Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (9)

Search Parameters:
Keywords = corn protein-derived peptides

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 8394 KiB  
Article
Goat Whey Protein Hydrolysate Mitigates High-Fructose Corn Syrup-Induced Hepatic Steatosis in a Murine Model
by Chun-Hui Shao, Vipul Wayal and Chang-Chi Hsieh
Nutrients 2025, 17(12), 2011; https://doi.org/10.3390/nu17122011 - 16 Jun 2025
Viewed by 600
Abstract
Background/Objectives: Hepatic steatosis, characterized by abnormal fat accumulation in the liver, is a major health concern with limited effective treatments. Goat milk whey proteins have demonstrated various therapeutic benefits. This study aimed to evaluate the hepatoprotective effects of goat whey protein hydrolysate [...] Read more.
Background/Objectives: Hepatic steatosis, characterized by abnormal fat accumulation in the liver, is a major health concern with limited effective treatments. Goat milk whey proteins have demonstrated various therapeutic benefits. This study aimed to evaluate the hepatoprotective effects of goat whey protein hydrolysate (GWPH) on high-fructose corn syrup (HFCS)-induced hepatic steatosis in a murine model. Methods: The GWPH was prepared through enzymatic hydrolysis using Alcalase® and divided into fractions: GWPH03 (<3 kDa), GWPH0310 (3–10 kDa), GWPH1030 (10–30 kDa), and GWPH30 (>30 kDa). These fractions were administered to respective GWPH treatment groups at 200 mg/kg b.w/day via intragastric gavage for 8 weeks, with HFCS provided to all groups except the Naïve group. After dietary intervention, an oral glucose tolerance test (OGTT) was performed, and the mice were then sacrificed for further analysis. Results: Our results demonstrate that GWPH mitigates HFCS-induced hepatic steatosis, reduces body weight gain, improves glucose homeostasis, alleviates liver injury, and regulates hepatic lipid metabolism. Notably, GWPH treatment significantly suppressed hepatic fatty acid synthase (FASN) expressions, indicating reduced de novo lipogenesis (DNL). Molecular docking of the identified peptides from GWPH—particularly PFNVYNVV, which showed strong binding affinity for KHK—suggests that it has potential as a competitive inhibitor of fructose metabolism. Conclusions: Collectively, our findings suggest that GWPH and its derived peptides could be promising candidates for managing hepatic steatosis and related metabolic abnormalities. Full article
(This article belongs to the Section Carbohydrates)
Show Figures

Figure 1

17 pages, 1447 KiB  
Article
Obtaining and Characterizing Thermostable α-Amylases Secreted by Bacillus subtilis, Originating from Bacillus amyloliquefaciens and Bacillus subtilis
by Tigran Soghomonyan, Artur Hambardzumyan, Anna Mkhitaryan, Lev Khoyetsyan, Marina Paronyan, Marieta Izmailyan, Marina Kinosyan, Valeri Bagiyan, Vahe Ghochikyan, Hovik Panosyan and Ani Paloyan
Fermentation 2024, 10(11), 547; https://doi.org/10.3390/fermentation10110547 - 25 Oct 2024
Cited by 2 | Viewed by 2216
Abstract
The production of recombinant enzymes, primarily used for obtaining pure and functional target molecules, holds significant importance in modern biotechnology. This study aimed to obtain and characterize recombinant, extracellularly expressed α-amylases (Amy3500 and Amy1974), derived from B. amyloliquefaciens MDC1974 and B. subtilis MDC3500, [...] Read more.
The production of recombinant enzymes, primarily used for obtaining pure and functional target molecules, holds significant importance in modern biotechnology. This study aimed to obtain and characterize recombinant, extracellularly expressed α-amylases (Amy3500 and Amy1974), derived from B. amyloliquefaciens MDC1974 and B. subtilis MDC3500, respectively, using the pBE-S shuttle vector. Both α-amylase genes were molecularly cloned into the E. coli/B. subtilis pBE-S shuttle vector, both with (Amy1974sig and Amy3500sig) and without their signal peptides (Amy1974 and Amy3500), along with a signal peptide originating from the plasmid, and tested in flask fermentations. For recombinant Amy3500, the amylase variants resulted in similar levels of volumetric activity (700–750 U/mL). In contrast, the expression of Amy1974 nearly doubled compared to Amy1974sig with double signal peptides, reaching 2000 U/mL. SDS-PAGE estimated the molecular weight of Amy1974 α-amylase to be 54.6 kDa, which is consistent with the theoretical molecular mass calculations. However, the estimated molecular weight of Amy3500 α-amylase was significantly lower upon exiting the producer cells. Ca2⁺ ions exhibit a modest activating effect on the activities of Amy1974 and Amy3500 amylases, likely due to their tight binding to the protein scaffold. Both enzymes exhibited broad activity peaks between 45 and 70 °C, with a maximum at 65 °C. The Amy1974 and Amy3500 α-amylases demonstrated broad pH optima and pH-dependent thermostability, with optimum pH values at 6.5 and 5.8, and thermal stability peaks at pH 7.6 and 5.9, respectively. Both α-amylases displayed high relative activity against various starches, including corn amylopectin and potato amylose, while showing comparatively lower activity towards α-, β-, and γ-cyclodextrins. The Amy1974 amylase is effective in converting starch into dextrins of varying lengths, while Amy3500 primarily converts starch into glucose. These characteristics make them promising candidate enzymes for industrial applications. Full article
(This article belongs to the Section Industrial Fermentation)
Show Figures

