMFL) effect. Systematic experiments were carried out on M14-12.9 bolts, using nine independent specimens tested under six torque levels, to reveal the intrinsic relationship between bolt preload and the “magnetic valley” feature of the surface leakage field. For quantitative evaluation, the absolute value of the differential peak magnetic field, |ΔPMF|, is defined as the core feature parameter. The results show that, in the reference specimen group, |ΔPMF| exhibits a pronounced linear relationship with the applied torque (R2 > 0.96), and the corresponding linear regression parameters display good consistency across the nine specimens (RSD ≈ 4%). Comparative tests on two additional bolt specifications clarify how bolt strength grade and geometric size influence the detection sensitivity and linearity. To address lift-off effects, measurements on a representative specimen at four lift-off heights were used to construct a simplified bivariate linear compensation model, which significantly reduces lift-off-induced bias within the working range h = 10–16 mm. Finally, a hierarchical diagnostic scheme for bolt loosening that incorporates lift-off compensation is established on the basis of |ΔPMF|, providing a feasible approach for rapid assessment of bolt loosening under complex service conditions. Full article
Show Figures

Figure 1

20 pages, 5874 KB  
Article
Hydrothermal Resilience of Quebec Rivers: A 3D Modeling Approach to Groundwater’s Cooling Effect During Heat Waves
by Milad Fakhari, Jasmin Raymond and Richard Martel
Water 2026, 18(3), 310; https://doi.org/10.3390/w18030310 (registering DOI) - 26 Jan 2026
Abstract
Exchanges between ground and surface water strongly influence how rivers thermally respond. Ground-to-surface water connections are particularly important during periods of intense atmospheric heat waves. In salmonid-rich rivers of Quebec, elevated summer temperatures can induce thermal stresses, threatening aquatic ecosystems. This study’s objective [...] Read more.
Exchanges between ground and surface water strongly influence how rivers thermally respond. Ground-to-surface water connections are particularly important during periods of intense atmospheric heat waves. In salmonid-rich rivers of Quebec, elevated summer temperatures can induce thermal stresses, threatening aquatic ecosystems. This study’s objective was to evaluate the influence of groundwater discharge on river water temperature, using a 3D coupled flow and heat transfer model calibrated with one year of field data. The results show that groundwater inflow reduced the peak river temperatures by 1.5–3.2 °C during heat waves, representing up to 40% of the river’s thermal budget under low-flow conditions. In both rivers, groundwater prevented the temperatures from exceeding the 20–22 °C threshold critical for salmonid survival. These findings underscore the importance of integrated hydrothermal modeling for predicting ecological vulnerability under climate change. Full article
Show Figures

Figure 1

21 pages, 4865 KB  
Article
Nanostructured POSS Crosslinked Polybenzimidazole with Free Radical Scavenging Function for High-Temperature Proton Exchange Membranes
by Chao Meng, Xiaofeng Hao, Shuanjin Wang, Dongmei Han, Sheng Huang, Jin Li, Min Xiao and Yuezhong Meng
Nanomaterials 2026, 16(3), 164; https://doi.org/10.3390/nano16030164 - 26 Jan 2026
Abstract
High-temperature proton exchange membranes (HT-PEMs) are critical components of high-temperature fuel cells, facilitating proton transport and acting as a barrier to fuel and electrons; however, their performance is hampered by persistent issues of phosphoric acid leaching and oxidative degradation. Herein, a novel HT-PEM [...] Read more.
High-temperature proton exchange membranes (HT-PEMs) are critical components of high-temperature fuel cells, facilitating proton transport and acting as a barrier to fuel and electrons; however, their performance is hampered by persistent issues of phosphoric acid leaching and oxidative degradation. Herein, a novel HT-PEM with abundant hydrogen bond network is constructed by incorporating nanoscale polyhedral oligomeric silsequioxane functionalized with eight pendent sulfhydryl groups (POSS-SH) into poly(4,4′-diphenylether-5,5′-bibenzimidazole) (OPBI) matrix. POSS, a cage-like nanostructured hybrid molecule, features a well-defined silica core and highly designable surface organic groups, offering unique potential for enhancing membrane performance at the molecular level. Through controlled reactions between sulfhydryl groups and allyl glycidyl ether (AGE), two functional POSS crosslinkers—octa-epoxide POSS (OE-POSS) and mixed sulfhydryl-epoxy POSS (POSS-S-E)—were synthesized. These were subsequently used to fabricate crosslinked OPBI membranes (OPBI-OE-POSS and OPBI-POSS-S-E) via epoxy–amine coupling. The OPBI-POSS-S-E membranes demonstrated exceptional oxidative stability, which is attributed to the free radical scavenging ability of the retained sulfhydryl groups on the nano-sized POSS framework. After soaking in Fenton’s reagent at 80 °C for 108 h, the OPBI-POSS-S-E-20% membrane retained 79.4% of its initial weight, significantly surpassing both the OPBI-OE-POSS-20% and pristine OPBI membranes. The PA-doped OPBI-POSS-S-E-20% membrane achieved a proton conductivity of 50.8 mS cm−1 at 160 °C, and the corresponding membrane electrode assembly delivered a peak power density of 724 mW cm−2, highlighting the key role of POSS as a nano-modifier in advancing HT-PEM performance. Full article
(This article belongs to the Special Issue Preparation and Characterization of Nanomaterials)
Show Figures