Figure 1

15 pages, 2771 KiB  
Article
Preparation of Corn Peptides with Anti-Adhesive Activity and Its Functionality to Alleviate Gastric Injury Induced by Helicobacter pylori Infection In Vivo
by Guanlong Li, Xiaolan Liu, Zhengfei Miao, Nan Hu and Xiqun Zheng
Nutrients 2023, 15(15), 3467; https://doi.org/10.3390/nu15153467 - 5 Aug 2023
Cited by 13 | Viewed by 2291
Abstract
More than 50% of the world population is infected with Helicobacter pylori (H. pylori), which is classified as group I carcinogen by the WHO. H. pylori surface adhesins specifically recognize gastric mucosal epithelial cells’ (GES-1 cells) receptor to complete the adhesion. [...] Read more.
More than 50% of the world population is infected with Helicobacter pylori (H. pylori), which is classified as group I carcinogen by the WHO. H. pylori surface adhesins specifically recognize gastric mucosal epithelial cells’ (GES-1 cells) receptor to complete the adhesion. Blocking the adhesion with an anti-adhesion compound is an effective way to prevent H. pylori infection. The present study found that corn protein hydrolysate, hydrolyzed by Neutral, effectively alleviated gastric injury induced by H. pylori infection through anti-adhesive and anti-inflammatory effects in vitro and in vivo. The hydrolysate inhibited H. pylori adhesion to GES-1 cells significantly, and its anti-adhesive activity was 50.44 ± 0.27% at 4 mg/mL, which indicated that the hydrolysate possessed a similar structure to the GES-1 cells’ receptor, and exhibited anti-adhesive activity in binding to H. pylori. In vivo, compared with the H. pylori infection model group, the medium and high dose of the hydrolysate (400–600 mg/kg·bw) significantly decreased (p < 0.05) the amount of H. pylori colonization, pro-inflammatory cytokines (IL-6, IL-1β, TNF-α and MPO), chemokines (KC and MCP-1) as well as key metabolites of NF-κB signaling pathway levels (TLR4, MyD88 and NF-κB), and it increased antioxidant enzyme contents (SOD and GSH-Px) and the mitigation of H. pylori-induced pathological changes in the gastric mucosa. Taken together, these results indicated that the hydrolysate intervention can prevent H. pylori-induced gastric injury by anti-adhesive activity and inhibiting the NF-κB signaling pathway’s induction of inflammation. Hence, the corn protein hydrolysate might act as a potential anti-adhesive agent to prevent H. pylori infection. Full article
(This article belongs to the Special Issue Nutrition Intervention on Digestive Diseases)
Show Figures

Figure 1

14 pages, 323 KiB  
Article
Effects of Biofermented Feed on Zophobas morio: Growth Ability, Fatty Acid Profile, and Bioactive Properties
by Jana Čaloudová, Kateřina Křištofová, Matej Pospiech, Tatiana Klempová, Ondrej Slaný, Milan Čertík, Slavomír Marcinčák, Andrej Makiš, Zdeňka Javůrková, Martina Pečová, Michaela Zlámalová, Lucie Vrbíčková and Bohuslava Tremlová
Sustainability 2023, 15(12), 9709; https://doi.org/10.3390/su15129709 - 17 Jun 2023
Cited by 4 | Viewed by 2519
Abstract
The global population’s increasing demand for sustainable and nutritious food sources has led to the exploration of alternative approaches in livestock production. Edible insects have emerged as a promising solution due to their nutritional composition, including high protein content, balanced fats, minerals, vitamins, [...] Read more.
The global population’s increasing demand for sustainable and nutritious food sources has led to the exploration of alternative approaches in livestock production. Edible insects have emerged as a promising solution due to their nutritional composition, including high protein content, balanced fats, minerals, vitamins, and bioactive peptides. Biofermentation offers a viable method to enhance the nutritional value of insect feed. This study aimed to investigate the effects of feeding biofermented feeds derived from less valuable raw materials on the yield and nutritional composition of Zophobas morio larvae. The focus was on assessing fat quality, omega-3 and omega-6 fatty acids, and bioactive compounds and monitoring the larvae’s weight and length increases. Three feed types were tested: wheat bran (control), fermented wheat bran, and a mixture of fermented corn and flaxseed in a five-week period. The findings demonstrated a noteworthy (p < 0.05) elevation in polyunsaturated fatty acids, such as gamma-linolenic acid, alpha-linolenic acid, and eicosapentaenoic acid in Zophobas morio larvae fed with biofermented corn and flaxseed pomace, both pre- and postculinary treatment, as compared to the control group. The study also showed increased chelation of Cu2+ (p < 0.05) and Fe2+ (p < 0.05) between native and roasted insects in the samples without in vitro digestion, as well as increased Cyclooxygenase-1 activity (p < 0.05), indicating improved bioavailability. Additionally, culinary processing led to a reduction in polyphenol content (p < 0.05), antioxidant activity (p > 0.05) except DPPH, and peptide concentration (p < 0.05) in the samples without in vitro digestion. Full article
(This article belongs to the Special Issue Just Food System Transformations)
16 pages, 1163 KiB  
Article
Ultrasound-Assisted Multi-Enzymatic System for the Preparation of ACE Inhibitory Peptides with Low Bitterness from Corn Gluten Meal
by Shanfen Huang, Yunliang Li, Chengliang Li, Siyu Ruan, Wenjuan Qu, Yanhua Ding, Xiaofei Ye and Haile Ma
Processes 2021, 9(12), 2170; https://doi.org/10.3390/pr9122170 - 2 Dec 2021
Cited by 10 | Viewed by 3313
Abstract
The promising angiotensin converting enzyme (ACE) inhibitory peptides derived from corn protein usually have strong bitterness and thus limit their use among consumers. To prepare ACE inhibitory peptides with low bitterness, two energy-efficient types of ultrasound pretreatment were introduced into the multi-enzymatic system [...] Read more.
The promising angiotensin converting enzyme (ACE) inhibitory peptides derived from corn protein usually have strong bitterness and thus limit their use among consumers. To prepare ACE inhibitory peptides with low bitterness, two energy-efficient types of ultrasound pretreatment were introduced into the multi-enzymatic system of corn gluten meal. The results showed that Flavourzyme–Protamex sequential enzymolysis produced the peptides with high ACE inhibitory activity and the lowest bitterness compared with other enzymolysis conditions. During the optimized sequential enzymolysis, the divergent ultrasound pretreatment with a frequency of 40 kHz for 60 min exhibited higher ACE inhibitory activity (65.36%, accounting for 73.84% of the highest ACE inhibitory activity) and lower bitterness intensity of peptides, compared with an energy-gathered ultrasound. The results of the study showed that, on the one hand, divergent ultrasound pretreatment induced the highest intrinsic fluorescence of protein, with more hydrophobic amino acid residues exposed for cleavage by exopeptidases, which leads to a reduction in bitterness. On the other hand, the amino acid composition analysis proved that more Tyr, Ile, and Val moieties, instead of Leu (bitterest substance), and more peptide fractions with a molecular weight >1000 Da should be the structural features of high ACE inhibitory peptides. Full article
(This article belongs to the Topic Innovative Food Processing Technologies)
Show Figures