Figure 1

21 pages, 4596 KB  
Article
Reactive Power Based Fault Ride Through Control of IBR-Dominated Distribution Networks Under Low WSCR
by DongYeong Gwon and YunHyuk Choi
Electronics 2026, 15(3), 521; https://doi.org/10.3390/electronics15030521 (registering DOI) - 26 Jan 2026
Abstract
This study investigated the fault ride through capability of inverter-based resources in weak distribution networks and proposes a fault-oriented reactive power compensation strategy using only point of common coupling voltage measurements. The proposed strategy determines the reactive power command based on the minimum [...] Read more.
This study investigated the fault ride through capability of inverter-based resources in weak distribution networks and proposes a fault-oriented reactive power compensation strategy using only point of common coupling voltage measurements. The proposed strategy determines the reactive power command based on the minimum phase voltage, which represents the most severely depressed phase during unbalanced faults, without fault type detection or sequence component analysis. As a result, the same control framework can be applied to single-line-to-ground, double-line-to-ground, and three-phase faults. A detailed MATLAB/Simulink model of a Korean distribution feeder was developed using actual system parameters. The proposed strategy was compared with a no control case and a conservative fixed capacity reactive power injection scheme derived from commonly adopted power factor limits. Simulation results show that the no control case provides no voltage support, while the fixed capacity approach yields limited improvement in weak grids. In contrast, the proposed strategy maintains stable inverter operation and improves voltage recovery. At locations with an extremely low weighted short circuit ratio of 0.303, the proposed strategy prevents inverter tripping during temporary faults and satisfies low voltage ride through requirements, demonstrating its practical effectiveness. Full article
(This article belongs to the Special Issue Stability Analysis and Optimal Operation in Power Electronic Systems)
Show Figures

Figure 1

21 pages, 7426 KB  
Article
Driving Mechanisms of High-Quality Urban Development: Evidence from Lianyungang City, China
by Yunlong Su, Jiao Wang, Jianhui Li and Jingyang Liu
Sustainability 2026, 18(3), 1220; https://doi.org/10.3390/su18031220 - 26 Jan 2026
Abstract
The global consensus on sustainable development hinges on the coordinated advancement of economic, social, and environmental dimensions, with high-quality development serving as China’s pivotal pathway for practical implementation. As the primary implementers, cities are confronted with the dual challenge of defining the level [...] Read more.
The global consensus on sustainable development hinges on the coordinated advancement of economic, social, and environmental dimensions, with high-quality development serving as China’s pivotal pathway for practical implementation. As the primary implementers, cities are confronted with the dual challenge of defining the level of high-quality development and mapping out clear actionable pathways. Therefore, unraveling the driving mechanisms of high-quality urban development is significant. This study constructed a high-quality development evaluation index system, employing a sustainable development index to measure Lianyungang City’s development level from 2008 to 2023. The interrelationships among driving factors were revealed through the coupling coordination degree model, entropy weight method, and Pearson correlation coefficient. The study indicated that innovation stood out as the primary contributor, with contribution rising from 0.09 (2008–2017) to 0.10 (2017–2023). High-tech enterprises and valid invention patents were core drivers of the innovation index’s rise, with weights of 30.35% and 28.92%. Innovation investment promoted the transformation of cities toward technology-intensive development models while effectively supporting Sustainable Development Goals such as industrial upgrading, environmental improvement, and livelihood enhancement. Overall, advancing high-quality urban development required focusing on innovation-driven strategies while catalyzing other areas of development to achieve Sustainable Development Goals. Full article
Show Figures