Graphical abstract

20 pages, 18894 KiB  
Article
Purification, Identification and Characterization of Antioxidant Peptides from Corn Silk Tryptic Hydrolysate: An Integrated In Vitro-In Silico Approach
by Joe-Hui Ong, Jiun-An Koh, Hui Cao, Sheri-Ann Tan, Fazilah Abd Manan, Fai-Chu Wong and Tsun-Thai Chai
Antioxidants 2021, 10(11), 1822; https://doi.org/10.3390/antiox10111822 - 17 Nov 2021
Cited by 22 | Viewed by 4579
Abstract
Corn silk (CS) is an agro-by-product from corn cultivation. It is used in folk medicines in some countries, besides being commercialized as health-promoting supplements and beverages. Unlike CS-derived natural products, their bioactive peptides, particularly antioxidant peptides, are understudied. This study aimed to purify, [...] Read more.
Corn silk (CS) is an agro-by-product from corn cultivation. It is used in folk medicines in some countries, besides being commercialized as health-promoting supplements and beverages. Unlike CS-derived natural products, their bioactive peptides, particularly antioxidant peptides, are understudied. This study aimed to purify, identify and characterize antioxidant peptides from trypsin-hydrolyzed CS proteins. Purification was accomplished by membrane ultrafiltration, gel filtration chromatography, and strong-cation-exchange solid-phase extraction, guided by 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt radical cation (ABTS•+) scavenging, hydrogen peroxide scavenging, and lipid peroxidation inhibition assays. De novo sequencing identified 29 peptides (6–14 residues; 633–1518 Da). The peptides consisted of 33–86% hydrophobic and 10–67% basic residues. Molecular docking found MCFHHHFHK, VHFNKGKKR, and PVVWAAKR having the strongest affinity (−4.7 to −4.8 kcal/mol) to ABTS•+, via hydrogen bonds and hydrophobic interactions. Potential cellular mechanisms of the peptides were supported by their interactions with modulators of intracellular oxidant status: Kelch-like ECH-associated protein 1, myeloperoxidase, and xanthine oxidase. NDGPSR (Asn-Asp-Gly-Pro-Ser-Arg), the most promising peptide, showed stable binding to all three cellular targets, besides exhibiting low toxicity, low allergenicity, and cell-penetrating potential. Overall, CS peptides have potential application as natural antioxidant additives and functional food ingredients. Full article
(This article belongs to the Special Issue Antioxidants in Foods II)
Show Figures

Figure 1

16 pages, 2148 KiB  
Article
Production and Characterization of Antioxidative Hydrolysates and Peptides from Corn Gluten Meal Using Papain, Ficin, and Bromelain
by Ruijia Hu, Gengjun Chen and Yonghui Li
Molecules 2020, 25(18), 4091; https://doi.org/10.3390/molecules25184091 - 7 Sep 2020
Cited by 71 | Viewed by 5928
Abstract
There has been a growing interest in developing natural antioxidants with high efficiency and low cost. Bioactive protein hydrolysates could be a potential source of natural and safer antioxidants. The objectives of this study were to hydrolyze corn gluten meal using three plant-derived [...] Read more.
There has been a growing interest in developing natural antioxidants with high efficiency and low cost. Bioactive protein hydrolysates could be a potential source of natural and safer antioxidants. The objectives of this study were to hydrolyze corn gluten meal using three plant-derived proteases, namely papain, ficin, and bromelain, to produce antioxidative hydrolysates and peptides and to characterize the antioxidant performances using both chemical assays and a ground meat model. The optimum hydrolysis time for papain was 3 h, and for ficin and bromelain was 4 h. The hydrolysates were further separated by sequential ultrafiltration to 5 hydrolysate fractions named F1 to F5 from low molecular weight (MW) (<1 kDa) to high MW range (>10 kDa), which were further characterized for TPC, free radical scavenging capacity against DPPH and ABTS, and metal chelating activity. The fraction F4 produced by papain (CH-P4), F1 produced by ficin (CH-F1), and F3 produced by bromelain (CH-B3) showed the strongest antioxidant activity and yield, respectively. These three fractions were incorporated into ground pork to determine their inhibition effects on lipid oxidation during a 16-day storage period. The inhibition effect was enhanced with the addition of higher amount of hydrolysate (e.g., 1000 vs. 500 mg/kg). The CH-P4 reduced lipid oxidation in ground meat by as much as 30.45%, and CH-B3 reduced oxidation by 27.2% at the same level, but the inhibition was only 13.83% with 1000 mg/kg of CH-F1. The study demonstrated that CGM protein hydrolysates and peptides could be used as naturally derived antioxidant in retarding lipid oxidation and improving product storage stability. Full article
Show Figures