Figure 1

18 pages, 4493 KB  
Article
Integrated Single-Cell and Spatial Transcriptomics Coupled with Machine Learning Uncovers MORF4L1 as a Critical Epigenetic Mediator of Radiotherapy Resistance in Colorectal Cancer Liver Metastasis
by Yuanyuan Zhang, Xiaoli Wang, Haitao Liu, Yan Xiang and Le Yu
Biomedicines 2026, 14(2), 273; https://doi.org/10.3390/biomedicines14020273 - 26 Jan 2026
Abstract
Background and Objective: Colorectal cancer (CRC) liver metastasis (CRLM) represents a major clinical challenge, and acquired resistance to radiotherapy (RT) significantly limits therapeutic efficacy. A deep and comprehensive understanding of the cellular and molecular mechanisms driving RT resistance is urgently required to develop [...] Read more.
Background and Objective: Colorectal cancer (CRC) liver metastasis (CRLM) represents a major clinical challenge, and acquired resistance to radiotherapy (RT) significantly limits therapeutic efficacy. A deep and comprehensive understanding of the cellular and molecular mechanisms driving RT resistance is urgently required to develop effective combination strategies. Here, we aimed to dissect the dynamic cellular landscape of the tumor microenvironment (TME) and identify key epigenetic regulators mediating radioresistance in CRLM by integrating cutting-edge single-cell and spatial omics technologies. Methods and Results: We performed integrated single-cell RNA sequencing (scRNA-seq) and spatial transcriptomics (ST) on matched pre- and post-radiotherapy tumor tissues collected from three distinct CRLM patients. Employing a robust machine-learning framework on the multi-omics data, we successfully identified MORF4L1 (Mortality Factor 4 Like 1), an epigenetic reader, as a critical epigenetic mediator of acquired radioresistance. High-resolution scRNA-seq analysis of the tumor cell compartment revealed that the MORF4L1-high subpopulation exhibited significant enrichment in DNA damage repair (DDR) pathways, heightened activity of multiple pro-survival metabolic pathways, and robust signatures of immune evasion. Pseudotime trajectory analysis further confirmed that RT exposure drives tumor cells toward a highly resistant state, marked by a distinct increase in MORF4L1 expression. Furthermore, cell–cell communication inference demonstrated a pronounced, systemic upregulation of various immunosuppressive signaling axes within the TME following RT. Crucially, high-resolution ST confirmed these molecular and cellular interactions in their native context, revealing a significant spatial co-localization of MORF4L1-expressing tumor foci with multiple immunosuppressive immune cell types, including regulatory T cells (Tregs) and tumor-associated macrophages (TAMs), thereby underscoring its role in TME-mediated resistance. Conclusions: Our comprehensive spatial and single-cell profiling establishes MORF4L1 as a pivotal epigenetic regulator underlying acquired radioresistance in CRLM. These findings provide a compelling mechanistic rationale for combining radiotherapy with the targeted inhibition of MORF4L1, presenting a promising new therapeutic avenue to overcome treatment failure and improve patient outcomes in CRLM. Full article
(This article belongs to the Special Issue Epigenetic Regulation in Cancer Progression)
Show Figures

Figure 1

17 pages, 10638 KB  
Article
Numerical Investigation of Noise Generation from a Variable-Pitch Propeller at Various Flight Conditions
by Mateus Grassano Lattari, Victor Henrique Pereira da Rosa, Filipe Dutra da Silva and César José Deschamps
Fluids 2026, 11(2), 31; https://doi.org/10.3390/fluids11020031 (registering DOI) - 26 Jan 2026
Abstract
The advent of electric propulsion for new aircraft designs necessitates the optimization of propeller aerodynamic performance and the reduction of acoustic signatures. Variable-pitch propellers present a promising solution, offering the flexibility to adjust blade angles in response to different flight conditions. The study [...] Read more.
The advent of electric propulsion for new aircraft designs necessitates the optimization of propeller aerodynamic performance and the reduction of acoustic signatures. Variable-pitch propellers present a promising solution, offering the flexibility to adjust blade angles in response to different flight conditions. The study investigates the performance of blade pitch configurations tailored to specific flight conditions. Rather than a dynamic pitch change, the research evaluates discrete pitch settings coupled with corresponding advance ratios to identify optimal operating points. Findings show that increasing collective pitch in response to a higher advance ratio (forward flight) successfully maintains aerodynamic efficiency and thrust, with an expected increase in torque. While this adjustment leads to an anticipated rise in noise due to higher aerodynamic loading, results reveal that a collective pitch increment of +5° actively suppresses broadband noise at frequencies above 2 kHz. Analysis of the flow field and surface pressure fluctuations indicates this suppression is directly attributed to the mitigation of outboard propeller stall. Ultimately, this work demonstrates the feasibility of using collective pitch adjustments not only to enhance flight performance but also to actively control and suppress components of the propeller noise signature, such as the broadband noise. Full article
(This article belongs to the Section Mathematical and Computational Fluid Mechanics)
Show Figures

Figure 1

Back to TopTop