Figure 1

12 pages, 1165 KiB  
Article
The Effects of Tocotrienol on Bone Peptides in a Rat Model of Osteoporosis Induced by Metabolic Syndrome: The Possible Communication between Bone Cells
by Sok Kuan Wong, Kok-Yong Chin and Soelaiman Ima-Nirwana
Int. J. Environ. Res. Public Health 2019, 16(18), 3313; https://doi.org/10.3390/ijerph16183313 - 9 Sep 2019
Cited by 34 | Viewed by 3771
Abstract
A positive association between metabolic syndrome (MetS) and osteoporosis has been demonstrated in previous animal studies. The mechanisms of MetS in orchestrating the bone remodelling process have traditionally focused on the interactions between mature osteoblasts and osteoclasts, while the role of osteocytes is [...] Read more.
A positive association between metabolic syndrome (MetS) and osteoporosis has been demonstrated in previous animal studies. The mechanisms of MetS in orchestrating the bone remodelling process have traditionally focused on the interactions between mature osteoblasts and osteoclasts, while the role of osteocytes is unexplored. Our earlier studies demonstrated the bone-promoting effects of tocotrienol using a rat model of osteoporosis induced by MetS. This study aimed to investigate the expression of osteocyte-derived peptides in the bone of rats with MetS-induced osteoporosis treated with tocotrienol. Age-matched male Wistar rats (12-week-old; n = 42) were divided into seven experimental groups. Two groups served as the baseline and normal group, respectively. The other five groups were fed with a high-carbohydrate high-fat (HCHF) diet to induce MetS. The five groups of HCHF animals were treated with tocopherol-stripped corn oil (vehicle), annatto tocotrienol (60 and 100 mg/kg), and palm tocotrienol (60 and 100 mg/kg) starting from week 8. At the end of the study, the rats were sacrificed and their right tibias were harvested. Protein was extracted from the metaphyseal region of the proximal right tibia and levels of bone peptides, including osteoprotegerin (OPG), soluble receptor activator of nuclear factor-kappa B ligand (sRANKL), sclerostin (SOST), Dickkopf-related protein 1 (DKK-1), fibroblast growth factor-23 (FGF-23), and parathyroid hormone (PTH), were measured. The vehicle-treated animals displayed higher levels of sRANKL, SOST, DKK-1, FGF-23, and PTH as compared to the normal animals. Oral supplementation of annatto and palm tocotrienol (60 and 100 mg/kg) reduced the levels of sRANKL and FGF-23 in the HCHF animals. Only 100 mg/kg annatto and palm tocotrienol lowered SOST and DKK-1 levels in the HCHF animals. In conclusion, tocotrienol exerts potential skeletal-promoting benefit by modulating the levels of osteocytes-derived bone-related peptides. Full article
Show Figures

Figure 1

33 pages, 2224 KiB  
Review
Recent Advances in Food-Packing, Pharmaceutical and Biomedical Applications of Zein and Zein-Based Materials
by Elisângela Corradini, Priscila S. Curti, Adriano B. Meniqueti, Alessandro F. Martins, Adley F. Rubira and Edvani Curti Muniz
Int. J. Mol. Sci. 2014, 15(12), 22438-22470; https://doi.org/10.3390/ijms151222438 - 4 Dec 2014
Cited by 263 | Viewed by 17348
Abstract
Zein is a biodegradable and biocompatible material extracted from renewable resources; it comprises almost 80% of the whole protein content in corn. This review highlights and describes some zein and zein-based materials, focusing on biomedical applications. It was demonstrated in this review that [...] Read more.
Zein is a biodegradable and biocompatible material extracted from renewable resources; it comprises almost 80% of the whole protein content in corn. This review highlights and describes some zein and zein-based materials, focusing on biomedical applications. It was demonstrated in this review that the biodegradation and biocompatibility of zein are key parameters for its uses in the food-packing, biomedical and pharmaceutical fields. Furthermore, it was pointed out that the presence of hydrophilic-hydrophobic groups in zein chains is a very important aspect for obtaining material with different hydrophobicities by mixing with other moieties (polymeric or not), but also for obtaining derivatives with different properties. The physical and chemical characteristics and special structure (at the molecular, nano and micro scales) make zein molecules inherently superior to many other polymers from natural sources and synthetic ones. The film-forming property of zein and zein-based materials is important for several applications. The good electrospinnability of zein is important for producing zein and zein-based nanofibers for applications in tissue engineering and drug delivery. The use of zein’s hydrolysate peptides for reducing blood pressure is another important issue related to the application of derivatives of zein in the biomedical field. It is pointed out that the biodegradability and biocompatibility of zein and other inherent properties associated with zein’s structure allow a myriad of applications of such materials with great potential in the near future. Full article
(This article belongs to the Special Issue Biodegradable Materials)
Show Figures

Graphical abstract

Back to TopTop